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SOME AXIOMATIZATIONS OF B-ALGEBRAS 

A N D R Z E J WALENDZIAK 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. Some systems of axioms defining a B-algebra are given with a 
proof of the independence of the axioms. In addition, we obtain a simplified 
axiomatization of commutative B-algebras. 

1. Introduction 

P?-algebras have been introduced by J. N e g g e r s and H. S. K im in [4]. 
They defined a B-algebra as an algebra (A, *,0) of type (2,0) satisfying the 
following axioms: 

Al. x * x = 0, 
A2. x *0 = x, 
A3, (x * y) * z = x * (z * (0 * y)). 

We will denote by B the class of all B-algebras. In [1], J. R. Cho and 
H. S. K im proved that every J3-algebra is a quasigroup. M. K o n d o and 
Y. B. J u n [3] showed that the class B is equivalent in one sense to the class of 
groups. In [2], Y. B. J u n, E. H. R o h and H. S. K i m introduced the notion of 
BJf-algebras, which is a generalization of BCH jBCI/BCK'-algebras. More
over, B is a proper subclass of the class of BiJ-algebras (cf. [4; Lemma 2.9]). 
For another useful generalization of B -algebras see [6]. 

2. Some axiomatizations of B -algebras 

THEOREM 2.1. Let (A, - , + , 0 ) be an algebra of type (2,2,0) satisfying the 
following axioms: 

Bl. x-x = 0, 
B2. x-0 = x, 
B3. (x-y)-z = x-(z + y), 
B4. x + y = x-(0-y). 

Then (A, —,0) is a B-algebra. 
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Conversely, if (A, — ,0) G B. and if we define x + y by x * (0 * y), then 
(A, —, +, 0) obeys the equations B1-B4. 

P r o o f . Straightforward. • 

In [6], J. N e g g e r s and H. S. K i m introduced the notion of /3-algebras. 
They defined a f3-algebra as an algebra (A, —, +, 0) of type (2, 2, 0) that obeys 
B2, B3, and the following axiom: 

(0-x) + x = 0. 

It is easy to verify that if an algebra (A, —, +, 0) satisfies B1-B4, then it is a 
(3 -algebra. 

THEOREM 2.2. Let A = (A, *,0) be an algebra of type (2,0) . Then A e B if 
and only if A obeys the laws: 

CI. x * x = 0. 
C2. 0 * ( 0 * x ) = x, 
C3. (x * z) * (y * z) = x * y. 

P r o o f . Suppose that A is a 5-algebra. For each x e A we have 0 * (0 * x) 
= x (see [4; Lemma 2.9]). Consequently, C2 is valid in A . By A3 we obtain 

(x * z) * (y * z) = x * [(y * z) * (0 * z)] = x * [H * ((0 * z) * (0 * z))] . 

Hence applying Al and A2 we get C3. 

Conversely, assume that C1-C3 hold in A . Then we have 

x = 0 * (0 * x) = (x * x) * (0 * x) = x * 0 . 

From this and from C3 we deduce that 

(x * y) * (0 * y) = x . (1) 

Combining (1) with C3 we get 

x * (z * (0 * y)) = [(x * y) * (0 * y)] * [z * (0 * y)] = (x * y) * z, 

i.e., A3 holds. Therefore A e B. • 

LEMMA 2.3. Let (A, *,0) 6e an algebra of type (2,0) obeying the following 
laws: 

Dl . x * x = 0. 
D2. x * J [(0 * y) * z] * [(0 * x) * z] \ = 2/ • 

(i) x * 0 = x, 
(ii) 0 * (0 * x) = x, 

(iii) 0 * x = 0 * y => x = y. 
(iv) (x * 2/) * (0 * y) = x, 
(v) x * 2/ = 0 * (y * x ) . 
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P r o o f . 
(i): To obtain (i), substitute x for y in D2 and then use Dl. 
(ii): Substituting x = 0, y = x, and z = 0, D2 becomes 

0 * { [(0 * x) * 0] * [(0 * 0) * 0] } = x . 

Applying (i) we obtain (ii). 
(iii) follows from (ii). 
(iv): Let a, b G A. Using D2 with x = 0, H = 0 * a, z = b we have 

0 * { [(0 * (0 * a)) * b] * [(0 * 0) * b] } = 0 * a. 

Hence applying (i) and (ii) we conclude that 

0 * [(a * b) * (0 * b)] = 0 * a . 

That (a * b) * (0 * b) = a follows from (iii). 
(v): Let a, b G A. Substituting x = a, y = 0 * (b * a), z = 0 in D2 we deduce 

that 
a * { [(0 * (0 * (b * a))) * 0] * [(0 * a) * 0] } = 0 * (b * a) . 

Then a* [(b*a) * (0*a)] = 0* (b*a). By (iv), a*b = 0*(b*a), verifying (v). 
a 

THEOREM 2.4. An algebra A = (A, *,0) of type (2,0) is a B-algebra if and 
only if the equations Dl and D2 are valid in A. 

P r o o f . Let A satisfy Dl and D2. CI holds in A by Dl. From 
Lemma 2.3 (iii) we conclude that A obeys C2. If we let x = a*c, y = a*b and 
z = 0 * a in D2, then we have 

(a* c) * I [(0 * (a * b)) * (0 * a)] * [(0 * (a* c)) * (0 * a)] } = a * b. 

By Lemma 2.3, 

(0 * (a * b)) * (0 * a) = (b * a) * (0 * a) = b, 

and similarly, (0 * (a * c)) * (0 * a) = c. Consequently, 

(a* c) * (b * c) = a * b. 

This shows that A also satisfies C3. Then A G B by Theorem 2.2. 
For the converse, suppose that A is a B-algebra. Obviously Dl is valid in A. 

From Theorem 2.2 we see that C3 holds in A, and therefore 

[(0 * y) * z] * [(0 * x) * z] = (0 * y) * (0 * x). (2) 
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It follows that 

x * { [(0 * y) * z] * [(0 * x) * z] | = x * [(0 * y) * (0 * x)] (by (2)) 

= (x * x) * (0 * y) (by A3) 

= 0 * (0 * y) (by Al) 

= V (byC2), 

proving D2. The proof is finished. • 

Following J. N e g g e r s and H. S. K i m [4] (see also [1]) wre give: 

DEFINITION 2.5. A B-algebra (A, *, 0) is said to be 0-commutative if a*(0*b) 
= b * (0 * a) for all a, b G A. 

In [1], J. R. C l io and H. S. K i m showed that a S-algebra A = (A, *,0) 

is 0-commutative if and only if the equation 

C2' y * (y * x) = x 

holds in A . 
From this and from Theorem 2.2 we have: 

COROLLARY 2.6. An algebra (A, *,0) of type (2,0) is a 0-commutative 
B -algebra if and only if it obeys the laws CI, C2 ' . and C3. 

3. Proof of the independence of the axioms 

The independence of the axioms Al , A2, and A3 was proved by J. N e g g e r s 
and H. S. K i m in [4]. 

THEOREM 3 .1 . The axioms B1-B4 are independent, i.e., none of them can be 
deduced from the others. 

P r o o f . We are going to give some examples of algebras in which only three 
of the axioms hold. 

Let A — {0,1}. Define binary operations 0 and 0 on A as follows: 

x Qy = x for all x ,y G A, 

x 0 y = 0 for all x,y G A. 

Then (A, 0 , 0 , 0 ) fulfils the axioms B2-B4, but not Bl , since 1 0 1 = 1 ^ - 0 . 
(Independence of Bl.) 

It is easily seen that (A, 0 , 0 ,0 ) satisfies Bl , B3, and B4, but not B2 (inde
pendence of B2). 
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Now we define the binary operations — and + on A by the following table. 

X У x-y x + y 

0 0 0 0 

0 1 0 0 

1 0 1 1 

1 1 0 1 

The equations Bl , B2, and B4 are valid in (A, —, +, 0), but B3 does not hold 
because (1 - 1) - 0 = 0, while 1 - (0 + 1) = 1. (Independence of B3.) 

Finally, let A = (A, — , + , 0 ) be the algebra, where — is given in the above 
table and + is defined by 

0 if x = y = 0 , 

otherwise. x + y = {l LI...!. " (3) 

Obviously, B1-B3 hold in A , while B4 does not (independence of B4). D 

THEOREM 3.2. The system of axioms C1-C3 is independent. 

P r o o f . Let A = {0,1}. We use the table below in order to define *, 
and * . 

X У x * y x ®y x * y 

0 0 1 0 0 

0 1 0 0 1 

1 0 0 0 0 

1 1 1 0 0 

We can see that the algebra (A, *, 0) satisfies C2-C3, but not CI . The axioms 
CI and C3 hold in (A, ®, 0), while C2 does not. It is evident that (A, * , 0) obeys 
CI and C2. The axiom C3 does not hold because (0 * 1) * (1 * 1) = 0, while 
0 * 1 = 1. D 

Remark 3.3. It is easy to see that the axiom system D1-D2 of B-algebras is 
independent. 
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