Mathematic Slovaca

Svatoslav Staněk

Asymptotic and oscillatory behaviour of solutions of certain second order neutral differential equations with forcing term

Mathematica Slovaca, Vol. 42 (1992), No. 4, 485--495

Persistent URL: http://dml.cz/dmlcz/131333

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ASYMPTOTIC AND OSCILLATORY BEHAVIOUR OF SOLUTIONS OF CERTAIN SECOND ORDER NEUTRAL DIFFERENTIAL EQUATIONS WITH FORCING TERM

SVATOSLAV STANĚK

Abstract

Sufficient conditions are obtained for the oscillatory and asymptotic behaviour of solutions of the equation

$$
\left[a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)\right]^{\prime}+f\left(t, x\left(\alpha_{0}(t)\right), x^{\prime}\left(\alpha_{1}(t)\right)\right)=e(t),
$$

where $-1<\lim _{t \rightarrow \infty} p(t)<1$ and $h(t)>t$.

1. Introduction

Consider the second order neutral delay differential equation $\left(\mathbb{R}_{+}=\langle 0, \infty)\right.$)

$$
\begin{equation*}
\left[a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)\right]^{\prime}+f\left(t, x\left(\alpha_{0}(t)\right), x^{\prime}\left(\alpha_{1}(t)\right)\right)=e(t), \tag{1}
\end{equation*}
$$

in which $\quad a, p, e \in C^{0}\left(\mathbb{R}_{+} ; \mathbb{R}\right), \quad g \in C^{0}(\mathbb{R} ; \mathbb{R}), \quad f \in C^{0}\left(\mathbb{R}_{+} \times \mathbb{R}^{2} ; \mathbb{R}\right)$, $h, \alpha_{i} \in C^{0}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \quad-1<\lim _{t \rightarrow \infty} p(t)=: \gamma<1, \quad h(t)>t \quad$ on $\quad \mathbb{R}_{+}$, $\lim _{t \rightarrow \infty} \alpha_{i}(t)=\infty \quad(i=0,1)$.

By a solution x of (1) we mean a function $x \in C^{1}\left(\left\langle T_{x}, \infty\right) ; \mathbb{R}\right)$ for some $T_{x} \in \mathbb{R}_{+}$such that $a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)$ is continuously differentiable on the interval $\left\langle T_{x}, \infty\right)$ and such that (1) is satisfied for all $t \geqq T_{x}, \alpha_{i}(t) \geqq T_{x}$, ($i=0,1$).

As it is customary, a solution x of (1) is called oscillatory, if it has arbitrarily large zeros; otherwise it is called non-oscillatory.

AMS Subject Classification (1991): Primary 34K15, 34C10.
Key words: Neutral delay differential equation, Oscillatory solution.

SVATOSLAV STANĚK

This paper was motivated by recent papers [3] and [5], where the authors give some criteria for the asymptotic and oscillatory behaviour of solutions of the delay differential equation

$$
x^{\prime \prime}(t)+q(t) f\left(x\left(\sigma_{1}(t)\right)\right) g\left(x^{\prime}\left(\sigma_{2}(t)\right)\right)=e(t)
$$

and the neutral delay differential equation

$$
\left[a(t)(x(t)-p x(t-\tau))^{\prime}\right]^{\prime}+q(t) f(x(t-\sigma))=0
$$

where $0 \leqq p<1$ is a constant, respectively. The purpose of this paper is to present a new criterion for the oscillatory and asymptotic behaviour of solutions of (1), which extends results in [3].

We observe that the oscillatory and asymptotic behaviour of solutions for second order and higher order neutral and non-neutral delay differential equations has been studied in many papers, e.g. [1]- [14], [17] - [19].

2. Notation, lemmas

We denote by $h^{[n]}$ for any integer $n(\geqq 0)$ the function defined inductively by $h^{[0]}(t)=t$ and $h^{[n]}(t)=h \circ h^{[n-1]}(t)$ for $n>0$ and $t \in \mathbb{R}_{+}$. One can readily check that $\lim _{n \rightarrow \infty} h^{[n]}(t)=\infty$ for all $t \in \mathbb{R}_{+}$(see e.g. [15]) and for each $t_{0} \in \mathbb{R}_{+}$,

$$
\left\langle t_{0}, \infty\right)=\bigcup_{n=0}^{\infty}\left\langle h^{[n]}\left(t_{0}\right), h^{[n+1]}\left(t_{0}\right)\right\rangle .
$$

We shall assume that the functions a, g, f, e satisfy some of the following assumptions:
$\left(H_{1}\right)$ There exists $\lim _{t \rightarrow \infty} a(t)=: A>0 ;$
$\left(H_{2}\right) \quad g(z)-z$ is bounded on \mathbb{R} and $\frac{z_{1}-z_{2}}{g\left(z_{1}\right)-g\left(z_{2}\right)}>|\gamma|$ for all $z_{1}, z_{2} \in \mathbb{R}$, $z_{1} \neq z_{2} ;$
$\left(H_{3}\right) \quad f(t, y, z) y \geqq 0$ for all $(t, y, z) \in \mathbb{R}_{+} \times \mathbb{R}^{2}$, and $f(t, \cdot, z)$ is nondecreasing on \mathbb{R} for each fixed $(t, z) \in \mathbb{R}_{+} \times \mathbb{R}$;
$\left(H_{4}\right) \quad \int_{0}^{\infty} e(s) \mathrm{d} s$ is convergent.
Lemma 1. Let $t_{0} \in \mathbb{R}_{+}$be a number, $z:\left\langle t_{0}, \infty\right) \rightarrow \mathbb{R}$ be a function such that $\lim _{t \rightarrow \infty}(z(h(t))-p(t) g(z(t)))(=: b)$ exists. If assumption $\left(H_{2}\right)$ is fulfilled and z is locally bounded on $\left\langle t_{0}, \infty\right)$, then $\lim _{t \rightarrow \infty} z(t)$ exists.

Proof. Let assumption $\left(H_{2}\right)$ be fulfilled and let z be locally bounded on $\left\langle t_{0}, \infty\right)$. First we will prove z is bounded on $\left\langle t_{0}, \infty\right)$. Setting $u(t):=$
$z(h(t))-p(t) g(z(t))$ and $r(t):=u(t)+p(t)(g(z(t))-z(t))$ for $t \in\left\langle t_{0}, \infty\right)$, then $\lim _{t \rightarrow \infty} u(t)=b$ and since (cf. $\left.\left(H_{2}\right)\right) g(z(t))-z(t)$ is bounded on $\left\langle t_{0}, \infty\right)$, we have $|r(t)| \leqq L$ for $t \geqq t_{0}$ with a positive constant L. Let $|p(t)| \leqq \varepsilon$ for $t \geqq t_{1}\left(\geqq t_{0}\right)$, where $|\gamma|<\varepsilon<1$. Using the equality

$$
z\left(h^{[2]}(t)\right)=r(h(t))+p(h(t)) r(t)+p(h(t)) p(t) z(t)
$$

we deduce

$$
\begin{align*}
z\left(h^{[2 n]}(t)\right)= & r\left(h^{[2 n-1]}(t)\right)+p\left(h^{[2 n-1]}(t)\right) r\left(h^{[2 n-2]}(t)\right) \\
& +\sum_{k=0}^{n-2}\left(r\left(h^{[2 k+1]}(t)\right)+p\left(h^{[2 k+1]}(t)\right) r\left(h^{[2 k]}(t)\right)\right) \prod_{j=2}^{2 n-1} p\left(h^{[j]}(t)\right) \\
& +z(t) \prod_{k=0}^{2 n-1} p\left(h^{[k]}(t)\right) \tag{2}
\end{align*}
$$

for $t \geqq t_{0}$ and $n \in \mathbb{N}, n \geqq 2$. Hence

$$
\left|z\left(h^{[2 n]}(t)\right)\right| \leqq(1+\varepsilon) L+(1+\varepsilon) L \sum_{k=0}^{n-2} \varepsilon^{2(n-k-1)}+m \varepsilon^{2 n} \leqq \frac{L}{1-\varepsilon}+m
$$

for $t \in\left\langle t_{1}, h^{[2]}\left(t_{1}\right)\right\rangle, n \geqq 2$, where $m=\sup \left\{|z(t)| ; t_{1} \leqq t \leqq h^{[2]}\left(t_{1}\right)\right\}$ and consequently, z is bounded on $\left\langle t_{0}, \infty\right)$.

If $\gamma=0$, then $\lim _{t \rightarrow \infty} z(h(t))=\lim _{t \rightarrow \infty}(u(t)+p(t) g(z(t)))=\lim _{t \rightarrow \infty} u(t)=b$ and $\lim _{t \rightarrow \infty} z(t)$ exists.

Let $\gamma \neq 0$ and let $\left\{t_{n}\right\}$ and $\left\{t_{n}^{\prime}\right\}$ be sequences of points in $\left\langle t_{0}, \infty\right), \lim _{n \rightarrow \infty} t_{n}=$ $\infty=\lim _{n \rightarrow \infty} t_{n}^{\prime}$ such that

$$
\begin{aligned}
& \alpha:=\limsup _{t \rightarrow \infty} z(t)=\lim _{n \rightarrow \infty} z\left(h^{[2]}\left(t_{n}\right)\right), \\
& \beta:=\liminf _{t \rightarrow \infty} z(t)=\lim _{n \rightarrow \infty} z\left(h^{[2]}\left(t_{n}^{\prime}\right)\right) .
\end{aligned}
$$

Using the equality $z\left(h^{[2]}(t)\right)=u(h(t))+p(h(t)) g(u(t)+p(t) g(z(t)))$ and the fact that (cf. $\left.\left(H_{2}\right)\right) g$ is increasing on \mathbb{R} (and then also $\gamma \cdot g(b+\gamma \cdot g(t))$ is increasing on \mathbb{R}) we obtain the following inequalities

$$
\alpha \leqq b+\gamma g(b+\gamma g(\alpha)), \quad \beta \geqq b+\gamma g(b+\gamma g(\beta))
$$

Then

$$
\alpha-\beta \leqq \gamma(g(b+\gamma g(\alpha))-g(b+\gamma g(\beta)))
$$

and if $\alpha \neq \beta, \frac{\alpha-\beta}{\gamma(g(b+\gamma g(\alpha))-g(b+\gamma g(\beta)))} \leqq 1$ which contradicts (cf. $\left.\left(H_{2}\right)\right)$

$$
\begin{aligned}
& \frac{\alpha-\beta}{\gamma(g(b+\gamma g(\alpha))-g(b+\gamma g(\beta)))} \\
& \quad=\frac{b+\gamma g(\alpha)-b-\gamma g(\beta)}{\gamma(g(b+\gamma g(\alpha))-g(b+\gamma g(\beta)))} \cdot \frac{\alpha-\beta}{\gamma(g(\alpha)-g(\beta))}>1
\end{aligned}
$$

Whence $\alpha=\beta$ that is $\lim _{t \rightarrow \infty} z(t)$ exists.
Remark 1. From our Lemma 1 follow Lemma 1 in [16] and Lemma 1 in [20] (with $n=1$).

Lemma 2. Assume $t_{0} \in \mathbb{R}_{+}, c:\left\langle t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a bounded function and $z:\left\langle t_{0}, \infty\right) \rightarrow \mathbb{R}$ is such a function that $(u(t):=) a(t)(z(h(t))-p(t) g(z(t)))+c(t)$ is non-increasing on $\left\langle t_{0}, \infty\right)$ and $\lim _{t \rightarrow \infty} u(t)=-\infty$. If assumptions $\left(H_{1}\right),\left(H_{2}\right)$ are fulfilled and z is locally bounded on $\left(t_{0}, \infty\right)$, then $\lim _{t \rightarrow \infty} z(t)=-\infty$.

Proof. Let assumptions $\left(H_{1}\right),\left(H_{2}\right)$ be fulfilled and let z be locally bounded on $\left\langle t_{0}, \infty\right)$. Assume $a(t)>0$ for $t \geqq t_{1}\left(\geqq t_{0}\right)$ and for this t define r by $r(t)=(1 / a(t))(u(t)-b(t))$, where $b(t)=c(t)-a(t) p(t)(g(z(t))-z(t))$. Then $z(h(t))=r(t)+p(t) z(t), b$ is bounded on $\left\langle t_{1}, \infty\right)$, say $|b(t)| \leqq B$ for $t \geqq t_{1}$, and $\lim _{t \rightarrow \infty} r(t)=-\infty$. Choose numbers $\varepsilon, t_{2},|\gamma|<\varepsilon<1, t_{2} \geqq t_{1}$ so that $|p(t)| \leqq \varepsilon, u(t)+B<0$ and

$$
\frac{(1+3 \varepsilon) A}{2(1+\varepsilon)} \leqq a(t) \leqq \frac{(3+\varepsilon) A}{2(1+\varepsilon)}
$$

for $t \geqq t_{2}$. Then

$$
\frac{2(1+\varepsilon)}{(1+3 \varepsilon) A}(u(t)-B) \leqq r(t) \leqq \frac{2(1+\varepsilon)}{(3+\varepsilon) A}(u(t)+B)
$$

and

$$
\begin{align*}
& r\left(h^{[2 k+1]}(t)\right)+p\left(h^{[2 k+1]}(t)\right) r\left(h^{[2 k]}(t)\right) \\
& \quad \leqq \frac{2(1+\varepsilon)}{(3+\varepsilon) A}\left(u\left(h^{[2 k+1]}(t)\right)+B\right)-\varepsilon \frac{2(1+\varepsilon)}{(1+3 \varepsilon) A}\left(u\left(h^{[2 k]}(t)\right)-B\right) \tag{3}\\
& \quad \leqq \frac{1-\varepsilon^{2}}{(3+\varepsilon) A} u\left(h^{[2 k+1]}(t)\right)+2 B / A
\end{align*}
$$

\qquad
for $t \geqq t_{2}$ and $k=0,1,2, \ldots$. Setting $m=\sup \left\{|z(t)| ; t_{2} \leqq t \leqq h^{[2]}\left(t_{2}\right)\right\}$ we have (cf. (2), (3))

$$
\begin{aligned}
z\left(h^{[2 n]}(t)\right) \leqq \frac{1-\varepsilon^{2}}{(3+\varepsilon) A} u & \left(h^{[2 n-1]}(t)\right)+2 B / A+\sum_{k=0}^{n-2}(2 B / A) \varepsilon^{2(n-k-1)}+m \\
& \leqq \frac{1-\varepsilon^{2}}{(3+\varepsilon) A} u\left(h^{[2 n-1]}(t)\right)+\left(2 B / A\left(1-\varepsilon^{2}\right)\right)+m
\end{aligned}
$$

for $t \in\left\langle t_{2}, h^{[2]}\left(t_{2}\right)\right\rangle$ and $n \geqq 2$. Consequently, $\lim _{t \rightarrow \infty} z(t)=-\infty$.

3. Results

Theorem 1. Suppose $\left(H_{1}\right)-\left(H_{4}\right)$ hold and for each $\varepsilon \in \mathbb{R}, \varepsilon \neq 0$

$$
\begin{equation*}
\operatorname{sign} \varepsilon \int_{0}^{\infty} f\left(s, \varepsilon \alpha_{0}(s), z \cdot \operatorname{sign} \varepsilon\right) \mathrm{d} s=\infty \tag{4}
\end{equation*}
$$

uniformly on $\langle | \varepsilon|, 2| \varepsilon\rangle$ with respect to z. Then every solution x of (1) is either oscillatory or $\lim _{t \rightarrow \infty} x^{\prime}(t)=0$.

Proof. Let x be a non-oscillatory solution of (1), say $x(t)>0$ for $t \geqq t_{1}(\geqq 0)$ and let $\alpha_{i}(t) \geqq t_{1}$ for $t \geqq t_{2}\left(\geqq t_{1}\right), i=0,1$. Then

$$
f\left(t, x\left(\alpha_{0}(t)\right), x^{\prime}\left(\alpha_{1}(t)\right)\right) \geqq 0 \quad \text { for } \quad t \geqq t_{2},
$$

hence

$$
\left[a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)\right]^{\prime}-e(t) \leqq 0 \quad \text { for } \quad t \geqq t_{2}
$$

and

$$
a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)-\int_{0}^{t} e(s) \mathrm{d} s
$$

is a non-increasing function on $\left\langle t_{2}, \infty\right)$. Consequently, either

$$
\lim _{t \rightarrow \infty}\left\{a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)-\int_{0}^{t} e(s) \mathrm{d} s\right\}=-\infty
$$

or $\lim _{t \rightarrow \infty} a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)$ is finite. From Lemma 1 and Lemma 2 (with $\left.z=x^{\prime}, c(t)=-\int_{0}^{t} e(s) \mathrm{d} s\right)$ we infer either $\lim _{t \rightarrow \infty} x^{\prime}(t)=-\infty$ which contradicts

$$
\begin{equation*}
x(t)>0 \quad \text { for } \quad t \geqq t_{1} \tag{5}
\end{equation*}
$$

or $\lim _{t \rightarrow \infty} x^{\prime}(t)$ is finite, say d.
If $d<0$, then $\lim _{t \rightarrow \infty} x(t)=-\infty$ which contradicts (5). Let $d>0$. Then there exists a $t_{3}\left(\geqq t_{2}\right)$ so that

$$
3 d / 4 \leqq x^{\prime}(t) \leqq 5 d / 4 \quad \text { for } \quad t \geqq t_{3}
$$

and $x(t) \geqq x\left(t_{3}\right)+3 d\left(t-t_{3}\right) / 4$ for $t \geqq t_{3}$. Hence $x(t) \geqq \varepsilon t$ for $t \geqq t_{4}\left(\geqq t_{3}\right)$ and $\varepsilon=5 d / 8$, which implies $x\left(\alpha_{0}(t)\right) \geqq \varepsilon \alpha_{0}(t)$ for $t \geqq t_{5}\left(\geqq t_{4}\right)$, where t_{5} is a number with $\alpha_{i}(t) \geqq t_{4}$ for $t \geqq t_{5}(i=0,1)$. Then

$$
\begin{aligned}
& f\left(t, x\left(\alpha_{0}(t)\right), x^{\prime}\left(\alpha_{1}(t)\right)\right) \geqq f\left(t, \varepsilon \alpha_{0}(t), x^{\prime}\left(\alpha_{1}(t)\right)\right) \quad \text { and } \\
& {\left[a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)\right]^{\prime} \leqq e(t)-f\left(t, \varepsilon \alpha_{0}(t), x^{\prime}\left(\alpha_{1}(t)\right)\right) \quad \text { for } \quad t \geqq t_{5}}
\end{aligned}
$$

Since $\varepsilon \leqq x^{\prime}\left(\alpha_{1}(t)\right) \leqq 2 \varepsilon$ for $t \geqq t_{5}$ using assumption (4) we get

$$
\lim _{t \rightarrow \infty} a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)=-\infty
$$

which contradicts

$$
\lim _{t \rightarrow \infty}\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)=d-\gamma \dot{g}(d) \quad \text { and }\left(H_{1}\right)
$$

For the case $x(t)<0$ on a ray the proof is similar and therefore it is omitted.
Remark 2. Let $f(t, y, z)=q(t) k(y) m(z)$ for $(t, y, z) \in \mathbb{R}_{+} \times \mathbb{R}^{2}$ with continuous functions q, k, m. If $q(t) \geqq 0$ on $\mathbb{R}_{+}, k(y) y \geqq 0$ for $y \in \mathbb{R}, k$ is non-decreasing on $\mathbb{R}, m(z)>0$ for $z \in \mathbb{R}-\{0\}$ and

$$
\operatorname{sign} \varepsilon \int_{0}^{\infty} q(t) k\left(\varepsilon \alpha_{0}(t)\right) \mathrm{d} t=\infty
$$

for each $\varepsilon \in \mathbb{R}, \varepsilon \neq 0$, then the statement of Theorem 1 holds.

Remark 3. The result of Theorem 1 can be extended to the equation of the form

$$
\begin{aligned}
& {\left[a(t)\left(x^{\prime}(h(t))-p(t) g\left(x^{\prime}(t)\right)\right)\right]^{\prime}} \\
& \quad+f\left(t, x(t), x\left(\alpha_{0}(t)\right), \ldots, x\left(\alpha_{n}(t)\right), x^{\prime}(t), x^{\prime}\left(\beta_{0}(t)\right), \ldots, x^{\prime}\left(\beta_{m}(t)\right)\right)=e(t)
\end{aligned}
$$

The following examples show if at least one of the assumptions $\left(H_{1}\right)-\left(H_{4}\right)$, (4) and $-1<\gamma<1$ is violated then the conclusion of Theorem 1 is false.

Example 1. Consider the neutral differential equation

$$
\begin{equation*}
\left[\mathrm{e}^{-t}\left(x^{\prime}(t+1)+\mathrm{e}^{-1} x^{\prime}(t)\right)\right]^{\prime}+\frac{x(t)}{1+x^{\prime 2}(2 t)}=\frac{\mathrm{e}^{t}}{1+\mathrm{e}^{4 t}} . \tag{6}
\end{equation*}
$$

All assumptions of Theorem 1 are fulfilled except $\left(H_{1}\right)$. Equation (6) has a solution $x(t)=\mathrm{e}^{t}$.

Example 2. Consider the neutral differential equation

$$
\begin{equation*}
\left(x^{\prime}(t+1)-2 e^{1-2 t} x^{3}(t)\right)^{\prime}+x(t+1)=0 . \tag{7}
\end{equation*}
$$

The assumptions of Theorem 1 are fulfilled except $\left(H_{2}\right)$. Equation (7) has a solution $x(t)=\mathrm{e}^{t}$.

Example 3. Consider the neutral differential equation

$$
\begin{equation*}
\left[(3 / 4)\left(x^{\prime}(t+2 \pi)+(1 / 3) x^{\prime}(t)\right)\right]^{\prime}+\frac{(x(t)-2)\left(1+x^{\prime 2}(t)\right)}{1+\cos ^{2} t}=0 \tag{8}
\end{equation*}
$$

The assumptions of Theorem 1 are satisfied except $\left(H_{3}\right)$. Equation (8) has a solution $x(t)=2-\sin t$.

Example 4. The neutral differential equation

$$
\left[(2 / 3)\left(x^{\prime}(t+2 \pi)+(1 / 2) x^{\prime}(t)\right)\right]^{\prime}+\frac{x(t)\left(1+x^{\prime 2}(t)\right)}{(2-\sin t)\left(1+\cos ^{2} t\right)}=1+\sin t
$$

fulfils all assumptions of Theorem 1 except $\left(H_{4}\right)$ and admits a solution $x(t)=2-\sin t$.

Example 5. Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}(t+1)+\frac{x(t+1)}{t^{2}\left(t+\mathrm{e}^{-t}\right)}=t^{-2}+\mathrm{e}^{-t} \tag{9}
\end{equation*}
$$

All assumptions of Theorem 1 are fulfilled except (4). Equation (9) has a solution $x(t)=t-1+\mathrm{e}^{1-t}$.

Example 6. Consider the neutral differential equation

$$
\begin{equation*}
\left(x^{\prime}(t+\ln 3)-4 x^{\prime}(t)\right)^{\prime}+(1 / \mathrm{e}) x(t+1)=0 \tag{10}
\end{equation*}
$$

All assumptions of Theorem 1 are fulfilled except $-1<\gamma<1$. Equation (10) has a solution $x(t)=\mathrm{e}^{t}$.

The following example shows that under the assumptions of Theorem 1 there exists an equation having a non-oscillatory solution x with $\lim _{t \rightarrow \infty} x^{\prime}(t)=0$ and $\lim _{t \rightarrow \infty} x(t) \neq 0$.

Example 7. The neutral differential equation

$$
x^{\prime \prime}(t+\ln 2)-(1 / 2) x^{\prime \prime}(t)+\left(1 / t^{2}\right) x\left(t^{2}\right)=t^{-2}\left(1+\mathrm{e}^{-t^{2}}\right)
$$

admits a solution $x(t)=1+\mathrm{e}^{-t}$.
Our results can be extended to the neutral differential equation of the form

$$
\begin{equation*}
\left[a(t)\left(x^{\prime}\left(h^{[2]}(t)\right)+(\alpha+\beta) x^{\prime}(h(t))+\alpha \beta x^{\prime}(t)\right)\right]^{\prime}+f\left(t, x\left(\alpha_{0}(t)\right), x^{\prime}\left(\alpha_{1}(t)\right)\right)=e(t) \tag{11}
\end{equation*}
$$

where $a, h, \alpha_{0}, \alpha_{1}, f, e$ are as in equation (1) and $\alpha, \beta \in \mathbb{R}$.
By a solution (11) we mean a C^{1}-function x on an interval $\left\langle T_{x}, \infty\right)$ $\left(T_{x} \geqq 0\right), a(t)\left(x^{\prime}\left(h^{[2]}(t)\right)+(\alpha+\beta) x^{\prime}(h(t))+\alpha \beta x^{\prime}(t)\right)$ is continuously differentiable on $\left\langle T_{x}, \infty\right)$ and (11) is satisfied for all $t \geqq T_{x}, \alpha_{i}(t) \geqq T_{x}(i=0,1)$.

THEOREM 2. Let assumptions $\left(H_{1}\right),\left(H_{3}\right),\left(H_{4}\right)$, (4) and $|\beta|<1$ be satisfied. If

$$
\begin{equation*}
-1<\alpha \leqq 0 \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
0<\alpha<1, \quad h \in C^{2}\left(\mathbb{R}_{+}\right), \quad h^{\prime \prime}(t) \geqq 0 \quad \text { on } \quad \mathbb{R}_{+} \quad \text { and } \quad \liminf _{t \rightarrow \infty} h^{\prime}(t)>0 \tag{13}
\end{equation*}
$$

then every solution x of (11) is either oscillatory or $\lim _{t \rightarrow \infty} x^{\prime}(t)=0$.
Proof. Let x be a non-oscillatory solution of (11), say $x(t)<0$ for $t \geqq t_{1}(\geqq 0)$ and let $\alpha_{i}(t) \geqq t_{1}$, for $t \geqq t_{2}\left(\geqq t_{1}\right), i=0,1$. Then

$$
f\left(t, x\left(\alpha_{0}(t)\right), x^{\prime}\left(\alpha_{1}(t)\right)\right) \leqq 0 \quad \text { on } \quad\left\langle t_{2}, \infty\right)
$$

and setting $r(t):=x^{\prime}(h(t))+\alpha x^{\prime}(t)$ for $t \geqq t_{1}$ we have

$$
[a(t)(r(h(t))+\beta r(t))]^{\prime}-e(t) \geqq 0 \quad \text { for } \quad t \geqq t_{2}
$$

Therefore $u(t):=a(t)(r(h(t))+\beta r(t))-\int_{0}^{t} e(s) \mathrm{d} s$ is a non-decreasing function on $\left(t_{2}, \infty\right)$, and consequently either $\lim _{t \rightarrow \infty} u(t)=\infty$ and then by Lemma 2 $\lim _{t \rightarrow \infty} r(t)=\infty$ or $\lim _{t \rightarrow \infty} u(t)$ is finite and then by Lemma $1 \lim _{t \rightarrow \infty} r(t)=: c$ is finite too.

Let $\lim _{t \rightarrow \infty} r(t)=\lim _{t \rightarrow \infty}\left(x^{\prime}(h(t))+\alpha x^{\prime}(t)\right)=\infty$. If $-1<\alpha \leqq 0$, we have

$$
x^{\prime}\left(h^{[n]}(t)\right)=r\left(h^{[n-1]}(t)\right)+\sum_{k=0}^{n-2} r\left(h^{[k]}(t)\right)|\alpha|^{n-k-1}+x^{\prime}(t)|\alpha|^{n}
$$

for $t \geqq t_{1}$ and $n \geqq 2$, hence $\lim _{t \rightarrow \infty} x^{\prime}(t)=\infty$ which contradicts

$$
\begin{equation*}
x(t)<0 \quad \text { for } \quad t \geqq t_{1} \tag{14}
\end{equation*}
$$

If assumption (13) is satisfied and $h^{\prime}(t)>0$ for $t \geqq t_{2}$, then

$$
\int_{t_{2}}^{t} r(s) \mathrm{d} s=\int_{t_{2}}^{t} x^{\prime}(h(s)) \mathrm{d} s+\alpha\left(x(t)-x\left(t_{2}\right)\right) \leqq \int_{t_{2}}^{t} x^{\prime}(h(s)) \mathrm{d} s-\alpha x\left(t_{2}\right)
$$

and therefore

$$
\int_{t_{2}}^{\infty} x^{\prime}(h(s)) \mathrm{d} s=\infty
$$

which contradicts

$$
\begin{aligned}
\int_{i_{2}}^{t} x^{\prime}(h(s)) \mathrm{d} s & =\frac{1}{h^{\prime}(t)} x(h(t))-\frac{1}{h^{\prime}\left(t_{2}\right)} x\left(h\left(t_{2}\right)\right)+\int_{t_{2}}^{t} \frac{h^{\prime \prime}(s) x(h(s))}{h^{\prime 2}(s)} \mathrm{d} s \\
& \leqq-\frac{x\left(h\left(t_{2}\right)\right)}{h^{\prime}\left(t_{2}\right)} \quad \text { for } \quad t \geqq t_{2}
\end{aligned}
$$

Let $\lim _{t \rightarrow \infty} r(t)=\lim _{t \rightarrow \infty}\left(x^{\prime}(h(t))+\alpha x^{\prime}(t)\right)=c$. By Lemma 1 there exists $\lim _{t \rightarrow \infty} x^{\prime}(t)=: d$. Due to (14), $d \leqq 0$. If $d<0$, then there exists a $t_{3}\left(\geqq t_{2}\right)$ so that

$$
(5 / 4) d \leqq x^{\prime}(t) \leqq(3 / 4) d \quad \text { for } \quad t \geqq t_{3}
$$

SVATOSLAV STANĚK

and $x(t) \leqq x\left(t_{3}\right)+(3 / 4) d\left(t-t_{3}\right)$ for $t \geqq t_{3}$. Hence $x(t) \leqq \varepsilon t$ for $\varepsilon=(5 / 8) d$ and $t \geqq t_{4}\left(\geqq t_{3}\right)$. If $t_{5}\left(\geqq t_{4}\right)$ is such a number that $\alpha_{i}(t) \geqq t_{4}$ on $\left\langle t_{5}, \infty\right)$ for $i=0,1$, then

$$
f\left(t, x\left(\alpha_{0}(t)\right), x^{\prime}\left(\alpha_{1}(t)\right)\right) \leqq f\left(t, \varepsilon \alpha_{0}(t), x^{\prime}\left(\alpha_{1}(t)\right)\right)
$$

and
$\left[a(t)\left(x^{\prime}\left(h^{[2]}(t)\right)+(\alpha+\beta) x^{\prime}(h(t))+\alpha \beta x^{\prime}(t)\right)\right]^{\prime} \geqq e(t)-f\left(t, \varepsilon \alpha_{0}(t), x^{\prime}\left(\alpha_{1}(t)\right)\right)$
for $t \geqq t_{5}$. Since $\varepsilon \geqq x^{\prime}(t) \geqq 2 \varepsilon$ for $t \geqq t_{5}$, using assumption (4) we have

$$
\lim _{t \rightarrow \infty} a(t)\left[x^{\prime}\left(h^{[2]}(t)\right)+(\alpha+\beta) x^{\prime}(h(t))+\alpha \beta x^{\prime}(t)\right]=\infty
$$

which contradicts $\left(H_{1}\right)$ and

$$
\lim _{t \rightarrow \infty}\left[x^{\prime}\left(h^{[2]}(t)\right)+(\alpha+\beta) x^{\prime}(h(t))+\alpha \beta x^{\prime}(t)\right]=d(1+\alpha+\beta+\alpha \beta) .
$$

REFERENCES

[1] BICHEV, S. J.-GRAMMATIKOPOULOS, M. K.-STAVROULAKIS, I. P.: Oscillations of higher order neutral differential equations. (Reprint).
[2] DAHIYA, R. S.-AKINYELE, O.: Oscillation theorems of nth order functional differential equations with forcing terms, J. Math. Anal. Appl. 109 (1985), 325-332.
[3] GRACE, S. R.-LALLI, B. S.: A criterion for oscillatory and asymptotic behaviour of differential equations with forcing term, An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S) XXXIII (1987), 29-32.
[4] GRACE, S. R.-LALLI, B. S.: Asymptotic and oscillatory behavior of nth order forced functional differential equations, J. Math. Anal. Appl. 140 (1989), 10-25
[5] GRACE, S. R.-LALLI, B. S.: Oscillation and asymptotic behavior of certain second order neutral differential equations, Rad. Mat. 5 (1989), 121-126.
[6] GRACE, S. R.-LALLI, B. S.: Oscillation and asymptotic behavior for forced nonlinear delay differential equations, Indian J. Math. 31 (1989), 25-39.
[7] GRAMMATIKOPOULOS, M. K.-LADAS, G.-MEIMARIDOU, A. : Oscillation and asymptotic behavior of second order neutral delay differential equations, Rad. Mat. 1 (1985), 267-274.
[8] GRAMMATIKOPOULOS, M. K.-LADAS, G.--MEIMARIDOU, A.: Oscillation and asymptotic behavior of second order neutral differential equations, Ann. Mat. Pura Appl. 148 (1987), 29-40.
[9] HAMEDANI, G. G.: Oscillation theorems for second order functional-differential equations, J. Math. Anal. Appl. 135 (1988), 237-243.

ASYMPTOTIC AND OSCILLATORY BEHAVIOUR OF SOLUTIONS ..

[10] JAROŠ, J.-KUSANO, T.: Sufficient conditions for oscillations in higher order linear functional differential equations of neutral type, Japan. J. Math. 15 (1989), 415-432.
[11] JAROŠ, J.-KUSANO, T.: Oscillation theory of higher order linear functional differential equations of neutral type, Hiroshima Math. J. 18 (1988), 509-531.
[12] JAROŠ, J.-KUSANO, T.: Asymptotic behaviour of nonoscillatory solutions of nonlinear functional differential equations of neutral type, Funkcial. Ekvac. 32 (1989), 251-263.
[13] JAROŠ, J.-KUSANO, T.: On oscillation of linear neutral differential equations of higher order, Hiroshima Math. J. 20 (1990), 407-419.
[14] KARTSATOS, A. G.: The oscillation of a forced equation implies the oscillation of the unforced equation - small forcing, J. Math. Anal. Appl. 76 (1980), 98-106.
[15] KUCZMA, M.: Functional Equations in a Single Variable, PWN, Warszawa, 1968.
[16] LADAS, G.-SFICAS, Y. G.: Oscillations of neutral delay differential equations, Canad. Math. Bull. 29 (4) (1986), 438-445.
[17] LADAS, G.-SFICAS, Y. G.: Oscillations of higher-order neutral equations, J. Austral. Math. Soc. Ser. B 27 (1986), 502-511.
[18] LADAS, G.-QIAN, C.: Linearized oscillations for odd-order neutral delay differential equations, J. Differential Equations 88 (1990), 238-247.
[19] MAHFOUD, W. E.: Oscillation and asymptotic behavior of solutions of nth order nonlinear delay differential equations, J. Differential Equations 24 (1977), 75-98.
[20] STANĚK, S.: Oscillation behaviour of solutions of neutral delay differential equations, Časopis Pèst. Mat. 115 (1990), 92-99.

Department of Mathematical Analysis Faculty of Science

Palacký University
Tř. Svobody 26
77146 Olomouc
Czechoslovakia

