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ABSTRACT. Effective sufficient and necessary conditions are given that the 
functional-differential equation 

n m 

y'(x) = Y,ai(x)bi(y(x)) ft Stj (v &(*))) + q(x)y(x), x € I C R , 
i=0 j = l 

with ra (ra > 1) delays be globally transformable into an equation of the form 

n m 

u'(s)=YiaMu^) n 5 i j M « + c j ) ) + ^ w ' s E R ' 
i=0 j=l 

with constant coefficients and deviations. 
Here b^, <5-• are nontrivial solutions, in the class of functions continuous at 

a point, of Cauchy's functional equation b(wv) = b(u)b(v) (u,v G K - {0}). 

1. Introduction 

The theory of global transformations converting any homogeneous linear dif
ferential equation of the nth order into another equation of the same kind and 
order on the whole interval of their definition was developed in the monograph 
of F. N e u m a n [9] (see historical remarks, definitions, results and some appli
cations). The most general form of global pointwise transformations for homo-
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VACLAV TRYHUK 

geneous linear differential equations of the nth order (n > 2) is 

z(t) = L(t)y(<p(t)) , 

where <p is a bijection of an interval J onto an interval I (J C R, I C R) 
and L(t) is a nonvanishing function on J, i.e. this global transformation consist 
of a change of the independent variable and of a nonvanishing factor L. Global 
transformations may serve for example for investigation of oscillatory behavior of 
solutions from certain classes of linear differential equations because each global 
pointwise transformation preserves distribution of zeros of solutions of a linear 
differential equation. 

The form of the most general pointwise transformation of homogeneous lin
ear differential equations with deviating arguments was derived in [2], [8], [10], 
[11], [12]. This form coincides for arbitrary order with the form considered for 
linear differential equations of the nth (n > 2) order without deviation. Trans
formations and canonical forms of linear functional-differential equations were 
studied in [6], [7], [10], oscillatory behavior of solutions of functional-differential 
equations and functional-differential equations with constant coefficients and de
viations in [3], [4], [5], for example. 

Effective criterion for transformations of linear functional-differential equa
tions of the first order into canonical forms with constant coefficients and devi
ations was derived in [14]. 

Functional-differential equations considered in [5] are nonlinear, such as 

y'(x)+p(x)\y(r(x))\ signy(r(x)) = 0 , A > 0 ; 

y'{x)=xk^y{X~1)3' X"3; 

y'(x) = 21-xy(2x)1/3y(3x)y(4x)1'3; 

ff \— |y(^ + sin x ) | a i signy(x-f sin .x)|t/(x-f cos x ) | a 2 sign ?/(.T-f cos x) 
^ | l n ( x + sinx)|a i | ln(.2; + cosx) | a-

x > 27r, a{ > 0, a = ax + a2 > 1, /3 < 1 . In [13], a general form 

U 771 

y'(X) = J2ai(x)bMx))UsM^x))) +^x)y^x) > ^ e / c R, 
i=0 j=l 

where b{, S^ are nontrivial solutions, in the class of functions continuous at 
a point, of Cauchy's functional equation b(uv) = b(u)b(v) (u,v G E — {0}), 
was derived. This form is generally nonlinear and allows global transformations 
z(t) = L(t)y((p(t)) such that convert any equation into another equation of the 
same kind and order on the whole intervals of definitions. The transformation 
z(t) = L(t)y(ip(t)) is the most general pointwise transformation for this general 
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form of functional-differential equations. An effective criterion of equivalence of 
two such equations is derived in [13]. 

The general solutions continuous at a point of Cauchy's functional equation 
are given by 

g(x) = 0, g(x) = \x\c, g(x) = \x\c signx , 

c G R is an arbitrary constant (see A c z e l [1]) and we can investigate the 
illustrated examples of nonlinear functional-differential equations. 

Transformations of differential equations and systems with deviating argu
ments converting equations into equations with constant deviations were inves
tigated in [7]. The necessary conditions for the existence such transformations 
are derived (for m = 1 the sufficient conditions are derived too). 

In this paper we derive a criterion for transformations of the above functional-
differential equation into an equation of the same kind and order with constant 
coefficients and deviations. The criterion that we give is effective, i.e. it is veri
fiable for any considered equation. 

2. Notations, basic definitions 

Consider two functional-differential equations with m (m > 1) deviating 
arguments 

n m 

y\x) = '£^(x)h(y(x))IlSij(y(tj(x)))+(l(x)y(x)> xelCR, (1) 
i=0 3 = 1 

and 
n m 

z'(t) = J2MWM*)) I t siMiiW)) + Q®z® > teJQR. (2) 
t=0 j=l 

Here y G C1 (I), I C R being an interval; b{, o-• are continuous solution (in 
the class of functions continuous at a point) of Cauchy's functional equation 
b(uv) = b(u)b(v) (u,v G R — {0}); a{ G C°(I) are nonvanishing functions on / , 
q G C°(I). For deviations of (1) we give the following assumptions. 

ASSUMPTIONS. Each f. is a C1 diffeomorphism of I onto I and fj(x) > 0 
on I (j = l , . . . , m ) ; f0 = id7 , ^(x) ^ £k(x) for j ^ k on I = (a, 6) C R, 
j,ke { 0 , . . . , m } , m , r i G N = { l , 2 , . . . } ; 

lim £Ax) = a, lim £Ax) = b 
X—KI+ J x—>b- J 

for j = 1 , . . . , m; a > —oo, b < oo. 

Similar assumption we consider for equation (2). 
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DEFINITION. We say that (1) is globally transformable into (2) if there exist 
two functions ip, L such that 

— the function L is of the class Cl{J) and is nonvanishing on J; 
— the function cp is a C 1 diffeomorphism of the interval J onto the 

interval 7; 

and the function 

z(t) = L(t)y(ip(t)) (3) 

is a solution of (2) whenever y{x) is a solution of (1). 

If (1) is globally transformable into (2) then (see [2], [6], [8], [10], [11]) 

tj(<p{t))=tp(rij(t)) (4) 

is satisfied on J for deviations f •, r\- {j = 1 , . . . , ra) and we say that (1), (2) 
are equivalent equations. 

If we require that the delayed arguments are converted again into the delayed 
ones (or the advanced into advanced), then we need 

<p'(t)>Q on J. (5) 

We restrict the pointwise transformations namely to this case of the increasing 
changes of the independent variable. 

DEFINITION. We say that (3) is a stationary transformation of (1) if it globally 
transforms an equation (1) into itself on 7, i.e. if L G Cl{I), L{x) =fi 0 on 7, tp is 
a C1 diffeomorphism of 7 onto 7 = cp{I) and the function z{x) = L{x)y{(p{x)) 
is the solution of 

n m 

z'(x) = Y,ai(x)bMx)) UsiA<^x))) + Q(X>(X) 
i=0 j = l 

whenever y is the solution of 

n m 

y'(x) = j2*i(x)i>Mx)) I I siMZj(x))) + ̂ x)y^ - x£l-
i = 0 3=1 

In this situation, 

is satisfied on 7 for deviations Cj {j' — --5 • • • ?
m ) -

PROPOSITION 1. ([13]) An equation (1) is globally transformable into (2) if 
and only if the functions L, if {L e Cl{J), L{x) / 0 on J, tp is a Cl 
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diffeomorphism of J onto I) satisfy relations 

tj(tp(t))=<p(rlj(t)), j = l , 2 , . . . , m ; <p(J) = I, 

Q(t) = L ^ + q(<p(t))<p'(t), 

m = aMty(t)L(t) ^ ^ 
bi(L(t)) U S^Hvjit))) 

j = l 

on J. 

As a corollary we get: 

PROPOSITION 2. Transformation (3) is a stationary transformation of equa
tion (I) if and only if (p is a simultaneous solution of 

ij(<p(x)) = <fi(£j(x)), j = l , 2 , . . . , m ; <p(I) = I, 

and 
m 

ai(p(x))ip'(x)L(x) = ai(x)b{(L(x)) U5ij(L^J^)) > * = l , . - - ,n ; 
j=1 

L'(x) = (q(x) - q(cp(x))(p'(x))L(x), x G / . 

DEFINITION. If all r)- in (2) are of the form 

r]j(t) = t + cj, 

c- being nonzero constants, equation (2) is said to be with constant deviations 
also with discrete deviations, see e.g. [6], [7], [8]. 

Using (4), equation (1) is globally transformable into an equation 
n m 

z\t) = J2Mt)bMt)) UsiMt + cj)) +Q(t>(t)> f e K> (6) 
i=o j=i 

with constant deviations if and only if the following conditions for transforma
tion (3), (4) are satisfied 

77.(t) = t + c. <==> h(^(x)) = h(x) + Cj (7) 

for j = 1 , . . . , m; where 

x = cp(t) <=> t = h(x), 

i.e. h = (p~l is the inverse function to cp (t G R, x G I). 

PROPOSITION 3. ([6]) If there exists a solution h G C 1 , h! ^ 0 of a system of 
functional equations (7) with ^ (1 < i < m) then each ^ and £• commute, and 
for any (positive, negative, or 0) integers r and s either £[ = £s., or £[ ^ f? 
everywhere, where the expressions are defined. 
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3. Results 

LEMMA 1. Equation (1) is equivalent to an equation 

n m 

u'(s) = Y,aibi(
u(s)) II 5iM3 + CJ)) + qu(s)' s e M' <8) 

i=0 j=l 

with constant coefficients and discrete deviations rj-(s) = s + c-,c-^0,j = 
1 , . . . , m , if and only if each £j,£k G {£l5 • • • >£m} commute and to every function 
£ £ {£i> • • • > £m} there exists a function L G CX(I). I ( x ) ^ 0 on I such that 

z{x) = L(x)y(Z(x)), Zj&x)) = ftjix)), x e l , 

is a stationary transformation of equation (1). 

P r o o f . An equation (1) is equivalent to (8) if and only if there exists 
a global transformation 

u(s) = L1(s)y(ip(s)), ^(v>(s)) =(p(Vj(s)) = <p(s + c^ , 

3 = l , . . . , m , s G R , 

converting (1) into (8). Here L1 G CX(R), Lx(s) 7- 0 on R, tp is a C 1 diffeomor-
phism of R onto I . Without loss of generality we assume that Lx(s) = f(tp(s)), 
/ G Cl(I) being a nonzero function on I , i.e. 

u(s) = /(<p(s))y(^(s)) , ^ - M * ) ) = ^(?7j(5)) = ^(« + c i ) . , . 

3 = 1 , . . . , m , 3 G R. 

Thus, each £•, ^ G { £ l 5 . . . , £m} commute in accordance with Proposition 3. 
There exists the inverse transformation 

V(x) = jr^^V'1 (%)) , tj(x) = v(Vj(v~l(x))), j = l,...,m, xel, 
(10) 

converting (8) into (1) in accordance with the definition of global transforma
tions. 

Each function X/J(T) = % ( T ) = r 4- ck, r G R is a C1 diffeomorphism of R 
onto R and a transformation 

V(T) = U(I/>(T)) = u(rjk(T)) = U(T + ck), 

Vj(^(r)) =r]j(vk(r)) = Vk(
r) + cj = r + ck + cj =rlk{rlj{T)) = ^ ( ^ ( r ) ) > 

3 = 1 , . . . ,m , r G R , 

(11) 
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k G { 1 , . . . , m) being fixed, is a stationary transformation of equation (8). Thus 

n 77i 

V'(T) = (u{tP(T)))' = U'(T + ck) = Y, aA(v(r)) [ [ 5iMT + cj)) + <lu(T)> 
i=0 j = l 

r e R. 
(12) 

We apply the inverse transformation (10) onto (12) as 

z(t) = ~v(<p~1(t)), Zj(t) = <p(rij(<p-1(t))), j = l,...,m, t e l , 

(13) 
and we use the composition of transformations (9), (11), (13) 

z(t) = L(t)y(y(t)) , £. (<p(t)) = tp(t), (14) 

where L(t) = l&ffp- and <p{t) = <po rj) o y~l(t) = iporjk oip~l(t) = £k(t), t e l , 
k G { 1 , . . . , m) being an arbitrary fixed. This transformation (14) is a stationary 
transformation of (1) and the assertion of Lemma 1 is proved. D 

LEMMA 2. Let each £j,£fc G {fi>---j£m} commute. To every function £ G 
{£ 1 ? . . . , £m} there exists a function L G Cl(I), L(x) ^ 0 on I, such that 

z(x) = L(x)y(i(x)) , ^(i(x)) = ^(x)) , x e l , 

is a stationary transformation of equation (I) if and only if the relations 

m 

ai(<p(x))<p'(x)L(x) = a^b^L^HS^L^x))) , i = 1 n ; 

(15) 

j^=q(x)-q(<p(x))<p'(x) 

are satisfied on I for the functions L, £ and the coefficients of (1). 

Moreover, 

L{x) = wk) wke" m=*(*h*eI-
P r o o f . If conditions (15) are fulfilled on / then there exists a function 

L G C1 (I), L(x) ^ 0 on I , to every function £ G {£ 1 ? . . . , £ m } . The assertion of 
Lemma 2 follows from Proposition 2. D 
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LEMMA 3. Let each £-, £k G { £ l 5 . . . , £m} commute and to every function £ G 
{£i>--->£m} there e%ists a function L G C1(I)J L(x) ^ 0 on I, such that 
relations (15) hold on I. LTien equation (1) is equivalent to an equation (2) with 
constant coefficients and discrete deviations. 

P r o o f . Let the assumptions of Lemma 3 be satisfied. Consider a transfor
mation 

y(x) = f(x)v(x), (16) 

where / G Cl(I), f(x) 7 -O011L This transformation converts any equation (1) 
into some equation 

v'(x) = J2M^M^))flSiM^x))) + Ux) ~ 7§fW) ' 
(17) 

M*) = jffi*i(*Mf(*)) J IMW*) ) ) ' * = -,•••,», 

and we put 

<?(*) = ^ , z e I - (18) 

- - /(*) Then L(x) = c ffc^)) ? c G M — {0} and we can take c = 1. Thus there exist 
functions 

Lk{x):= JfX)^ > 0 on / , ^ € ^ ( 7 ) , A; € { 1 , . . . ,m} . (19) 

Moreover, (17) becomes 
m 

tMv^U^M^)))' 
(20) 

t/(x) = ^A^xMvix)) П *у («(Є,.(x))), 
i=0 j = l 

^W = ^ ( ^ ( / W ) i l ^ ( / ( ^ W ) ) , i = l,..-,n. 

Functions J^, o-• are nontrivial continuous solutions of Cauchy's functional 

equation b(uv) — b(u)b(v) and we have 

b(u) = b(fv)=b(±)b(v), u,v€R-{0}. (21) 

Using (20), (19), (15) and (21), 

A ( )fl = f^M^'Mf^mSijif^Mk))), 
i{kKk fttJaMfmWtj)) 

488 



TRANSFORMATIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 

i.e. 
Ai{tk(x))Z'k(x) = Ai(x)j:0, i = l , . . . , n , fc€{l,...,m} (22) 

on / because each two functions £-, £k G {£-_,..., £m} commute. 
Now we define a transformation 

X 

x = <p(t) <=> t = h(x) := / |-4r(ő)| ds + ax , (23) 

where ax G K, x0 G J and r G {l,...,m} is fixed, i r / 0 on I. Then 
^(x) = |.Ar(x)| > 0 and from (22) we get 

(h(Z(x))-h(x))' = \AM*))\t\*)-Mtt*))\ = |A r(f(x))^(x)-A r(x)| = 0 

for £ G {c,!,... , £m} because < .̂(x) > 0 on I (j = 1, . . . ,m). Hence h(£(x)) = 
h(x) + c, c G l , and (7) gives 

Vj(t) =t + Cj <=> h(^(x)) = h(x) + c. (24) 

and 

£;(*) = Sj {<P<x)) = h-1 (t + Cj) = <p(t + Cj) (25) 

hold for all j G { 1 , . . . , m}. 
If we define a transformation 

z(t) = v(<p(t)) = v(x), Cj(v>(t)) =<p(t + c5), j = 1,... ,m , (26) 

we obtain 

^ • ( x ) ) = v(£.(<p(t))) = v(<p(t + cj)) , j = 1 , . . . , m , 

v'(x) = (z(h(x)))' = z'(h(x))h'(x), 

where b/(:r) = |-4r(x)| > 0 on I. Transformation (23), (26) globally transforms 
equation (20) into the equation 

n m 

z\t) = Y.AMWWM*)) II M*(* + s)) (27) 

with discrete deviations. 
Define the functions 

Hl(x):=Hi(ip(t))=Ai(<p(t))ip'(t) = ^ ^ , xel, i = l,...,n. (28) 

Then using (22), 

H(C(x))~ A^{X)) ?W- M*) _H(X) i_1 n 
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and 
t'(x)>0, &x)±x 

hold for all £ G {£i>-••?£--,} o n ^ in accordance with the assumptions for 
equation (1). Due to the condition lim £(x) = b, the nth iterate ^ of £ G 

:r->b_ 

{£i> • • •' £™} e x i S^ s f01 aU positive or negative integers n accordingly to £(x) > x 
or £(x) < x on I = (a, b) and 

lim ^[n](x) = 6 for £(x) > x , lim cl[n](x) = 6 if f (x) < x 
• ' — n—• — oo 

H{£n\x)) = tf (^"-1](_)) = • • • = tf(z), x € I, 

gives 
H-(x)=H.(b_)GM, x G / , 

i.e. coefficients -Â  (</?(£)) <p'(£) = H{((p(t)) = H^(x) of equation (27) are constant 
functions (i = 1 , . . . , n ) . 

Repeating arguments given by F. N e u m a n [6], [8] we can prove that h(I) = 
(—00,00) = K. in accordance with assumptions 

lim £.(_.) = a, lim £-(x) = b, j = l , . . . , r a . 
x—>a+ ^ :_—>-o_ ^ 

Here £ is a C 1 diffeomorphism of I onto 7, &(%) > 0 on 7 (j = 1 , . . . , r a ) , 

£,•0*0 ^C*0*0 f o r 3 ^ k o n 7> j,fc G {0, . . . , ra} . 
The assertion of Lemma 2 is proved. • 

THEOREM 1. Let Assumptions for equation (1) be satisfied. Then the following 
assertions are equivalent 

(a) Equation (1) is equivalent to an equation (2) with constant coefficients 
and discrete deviations. 

(b) Each £., £fc G {£ l 5 . . . , £ J commute and to every function £ G {£ 1 ? . . . 

. . . , £m} there exists a function L G Cl(I), L(x) 7- 0 on I such that 

z(x) = L{x)y{t(x)) , Zjittx)) = Z^ix)) , _ € / , 

is a stationary transformation of equation (1). 
(c) There exist functions Lk G CX(I), Lk(x) 7- 0 on I such that the rela

tions 
m 

"i(Zk(*M(x)Lk(x) = _<(*)&<(_,.(*)) nM L *fo ( x ) ) ) ' * = !.•••.«; 
J=I 

^ = ff(-0-?fo(*))&0-) 
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hold on I for functions Lk, £k, £k G {c^ , . . . , £ m } , k G { 1 , . . . , m } , and 
coefficients 0/(1). Moreover, 

Lk(x) = WM where lM = q{xh xeI-
P r o o f . We have: 

(a) <=> (b) using Lemma 1, 

(b) <==> (c) by means of Lemma 2. D 

R e m a r k 1. Let the assertion (a) of Theorem 1 be fulfilled. A global transfor
mation converting equation (1) into an equation (2) with constant coefficients 
and discrete deviations there is the composition of transformations 

y(x) = f(x)v(x), lM = q(x), (29) 

r i m 

~\x) = h(x) := / —ar(x)br(f(x)) US^f^x))) dx, 
J lW ,=i (30) 

x = <p(t) <=Ф t = <p 

î=x "' " (30) 

ar being an arbitrary coefficient of (1), 

z(t)=v(<p(t))=v(x), rij(t)=<p-1(tj(v(t))), t £ t . (31) 

Constructions of the above transformations are obtained in the proof of Lemma 3. 

EXAMPLE. The equation 

y'(x) = lexp{fix}y(xr\y(x/2)f\y(SxWsigny(Sx) 

3 , x ( 3 2 ) 

- - exp {rx}(signy(x))y(x/2) + y(x), 

x G I = (0, oo); cY, /3,7, /i, r G M — {0} is an equation (1). Here n = m = 2, 

ax(x) = ^exp{/Lx}, bx(y) = ya , Su(y) = \yf , 812(y) = |H |7sign?/; 
a2^x) = - f e x p { r x } , b2(y) = sign?/, 621(y) = y, S22(y) = 1; 

q(x) = 1 on I. 

The deviation ^(x) = x/2 (£2(x) = Sx) is a C 1 diffeomorphism of I = (0, oo) 
onto I, c,i(x) > 0 (£2(x) > 0) on I. Moreover, £x(x) ^ x, f2(x) ^ x , ^ ( x ) ^ 
6>(x) on I and lim £Xx) = 0, lim £•(#) = oo for i = 1,2. The assumptions 

x—»0_|- z—)-oo 

given for equation (1) are fulfilled. We see that functions £-_, £2 commute. 
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Solve equations 

I.Є. 

Г'M=q(x)-q(Çk(x))ťk(*)> 
Ľк(x) 

m 

*i(U*))WLk(*) = ̂ (x^L^x)) US^L^ix))) ; (33) 
3 = 1 

x el, k = 1,2; i = 1,2. We get 

L±-L = q(x) = 1 <==> f(x) = cexp{x} , c e R - {0} , 

and 
,- / x f(x) cexp{x} r . , 

L\ (X) = // ,L = f ,L = e X P iX 2) , 
l V ; /(x/2) c exp {x/2} P W / J 

^ ) = ^ = « p { - 7 x } l 

Relations (33) are equivalent to 

r = 1/2 , 2a + p + 2fi + I67 - 2 = 0 . (34) 

Hence, equation (32) is equivalent to an equation (2) with constant coefficients 
and discrete deviations if and only if (34) is satisfied. 

Transformations 
z(x) = L^y^x)) = exp{x/2}y(x/2), 

x e I , 
z(x) = L2(x)y(£2(x)) = exp{-7x}y(8x), 

are stationary transformations of equation (32) if and only if (34) holds, in 
accordance with (b) of Theorem 1. 

Using Remark 1 and (34), the transformation 

y(x) = f(x)v(x) = cexp {x}v(x) = exp {x^(x)for c = 1 

converts (32) into 

v'(x) = -v(x)a\v(x/2)f\v(8x)\^ signv(8x) - — (sign v(x))v(x/2), x e I. 

We have (for example) 

x = (f(t) 

t = v-i(x) = h(x) = J ^ ^ ( ^ ( / ( x ^ dx 

= / - exp {(2a + (3 + 2\± + I67 - 2)x/2} dx = / - dx = lnx + cx , 

cx e R, x e I, 
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and choosing cx = 1 (for simplification) we get 

x = (p(t) = exp {t} <=> t = (p~l (x) = h(x) = In x . 

The transformation 

z(t) = v(<p(t))=v(exp{t}), r1j(t) = ip-x(Zj(y(t))), j = l,2, 

i.e. 
r)x(t) = i - l n 2 , rj2(t) = t + ln8 = t + 31n2 , 

converts equation (35) into the equation 

z'(t) = z(0ak(^-ln2)|/?|^(t + 31n2)|7signz(t + 31n2)-3(signz( t))z(c-ln2), 

te R, 

2a + (3 + 2/x + I67 - 2 = 0 , 

with constant coefficients and discrete deviations. 
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