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ON TOTAL MATCHING NUMBERS
AND TOTAL COVERING NUMBERS FOR
k-UNIFORM HYPERGRAPHS

FRANTISEK OLEINIK

In [3] P. Erd6s and A. Meir investigate upper and lower bounds for a,(G)+
a,(G) and B.(G)+ B.(G), where G is an undirected graph without loops and
multiple edges and G is the complement of G. a2(G) or a,(G) is the total covering
number of G or G respectively and B,(G) or B,(G) is the total matching number of
G or G respectively. In this paper these results are generalized for k-uniform
hypergraphs. First let us introduce the necessary notions.

(Cf. Berge [1].) By a hypergraph H we mean a couple (X, €), where X is
a finite set of elements called vertices and €= {E,, ..., E..} is a finite system of
non-empty subsets of X called edges, where E;# E; for i, je {1, ..., m}, i#].

A hypergraph is said to be k-uniform, k > 1, if all its edges have cardinality k. A
k-uniform hypergraph with n =k vertices is called complete if its set of edges has

the cardinality (Z)
The complement of a k-uniform hypergraph H= (X, &) is the hypergraph
H=(X, &) if |€ug| =(Z) and €n&=0. (|]8U¥%| denotes the cardinality of the

set €U&.)

A hypergraph H(N) = (X, €x) is said to be a k-uniform subhypergraph of
a k-uniform hypergraph H = (X, €) induced by a set N if Nc X and %y is the
system of all edges E; € € such that E; = N.

A vertex x of a k-uniform hypergraph H is said to cover itself, all edges incident
with x and all vertices adjacent to x. An edge E; of a k-uniform hypergraph H
covers itself, the vertices incident with E; and all edges adjacent to E;.

A subset P of elements of XU is called a total covering of H= (X, &) if the
elements of P cover H and P is a minimal set with this property.

Two elements of the set XU ¥ are called strongly independent if they do not
cover each other. A subset F of XU € is called a strong total matching if elements
of F are pairwise strongly independent and F is maximal.
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A subset N of X is called stable if for each edge Ei € €, |[E.nN| <k — 1. A subset
S of X is called strongly stable if for each edge E;, |[E.nS|<1.

A subset T of Xu ¥ is said to be a weak total matching if T is maximal and has
the following properties:

1° The elements of TNn& are pairwise independent (disjoint)

2° No element of Tn& covers an element of TNX

3° The elements of TnX form a stable set of H.

The cardinality of a minimum set which is a total covering of H is called the total
covering number a.(H) of H.

The cardinality of a maximum strong total matching of H is called the strong
total matching number $,(H) of H.

The cardinality of a maximum weak total matching of H is called the weak total

matching number y,(H) of H.

The cardinality of a maximum stable set of H is called the stability number a(H)
of H.

The cardinality of a maximum strong stable set of H is called the strong stability

number ao(H) of H.
In the sequel we supose that n=k =3,

Theorem 1. For a k-uniform hypergraph H= (X, &) with n vertices and its
complement H

]£[+2sBZ(H)+ﬂ2(H)sJ@[ (1)

holds.
Proof. Let F or F be a strong total matching of H or H with cardinality 8,(H)

or B.(H) respectively. Let F=F,UF, and F=F,UF,, where F, or F, is a set of
vertices of F or F respectively and F, or F, is a set edges of F or F respectively.
Thus B.(H) = |F.|+ |F,| and B.(H)=|F.| + |F,| holds.

Let V(F,) or V(F,) be the set of vertices incident with edges of F, or F,
respectively. Without loss of generality we can suppose that the sets F, or F, are
maximal independent sets of H or H respectively, so that the subhypergraphs
H{(X - V(F,)) and H(X - V(F,)) have no edges.

A. We prove the upper bound from Theorem 1.

B:(H) = |F| +|F,|

holds, thus
ﬁz(H)S]W[+ k|F,|.
Then
B:(H) + B(H)<|F.| +|F,| +] %IFJ[ +k|F,|.
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Since
|F.| + k|F,|<n,

B:(H) + B(H)<n+ ]g[ - ]_(k + l)n[

holds.
B. We prove the lower bound from Theorem 1.
For k<n <2k the theorem holds.
Let n>2k.
Since H(X — V(F,)) or H(X — V(F,)) are empty subhypergraphs of H or H
respectively,
IB1+15 =[] @

holds.
Let us analyse five possibilities:

L. If |F|= [-E] and n=0 (mod k), then B,(H)=2, thus the assertion of the
theorem holds.

II. If |F,|= [7?] and n#0 (mod k), then |F,| =1 and B,(H) =2, thus the assertion
of the theorem holds.

1. If 0<|Fy|<[£] and n=0(mod k), then |F|=1 and |F|+|F|=

[g] — |F,| +1, thus the assertion of the theorem holds.

V. If 0<|Fy|<[£] and n#0 (mod k) and lF,l+|F,|>[£], then |F.|=1,
|F;|=1, thus the assertion of the theorem holds.

V. Let 0<|F,]<[£] and n#0 (mod k) and

B1+1F1=[Z], )

then
|E| + |E|>2.

Suppose in fact the assertion does not hold.
Then

|Fi|+|F|=2, (ie. |[F|=1, |E]|=1). 4)
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We will show that the hypergraph satisfying both the hypotheses of V and (4)
does not exist. We can suppose that the sets V(F,) and V(F,) are disjoint, because
H{(X - V(F,)) has no edges, hence as a maximal set of disjoint edges of
H(X - V(F,)) we can consider F,.

Let N=X- V(F,)- V(F,).

The hypergraph satisfying both the hypotheses of V and (4) must have the
following properties:

n

(a) 0<|N|<k-1, because |V(E)| +|V(F)|=k [;] and IN|=

IX - V(E)= V(F,)|=n—k [ﬂ

(b) H(V(F,)UN) or H(V(F,)UN) is a complete subhypergraph of H or H
respectively.

If H(V(F,)UN) is not complete, then in H{ V(F,)UN) there exists at least
one edge, which is a contradiction to (3).

(c) Each vertex of X covers all vertices of both H and H. Let there exist vertices
X1, X2, which are not incident in H. From (b) it follows that in the set N all
vertices are incident, i.e.

(i) x1€ V(F,) and x;e V(F,), or

(i) x1, x2€ V(F,)

(in the case x; € N and x; € V(F,) there would be a contradiction to |F,|=1).

In case (i) all edges containing the vertices x;, x, are in H. Let us take such an
edge E from H, which has (k — 1) vertices in the set V(F,). From (b) it follows
that in H( V(F,)UN — {x2}) there exists an independent set of edges F,,, for
which |Fy,|=|F,|. But in H we can add an edge E to F,, and obtain an
independent set F,, whose cardinality is |F,,|=|F,|+ 1. Then |F,|+ |F,,|>
[%:l , which is a contradiction to (3). In case (ii) we take F, = {xi, x2}, which is
a contradiction to |F,|=1.

(d) Each vertex of V(F,)UN forms an edge with arbitrary (k —1) vertices of
V(F,) in H. Otherwise there exist (k —1) vertices xs, ..., x« in V(F,) and
xo€ V(F,)UN, that {xo, X2, ..., xx} forms an edge in H. But in H{ V(F,)UN —
{x0}) there exists an independent set of edges of cardinality |F, | and thus in H
there exist a set of disjoint edges of cardinality |F,|+ 1, which is a contradic-
tion to (3).

(e) Each vertex of V(F,)UN forms an edge with arbitrary (k —1) vertices of
V(F,) in the hypergraph H, which follows from an analogous consideration to
that in (d).

For k=3, (c), (d), (e) and (3) can not hold the same time, thus for a 3-uniform
hypergraph satisfying the condition from V the Theorem 1 holds.
Let k=4. By induction we will prove an assertion (A):

322



(A) In a hypergraph H which satisfies (3) and (4), there does not exist an edge
which has exactly i vertices in V(F,), for i=2,3,..., k—1. This will be
a contradiction to (e), because according to (e) each edge exactly (k — 1) of whose
vertices are in V(F,) must belong to H.

Proof of (A):

1. Let i = 2. Let there exist an edge E; in H such that |[E;n V(F,)| =2. According
to (d), in H there exists an edge E; such that |[E;nE,nV(F,)|=1 and |E\nE;|=
k — 1. Let us consider a set of vertices R ¢ V(F,)u V(F,) such that |RNV(F,)|=
k—2,|RNnV(E)|=2, RnE;=0and |RNE;| = 1. Subhypergraph H{(RUN) does
not contain any edge (otherwise in H{RuU V(F,)UE;) there exists an independent
set of edges of cardinality |F,|+1 which is a contradiction with (3)), and so
H(RUN) is a complete subhypergraph of H. But in this case
H(RUNuU V(F,)UE,) contains an independent set of edges of cardinality at least
|Fy| +1, which is a contradiction to (3). Let ve N. Then the set of vertices
Es;=(R — E;)u{v)} forms an edge in H and E;n E, =, which is a contradiction to
(3), thus for i =2 the assertion (A) holds.

2. Suppose that for i =r, 2 <r <k — 2, the assertion (A) holds and for i=r+1 it
does not hold, then in H there exists an edge E; such that |[E;nV(F,)|=r+1.
According to the induction assumption there exists in H an edge E. such that
|EixnEz|=k—1 and |EinE;nV(F,)|=r. Let us consider a set of vertices R c
V(F,)uV(F,) for vhich |RnV(F,))|=k—-r, |RNV(E)|=r, RNE;=¢ and
|RNE;|=1. Then H(RUN) is a complete subhypergraph of H, otherwise we
have a contradiction to (3). But in this case H{RUNUV(F,)UE,) contains an
independent set of edges of cardinality at least |F, |+ 1, which is a contradiction to
(3). Thus the auxiliary assertion is proved.

From (A) it follows for i = k — 1 that in H there does not exist any edge E for
which |[En V(F,)| = k — 1, which is a contradiction to (e). This completes the proof
of the assertion for case V and therefore also of Theorem 1.

Remark. The equality in the upper bound (1) holds for an arbitrary complete
k-uniform hypergraph.

The equality in the lower bound (1) holds, e.g., for H= (X, €) with the
following structure:

1° There exists a vertex x € X such that H(X — {x} ) is a complete subhypergraph
of H.

. -1 .. .
2° In H there exist exactly ]Z — 1[ edges containing a vertex x, among which there

n—1

k-1

exist [ ] edges such that any two edges have in common exactly the vertex

X.
3° The vertex x is adjacent to all vertices of H.
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For such a hypergraph H

ﬁz(H)=]f[ and Bu(H)=2 holds.

This means that the upper and lower bounds (1) are the best possible.

Theorem 2. For a k-uniform hypergraph H= (X, €) and its complement
H=(X, &)

]";1[+1saz(H)+az(H)s](k+Tl)"[ (5)

holds.
Proof. The upper bound in (5) follows form the inequality

ax(H)<B:(H), a(H)<p(H)

and from Theorem 1.
Let P=P,UP, be a total covering of H, where P, is a set of vertices and P, is

a set of edges.
If |P.|=0, then n<k|P,|, thus

ax(H) = |P,| = ]g[

As a(H)=1, the lower bound in (5) is satisfied.
Let |P,|=1. Let us denote N=X—P,— V(P,). If [IN|<k —1, then

[V kIR, [V(P)I_
k

a(H) = |P.| +|P,|>|P.| + Lol LV

=]klle +k| V(Py)][z]g_[

holds and a,(H)=1, thus the lower bound in (5) is satisfied.
If [IN|=k, then H(N) is a complete k-uniform subhypergraph of H, thus

az(I:I)B]%[.
It follows that
ax(H) + ax()> [P+ By + L = L BT+ k1B, -+ N1+ k= DI R.D[.

|P.|+ k|P,|+ |N|=n,
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thus

ax(H) + az(I:I)B]% (n+ (k- 1)|P,|)[= ]"”TIP"[+ P | 2]" . 1[+ 1.

The proof of Theorem 2 is now complete.
Remark. The equality in the upper bound (5) holds for an arbitrary complete
k-uniform hypergraph.
The equality in the lower bound (5) holds, e.g., for H= (X, &) with the
following structure:
1° There exists a vertex x € X such that the subhypergraph H(X —{x}) is
complete.
2° The vertex x is incident with exactly one edge of H.

For such a hypergraph H

ax(H) = ]” - 1[ and ax(H)=1

holds. This shows that the upper and lower bounds in (5) are the best possible ones.

Lemma 1. For a k-uniform hypergraph H=(X, €) and its complement
H=(X, €) .
a(H)+a(H)sn+k-1 (6)
holds.
Proof. Let a(H)=r. Then in H there exists a complete subhypergraph with r

vertices, thus a(H)<n — r + k — 1. From this, the assertion of the lemma follows.
Theorem 3. For a k-uniform hypergraph H=(X, €) and its complement
H=(X, &) ,

Yz(H)+y2(H)s[(—k+—1k)f—ﬂ]+k—2 @)
holds.

Proof. Let a(H) be the cardinality of the greatest stable set of vertices in H.
Then

v2(H)<a(H)+ ["_‘#]

holds. Also
T (1] n—a(H)
(A < a(H) + [——k ]

holds. After the addition of these inequalities we get

v2(H)+ v(H)< a(H) + a(H) + [2" —(a(H)+ a(FI))] ‘

k
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By using Lemma 1 we get

yz(H)+y2(H)Sn+k—1+[w],

k

after appropriate modifications we get the assertion of Theorem 3.

Remark. The equality in (7) holds for an arbitrary complete k-uniform
hypergraph H.

A k-uniform hypergraph H= (X, &) is connected if for each non-empty set of
vertices S = X the following holds: €U %, # &€, where &, or &, is a set of edges of
the subhypergraph H(S) or H{(X — S), respectively.

Lemma 2. For a connected k-uniform hypergraph H= (X, €)

ax(H) < ]’5’[ (8)

holds.

Proof. From a hypergraph H= (X, &) we construct an undirected graph
G = (X, E) without loops or multiple edges, by which the vertices x;, x; € X form
the edge in G, if in H there exists at least one edge which contains them. G is
connected and a,(H)<a,(G). For a connected graph with n vertices, the
inequality

a:(G) < ]g[

holds [2]. From this, the assertion of Lemma 2 follows.

Lemma 3. For a connected k-uniform hypergraph H= (X, &)

ax(H)<n—ao(H)+2— k 9)
a() < (B + 2= (10)

ax(H)<n - a(H) (11)
y2(H)< a(H) +#-) (12)

holds.
Proof. The above follows directly from the definition of the characteristic
numbers treated and from the connectivity of H.

Theorem 4. For a connected k-uniform hypergraph H= (X, &)

az(H)+[)’2(H)Sn+[—11(— (]g[—z)]m—k (13)
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ax(H) + () <n+ [ 3] (14)

2
B:2(H)+ v2(H)<2n-—k (15)
holds.
Proof. From (10) it follows that
kB.(H) -
a()(H)2 BZIE _)1 L

and after substitution into (9) we get

az(H)$n—l(—ﬁzl£I__I$+2—k,
and further
ax(H) + B(H)<n - “’(H)+3 K+l

k-

After substitution for a,(H) from (8) we get the assertion (13).
From (11) and (12) it follows that

ky,(H) —
a(H)y<n- %‘
and after a modification we get
aa(H) + va(H) < n + 2200

From this and (8) we get the assertion (14).
For .the connected hypergraph H

B(H)<n—-k+1
‘yz(H)Sn—l.

After addition we get the assertion (15).
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O UYMCJIE TOTAJIbHOV HE3ABUCHUMOCTH U TOTAJIBHOTO MOKPBHITUA
I k-YHUPOPMHBIX T'MITEPTPA®OB

FrantiSek Olejnik
Pesome
B artoit paboTre mpuBefeHbI BEPXHHE U HHXKHME OUEHKU AN CyMMbl YHMCJIA CHILHOH TOTaNbHOM

HE3aBUCHMOCTH, (4ucia cnaboil TOTaAbHON HE3aBUCHMOCTH, YHCIIAa TOTANILHOIO MOKPBITHS) s k-yHu-
c¢opmHoro runeprpacda H u ero gonoanenns H.
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