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*-MEDIÁN 

BOHUMIL ŠMARDA 

(Communicated by Tibor Katriňák ) 

A B S T R A C T . T h e investigation of completely normal topological spaces gives a 
motive for the definition of the *-median opera t ion on distributive p-algebras. 
Basic proper t ies of this opera t ion are described in the following paper. 

Several authors described the role of the median operation in distribu­
tive lattices. Let us remember G. B i r k h o f f [1], M. S h o l a n d e r [5] and 
M. K o l i b i a r [4]. The median operation on a distributive lattice L is defined 
(see [1]) in the following way: 

(a, 6, c) = (a V 6) A (a V c) A (b V c) = (a A 6) V (a A c) V (b A c) for a,b,ce L. 

We can investigate a lot of properties of topological spaces with the help of 
open sets only and transform these properties into locales. Recall, that a locale 
L is a complete lattice in which the infinite distributive law 

aAVS = V{aAs : s e S} 

holds for all a e L, S C L. 
For example, the normality of a topological space T is possible to define in 

the locale 0(T) of all open sets in T in the following way: 

a, b e 0(T), a V b = 1 => 3 £eO(T) aV£* = l = bv£, 

where * denotes pseudocomplements in L. 

If we transform this condition into locales, then we have the category of 
normal locales (see [3]). This category has not many natural properties because 
subspaces, factor spaces and products of topological spaces need not be normal. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06D99. 
K e y w o r d s : *-median opera t ion, distributive p-algebra, completely normal locale. 
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For these reasons, we have some modifications of topological spaces, namely, so 
called completely normal spaces (see [2]). The corresponding category of locales 
called completely normal locales is introduced in [6] in the following way: 

A locale L is completely normal when for any a, b G L there exists i G L 
such that a<bVi, K o V f . 

The properties of completely normal locales are studied in [6]. Let us intro­
duce the following proposition. 

PROPOSITION 1. Let L be a locale. Then the following assertions are equiv­
alent: 

1. L is a completely normal locale. 
2. Sublocales of L are normal. 
3. For any a, b G L there exists £ G L such that 

a V b = (a A b) V (a A i) V (b A t) . 

P r o o f . See [6; Proposition 2]. • 

Assertion 3 from Proposition 1 motivates us to investigate a ternary operation 
analogously to the median operation on a distributive p-algebra (L, V, A, 0 , 1 , *) , 
i.e., a distributive lattice (L, V, A) with 0 , 1 , and pseudocomplements denoted 
by *. 

PROPOSITION 2. 

1. In every distributive lattice, the identity (*) holds: 

(a V 6) A (a V d) A (b V c) = (a A b) V (a A c) V (b A d). (*) 

If L is a lattice and for arbitrary elements a,b,c G L there exists d G L such 
that (*) holds, then L is distributive. 

2. A p-algebra (L, V, A, 0 ,1 , *) is distributive if and only if (a Vb) A (aWc*) A 
(b V c) = (a A b) V (a A c) V (b A c*) holds for any a,b,c G L. 

P r o o f . 

1 . = - > : (aVb)A(aVd)A(bVc) = (aVb)A [(aAb)V(aAc)V(dAb)V(cAd)] = 
(a A b) V (a A c) V (d A b). 

<= : First, let us prove that L is a modular lattice. If a,b, c G L, a > b 
and d G L is such that (*) is satisfied, then aA(bVc) — (aVb) A(aVd) A(bVc) = 
(aAb)V(aAc)V(bAfi) = bV(aAc). Now, aA(bVc) = aA [(aVb)A(aVd)A(bVc)] = 
aA{[(aAb)V(aAc)] V(bAd)} = [(a Ab) V (a Ac)] V [a A (6 Ad)] = (aAb)V(aAc) 
holds for any a,b,c G L, and thus L is distributive. 

2. This is a direct consequence of 1. • 
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DEFINITION 3. Let L be a distributive p-algebra. Then the ternary operation 
on L defined by 

[a, b, c] = (a V b) A (a V c*) A (b V c) = (a A b) V (a A c) V (b A c*) 

for a,b,c G L is called the * -median on L. 

T H E O R E M 4. 

1. Let L be a set with 0 , 1 , and a ternary operation [•, •, •] with the prop­
erties: 

1° [a,0,[c,d,e]] = [c,[a,0,d],[a,0,e]] , 
2° [a, a, b] = a, 
3° [a ,6 ,1]= a, 
4° [0,1,0] = 1. 

T/ien L is a distributive p-algebra with regard to the operations a V b = [ l ,a ,b ] , 
a A b = [a, 0, b]. 

2. JfL is a distributive p-algebra, then the * -median on L has properties 
l ° - 4 ° . 

P r o o f . 
1. We shall prove in the following parts: 

a) Properties 1°, 2° and 3° imply 

(i) [a, 0 , 1 ] = a, 
(ii) [ l , a , l ] = l , 

(iii) [ l , l , a ] = l , 
(iv) [a, 0,0] = [a, [0,0,1], [0,0,1]] = [0,0, [a, 1,1]] = [ 0 , 0 , a ] = 0 , 
(v) [a,0,a] = [a,0, [a, 1,1]] = [a, [a, 0,1], [a, 0,1]] = [a, a, a] = a. 

b) Now, we shall use only properties 1° ( i ) - (v) and prove that L is a 
distributive lattice: 

We have a A (b V c) = [a, 0, [1, b, c]] = [l, [a, 0, b], [a, 0, c]] = (a A b) V (a A c), 
a A b = [a,0,b] = [a,0, [b,0, 1]] = [b, [a, 0, 0], [a, 0,1]] = [b, 0, a] = b A a . 

Now, we shall prove the following formulas: a A (a V b) = [a,0, [l,a,b]] = 
[l ,[a,0,a],[a,0,b]] = [l, a, [a, 0, b]] = [l, [a, 0,1], [a, 0, b]] = [a, 0, [1,1, b]] = 
[a, 0,1] = a, a A (b V a) = [a, 0, [1, b, a]] = [l, [a, 0, b], [a, 0, a]] = [l, [a, 0, b], a] = 
[l, [a, 0, b], [a, 0,1]] = [a, 0, [1, b, 1]] = [a, 0,1] = a and together a V b = {a A 
(bVa)}v{bA(bVa)} = {(bVa)Aa}v{(bVa)Ab | = (bVa)A(aVb) = (aVb)A(bVa) = 
{(aVb ) Ab} V {(aVb ) Ao} = {bA (aVb )} V {a A (a V b)} = b V a. Finally, the 
introduced formula a A (a V b) = a together with a A (b V c) = (a A b) V (a A c) = 
(b A a) V (c A a) = (c A a) V (b A a) fulfils assumptions of the Sholander's theorem 
(see [1; p. 35, Theorem 10']) implying that (L, V, A) is a distributive lattice. 

c) The fact that L is a p-algebra follows from 4°: Let us introduce a* = 
[0, l ,a] for any a G L and prove that a* is a pseudocomplement of a. Namely, 
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a A a* = [a, 0, [0,1, a]] = [0, [a,0,1], [a,0,a]] = [0,a,a] = [0, [a, 0,1], [a,0,1]] = 
[a, 0, [0,1,1]] = [a, 0,0] = 0. If xAa = 0, i.e., [a,0,a] = 0, then x A a* = 
[x,0,[0,l,a]] = [0,[x,0, l] , [x,0,a]] = [0,x,0] = [0, [x,0,1], [x,0,0]] = 
[x,0, [0,1,0]] = [ x , 0 , l ] = x . 

2. We have [a, 0, [c, d, e]] = a A [c, d, e] = a A (c V d) A (c V e*) A (d V e), 
[c, [a,0,d],[a,0,e]] = [c,a A d,a A e] = { c V ( a A d ) } A ( c V ( a A e ) * } A { (aAd)V 
(aAe)} = (cVa)A(cVd)A{cV(aAe)*} AaA(dVe) = aA(cVd) A(cVe*) A(dVe) 
since a A (c V e*) = a A {c V (a A e )*} . Namely, a A e * < a A (a A e)* and 
a A (a A e)* < (a A e)* = » 0 = {a A (a A e)*} A (a A e) = {a A (a A e)*} A e 
==.> a A (a A e)* < a A e * . It means that a A e * = a A (a A e)*, and thus 
aA(cVe*) = ( a A c ) V ( a A e * ) = (a Ac) V {a A (aAe)*} = a A {c V (a Ae)*} . We 
proved property 1° , and properties 2 ° - 4° follow from Definition 3, immediately. 

• 
Remarks. 

1. Property 1° from 4.1 can be reformulated to a A [c, d, e] = [c, a A d, a A e]. 
2. Let us mention that the *-median is no symmetric operation. 

COROLLARY 5. Let (L, <) 6e a partially ordered set with 0. 1. and [•, •, •] 
be a ternary operation on L such that b > a <=> [a, 0, b] = a 4=> [1, a, 6] = 6 
and [1, l ,a] = 1. 

F/ien zi holds: 

1. If L has property 1° . then L is a distributive lattice. 
2. If L has properties 1°. 4° and [0,1,1] = 0, t/ien L is a distributive 

p-algebra. 
3. 7/ L /ia8 properties 1°. 4° . and [0,1, [0, l,a]] = a for a £ L, then L is 

a Boolean algebra. 

P r o o f . 
1. We have [a, 0,1] = a, [a, 0, a] = a, [1, a, 1] = 1, and [a, 0, 0] = [a, [0, 0,1], 

[0,0,1]] = [0,0[a, 1,1]] = 0. Part b) from the proof of Theorem 4 implies that 
L is a distributive lattice. 

2. Parts b) and c) from the proof of Theorem 4 imply that L is a distributive 
p-algebra. 

3. Let us remark that [0,1,1] = [0,1, [0,1, 0]] = 0 . Then L is a distributive 
p-algebra, and a** = a holds for a* = [0, l ,a] and a G L, i.e., L is a Boolean 
algebra. • 

COROLLARY 6. Let L be a set with elements 0 . 1 . and [ - , - , • ] be a ternary 
operation on L. Then it holds: 

If L has properties 1° . 2° . 3° . and [0,1, [0,1, a}] = a for all a £ L, then L 
is a Boolean algebra. 
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P r o o f . It holds [0,1,0] = [0,1, [0,1,1]] = 1. Then L is a distributive 
p-algebra, and a* = [0,1, a] is a pseudocomplement of a (see 4.1). The fact 
a** = [0,1, [0, l,a]] = a implies that L is a Boolean algebra. • 

PROPOSITION 7. Properties l ° - 4 ° from the Theorem 4.1 are independent. 

P r o o f . Let L be a Boolean algebra with \L\ > 5. If we define [a, b, c] = b, 
then 1°, 2°, 4° hold, and 3° does not hold. 

If we define [a, b, c] = a A (b V c), then 1° , 2° , 3° hold, and 4° does not hold. 

If we define [a,b,0] = b, and [a,b,c] = a for c 7= 0, then 2°, 3°, 4° hold, 
and 1° does not hold. 

Let L = {0,1} be a Boolean algebra. If we define [1,0,1] = [1,1,1] = 
[0,1,0] = 1 and [0,1,1] = [0,0,1] = [0,0,0] = [1,1,0] = [1,0,0] = 0, then 
1°, 3°, 4° hold, and 2° does not hold. • 

THEOREM 8. Let L be a distributive p-algebra, and [ - , - , • ] be a ternary 
operation on L fulfilling l ° - 4 ° , and a V b = [ l , a ,b ] . a A b = [a, 0,6], for 
a, b G L . Then [ - , - , • ] is the * -median if and only if x\/ [a, b, c] = [xVa, xVb, c] 
for a, b, c, x € L . 

P r o o f . 

======> : We have x V [a, b, c] = x V {(a V b) A (b V c) A (a V c*)} = (x V a V b) A 

(x V b V c) A (x V a V c*) = [x V a, x V b, c]. 

<= : The proof has the following steps: 
a) [a, 1, 0] = [a V 0, a V 1, 0] = a V [0,1, 0] = a V 1 = 1 ==> [a, b, 0] = 

[a, b A 1, b A 0] = b A [a, 1, 0] = b A 1 = b ==> c* A [a, b, c] = [a, c* A b, c* A c] = 
[a,bAc*,0] = bAc* ==> bAc* < [a,b,c]; 

b) (aAb) V[a,b,c] = [(aAb) Va, (aAb) Vb,c] = [a,b,c] ===> a A b < [ a , b , c ] ; 

c) (a V b) V [a, b, c] = [(a V b) V a, (a V b) V b, c] = [a V b, a V b, c] = a V b = > 
a V b > [a, b, c]; 

d) (bVc) A[a,b,c] = [a ,bA(bVc) ,cA(bVc)] = [a,b,c] ==> bVc>[a,b,c); 

e) c A a = c A [a, b, 1] = [a, c A b, c A 1] = [a, c A b, c A c] = c A [a, b, c] ==> 
a A c < [a, b, c]; 

f) 0 = c Ac* = c A [c*,b,c] ==> c*>[c\b,c] ==> (a V c*) V [a, b, c] = 
[oVc*,aVc*V!) ,c] = ( a V c * ) v [ c * , ( ) , c ] = a V c * ==> aV c* > [a, b, c]; 

g) Finally, (a A b) V (a A c) V (b A c*) < [a, b, c] < (a V b) A (a V c*) A (b V c) 
holds, and Proposition 2.2. implies that [ - , - , •] is the *-median. • 

EXAMPLE. Let L be a distributive p-algebra, and [- ,- ,•] be a ternary opera­
tion on L defined in the following way: 

[a, b, c] = (a V b) A (b V c) A (a V c*) A (a V a*) for a,b,ce L . 
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Then, [- , - , -] has properties 1°, 2°, 3°, 4° from Theorem 4, but [- , - , •] is 
not the *-median on L because [•, •, •] has not the property x V [a, b, c] = 
[x V a, x V b, c] from Theorem 8. 

Namely, xA[a,b,c] = xA {(aVb) A(bVc) A(aVc*) A(aVa*)} = (aVx)A(aVb) 
AxA(bVc)A(aV(xAc)*)A(aVa*) = (aV(xAb)) A ((xAb) V(xAc)) A (aV(xAc)*) 
A (a V a*) = [a, x A b, x A c], since x A (a V c*) = x A (a V (x A c)*) - see part 2 
from Theorem 4. Then property 1° is true. Properties 2°, 3°, 4° are fulfilled 
trivially. Now, xV [0,1,0] = x V l = 1 and [xV0,xVl,0] = [x, 1,0] = zVx* ^ 1, 
for x £ £ , in the case that F is not a Boolean algebra. 

THEOREM 9. Let L be a distributive p-algebra, and let [- , - ,• ] be a ternary 
operation on L such that a = [1, 0, a] and a* = [0,1, a] , for a £ L. Then [ •, •, • ] 
is the *-median operation on L if and only if for a,b,c,x £ L, x A [a^b^c\ = 
[x A a, x A b, c] and x V [a, b, c] = [x V a, x V b, c]. 

P r o o f . 

=> : We have x A [a, b, c] = x A {(a V b) A (b V c) A (a V c*)} = x A (a V b) 
A (x V c) A (b V c) A (x V c*) A (a V c*) = {(x A a) V (x A b)} A {(x A b) V c} A 
{(xAa)Vc*} = [xAa,xAb ,c] and xV[a,b,c] = x V {(a Vb) A (bVc) A (a Vc*)} = 
(x V a V b) A (x V b V c) A (x V a V c*) = [x V a, x V b, c]. 

<= : This part has the following steps: 

a) (a A b) V [a, b, c] = [(a A b) V a, (a A b) V b, c] = [a, b, c] = > a A b < [a, b, c]; 

b) (aVb) A[a,b,c] = [(aVb) A a, (aVb) Ab,c] = [a,b,c] = > aV b > [a,6,c]; 

c) b A c* = b A [0,1, c] = [0, b, c] = > c* = c* V (b A c*) = c* V [0, b, c] = 
[c\bVc\c] => 0 = cAc* =cA[c*,bVc*,c] = [0,cA(bVc*),c] = [0,bAc,c] = 
cA[c*,b,c] => [c\b1c]<c* = > (a Vc*) V [a,b,c] = [a Vc*,a VbVc*,c] = 
(a V c*) V [c*, 6, c] = a V c* =-> a V c* > [a, b, c]; 

d) a V c* = a V [0, l,c] = [a, l,c] = > c*A[a,c*,c] = [aAc*,c*,c] = 
c* A [a, l,c] = c* A (a Vc*) = c* => c*<[a,c*,c] = > (b A c*) A [a, b, c] = 
[ a A b A c * , b A c * , c ] = (bAc*) A [a,c*,c] = b A c * => b A c* < [a, b, c]; 

e) [1, a, b] = a V [1, 0, b] = a V b =i> (a A c) A [a, b, c] = [a A c, a A b A c, c] = 
(a A c) A [1, b, c] = (a A c) A (b V c) = a A c = > a A c < [a, b, c]; 

f) [a, 0, b] = a A [1, 0, b] = a A b = > (b V c) V [a, b, c] = [a V b V c, b V c, c] = 
(b V c) V [a, 0, c] = (b V c) V (a A c) = b V c ===> b V c > [a, b, c]; 

g) Finally, (a A b) V (a A c) V (b A c*) < [a, b, c] < (a V b) A (a V c*) A (b V c), 
and Proposition 2.2. implies that [-,*,•] is the *-median. • 

PROPOSITION 10. A distributive p-algebra L is a Boolean algebra if and only 
if the * -median operation [-,*,•] on L satisfies x V [a, b, c] = [x V a, b, x V c] 
/or a, 6, c, x £ L . 
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P r o o f . 

= > : We have xV[a,6,c] = xV{(aV6)A(6Vc)A(aVc*)} = (xV(aV6)} AJxV 

(6Vc)}A{xV(aVc*)}A{xV(x*Va)} = (xVaV6) A(xV6Vc) A (xVaV(x* Ac*)) = 

(x V a V 6) A (x V 6 V c) A (x V a V (x V c)*) = [x V a, 6, x V c]. 

4 = : For all a e L it holds a V a* = a V [0,1, a] = [a, 1, a] = a V [0,1,0] = 
a V l = 1. • 

PROPOSITION 1 1 . Let L be a Boolean algebra, and let [•, •, •] be a ternary 
operation on L. Then [-,-,•] is the * -median operation on L if and only if 
for all a, 6, c, x G L. x A [a, 6, c] = [a, x A 6, x A c], x V [a, 6, c] -= [x V a, 6, x V c]. 
1 = [a, 1,0] and 0 = [0,a, 1]. 

P r o o f . 

==> : With regard to Theorem 4.2, we have x A [a, 6, c] = [-C,0, [a, 6, c]] = 

[a, [x, 0, 6], [x, 0, c]] = [a, x A 6, x A c]. The rest follows from the first part of the 

proof of Proposition 10. 

<= : This part has the following steps: 

a) (6 V c) A [a, 6, c] = [a, (6 V c) A 6, (6 V c) A c] = [a, 6, c] = > 6 V c > [a, 6, c]; 

b) 6 = 6 A 1 = 6 A [a, 1, 0] = [a, 6, 0] =^> (6 A c*) A [a, 6, c] = [a, (6 A c*) A 6, 

(6 Ac*) Ac] = [a, 6 Ac*, 0] = 6 Ac* ==> 6 A c* < [a,6,c]; 

c) (a A c) V [a, 6, c] = [(a A c) V a, 6, (a A c) V c] = [a, 6, c] =4> a A c < [a, 6, c]; 

d) a = a V 0 = a V [0,1, 6] = [a, 6,1] =4> (a\/ c^)\/ [a, 6, c] = [a V c*, 6, 
a V c* V c] = [a V c*, 6, 1] = a V c* =4> a V c* > [a, 6, c]; 

e) a* = [6,a*,0] = [6, a*, a* A a] - a* A [6,1, a] => a* < [6,1, a] => 
[6,1, a] = a* V [6,1, a] = [a* V 6,1,1] = a* V 6 =-> (a A 6) A [a, 6, c] = [a, a A 6, 
a A 6 A c] = (a A 6) A [a, 1, c] = (a A 6) A (a V c*) = a A 6 =-> a A 6 < [a, 6, c]; 

f) a = [a, 6,1] = [a,6,aVa*] = a V [ 0 , 6 , a * ] =-> a > [0,6, a*] =4> [0,6,c] = 
c* A [0, 6, c] = [0, 6 A c*, 0] = 6 A c* =-> (a V 6) V [a, 6, c] = [a V 6, 6, a V 6 V c] = 
(a V 6) V [0, 6, c] = (a V 6) V (6 A c*) = a V 6 ==> a V 6 > [a, 6, c]; 

g) Finally, (a A 6) V (a A c) V (6 A c*) < [a, 6, c] < (a V 6) A (a V c*) A (6 V c), 
and Proposition 2.2. implies that [-,-,•] is the *-median. • 

REFERENCES 

[1] B I R K H O F F , G . : Lattгce Theory, AMS, Providence, R. I., 1967. 

[2] C E C H , E. : Topological spaces, Academ ia, Praha, 1966. 

[3] J O H N S T O N E , P. T. : Stone Space, Cambгidge University Press, Cambridge, 1982. 

[4] KOLIBIAR, M. : A characterization of a lattice by means of a ternary operation (Slovak), 

Mat.-Fyz. Časopis 6 (1956), 10-14. 
[5] SHOLANDER, M. : Postulates for dгstrгbutгve.lattгces, Canad. J. Math. 3 (1951), 28-30. 

163 



BOHUMIL ŠMARDA 

[6] ŠMARDA, B . : Completely normal locales, Acta Univ. Carolin. M a t h . Phys. 3 1 (1990), 
101-104. 

Received November 14, 1991 Katedra matematiky 

Revised January 17, 1995 PřF MU 
Janáčkovo nám. 2a 
CZ-662 95 Brno 
Czech Republic 

164 


		webmaster@dml.cz
	2012-08-01T10:44:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




