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ON A GAMBLER'S RUIN PROBLEM 

MOHAMED A . E L - S H E H A W E Y * — B . N . AL-MATRAFI** 

(Communicated by Lubomír Kubáček ) 

ABSTRACT. The object of this paper is to specify an explicit expression for 
the absorption probabilities for a random walk on the integers — 6 , - 6 + 1 , 
..., — 1, 0 , 1 , . . . , a which arises in a gambler's ruin problem proposed by the 
authors. There are two barriers, one absorbing at a and the other at —6, such 
that the random walk particle is returned to the position j , —6 < 3 < a, whenever 
reaches it. 

1. Introduction 

The classical problem of the gambler's ruin affords a classical illustration of 
the simple random walk with absorbing barriers. For example, B a r n e 11 (1964), 
C o x and M i l l e r (1965), F e l l e r (1968), S r i n i v a s a n and 
M e h a t a (1976), and K a n n a n (1979) have treated this problem. We con
sider here a more general problem where there are two barriers, one of which is 
absorbing and the other is such that the random walk particle is immediately 
returned to a certain position upon reaching it. We consider two players A and 
B with initial fortunes a and b dollars respectively. The game consists of a 
series of independent turns. Let Xu, u > 1, denote the B 's winnings in the uth 
turn with 

1 with probability p, 

— 1 with probability q , 

0 with probability r , 

where p + q + r = 1 and 0 < p , r / < l , 0 < r < 1. Thus, we have 

xu 

s™ = z2 xv 
u=l 

n 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 60G40, 60J10, 60J15. 
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which represents B 's net gain at the end of n turns. If at any stage Sn = — b, 
B is ruined, player A immediately donates j dollars of his fortune to player 
B, 0 < j < a. The game ends when B has gained all .A's fortune and A is 
ruined, i.e., Sn = a. Thus Sn is a random walk with two barriers, one of which, 
at a, is absorbing, and the other, at —6, such that the random walk particle is 
returned to the position j , —6 < j < a, whenever reaching it. In this paper, an 
explicit expression for the absorption probabilities is derived. C o x and M i l l e r 
[3; p. 33] (1965) solved the classical random walk problem with absorbing barriers 
at the points —b and a; however, the probability of absorption at time n is found 
to be erroneous. The correct formula can be found in G u l a t i and H i l l [6] 
(1981). The special case, when the barriers are symmetrically placed on either 
side of the origin has been given by M u n f o r d [6] (1981). If we replace the 
absorbing barrier at —6 by an impenetrable (reflecting) barrier at j = 0, — l ' s 
are never accumulated if Sn reaches zero. The absorption probabilities have 
been deduced by E l - S h e h a w y [4] (1992). 

2. Generating function for the absorption probabilities 

Let / ( n , a | iQ) denote the probability that the particle is absorbed at a at 
time n given that its initial position was iQ, — b < iQ < a. The absorption 
probabilities / ( n , a \ iQ) must satisfy 

/ ( n , a\iQ)= P/(n-l, a | i 0 + l ) + r / ( n - l , a\iQ)+ <? / (n- l , a | z 0 - l ) 

( n = 1,2 , . . . ; iQ = - 6 + 1 , . . . , - 1 , 0 , 1 , . . . , a - 1 ) , 

where 

/ ( 0 , a | iQ) = 0 (iQ = - 6 , . . . , - 1 , 0 , 1 , . . . , a - 1) , 

/ ( 0 , a | a ) = l , f(n,-b\iQ) = f(nJ\iQ) (n = 1,2,...). 

Introducing the generating function 

CO 

Gio,a(t) = ^f(n,a\i0)t
n. (2) 

n=0 

Following C o x and M i l l e r [3] (1965) we deduce that 

Gio,a(t) = Hio(t)/Ha(t), i0 = - & , . . . , - 1 , 0 , 1 , . . . , a , (3) 

where 

Hi0(t) = (K(t))h+i0 - (M*))6+i0 + k/p}b+i0 [(W)?-* - (h2(t))
j-i0], 
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and h^t), h2(t) are the roots of the quadratic equation 

pth2 -(l-rt)h + qt = 0, (4) 

p, q and r are the probabilities of taking one step to the right, to the left 
and remaining in position, respectively. Writing X(t) = 1 — rt and Y(t) = 
^Apqt2 — (1 — rt)2, we have 

h12(t) = (2pt)-1[X(t)±i Y(t)}, i = V--l , 

and 

Hio(t) = (2pi)- ( 6 + i o ) [(x(i) + iY(t))b+i° - (X(t) -iY(t))b+i0] 

+ (2pt)^-J[q/p]^o [ ( x ( t ) + iY(t))j-io - (X(t) - iY(t))j-i0] . 

Accordingly, by expanding both the numerator and denominator of (3) in 
powers of Y(t) and noting that only odd powers of Y(t) occur, thus Y(t) is 
cancelled, leaving a ratio of two polynomials in t, each of degree at most a+b— 1, 
and consequently a partial fraction expansion of it is available. Using complex 
variables notation, we have 

X(t) = \z\ cos (j>, Y(t) = \z\ sin <fi, 

where 

\z\ = y/X2(t) + Y2(t) = 2^/pqt, and <f> = tan~l (Y(t)/X(t)) . 

It is useful to observe that 

1 -rt = 2y/pqtcos<£, or t = (r + 2^/pqcos<f))~ , (6) 

and h12(t) = y/q/pe±1<^. Formula (3) becomes 

Gio,a(t)=Tio(<t>)/Ta(4>), (7) 

where 

Ti0(cf>)= [^ /p^] a - i o [ (Vp) 6 + is in(6 + g0+(Vg) 6 + i s in( j -^ o )<A" . 

The denominator of (7) is found to have a + b—I distinct roots. A study of the 
function 7(</>), where 

/JLv sin(a + b)(j) r /—r-,6+j 

7(4>) = ~T~T ^ - V<7/P 8) 
sm(a — j)(p L J w 

shows that if a — j -= Ufpjq] J(6 + a), the roots of the equation *y(<f)) = 0 give 

distinct roots of Ta(<fi) 6 [0, IT) . If a - j < [y/pjq ] 3 (b + a), there are a + 6 - 1 
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distinct real roots </>v (v = 1,2,..., a + b — 1) of (8). The corresponding roots 
of Ha(t) are then 

v Г + 2у/р^СОБфи ' 
v=l,2,...,a + b-l 

If a — j > [yjp/q] (b + a), there are only a + b — 2 distinct roots <f>v (v = 
2, 3, . . . , a + b — 1) that give distinct roots i^ of Ha(t). The remaining root of 
Ha(l) i s given by 

1 
u = 1 v + 2-v/pgcosh<^1 

where ^ is the unique root of the equation, 

sinh(a — j)(f) = [y/p/q] J sinh(a + b)(f). 

3. Explicit expression for the absorption probabilities 

T H E O R E M . We have 

f(n,a\i0) =-2yJpq 
a+Ь-l 

M°(Фг)+ £ ^(ФĄ^WU^) 
- 1 

i /=2 

(г + 2у/р~саафи)
п ^ i n ^ J , 

(9) 

where 

[r + 2y/pqcos</>1]
n+1, a-j< (y/p/q)(a + b) , 

M«(<f>1) = M(4>1)-\ [1-(VP-V-)T+1, a-j = (y/pTq)b+Í(a + b), 

[r + 2Vpqcosh(ß1]
n+1, a - j > (y/p/q) +J(a + b), 

and 

' ^0(^i)[^1U^]"1[r+2V7^cos^]-2sin^i' 
a-j<(Vp7q)b+Í(a + b), 

ҖФi) = < 
-2{a-iQ)(a + b)-\a-j)-x(2a + Ъ-j)-l[r + 2Vpq) \ 

a-j={Vp/ )Ь+J(a + Ь), 

- Г j i ^ ) p ^ % = i J ~ [r + 2Vмcosh^]- 2 s inh^, 

a-j>(y/pTq)Ь+І(a + Ъ). 
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P r o o f . Employing the partial fraction method, formula (3) can be written 
in the form 

oo / a+b— 1 \ 

GU*)=E E ^r> 
where the constants T)v are given by, 

V» = ~Hi0(t) 

Differentiating the quadratic equation (4) with respect to t we get 

d^=t-^i2(t)[o-phi2(t)r1-

The study of (8) with (3), (10) and (11) finally yield 

- 2 ^ ? [ s i n ( 6 + i0)<f>v + (^/g/p)b+0 sin(j - i0)<f>v]tl s i n ^ , 

дHgjt) 
дt 

t = tu 

(10) 

( i i ) 

% = 
(V Jp)a *° [(a + b) cos(a + b)фu + (yґq/pý*3(j - a) cos(j - a)фџ] ' 

ІV = 2 , 3 , . . . , a + ò — 1 
(12) 

and 

where 

Vl ---гv^м^), 

Фг = { 

rU 
cos 2y/pqtx 

ъ+jt if a-ú<(Vp/q) > + &), 

cosh - 1 rt \b+j/ ì- if a-j>(^ф)0+J(a + b), 

i x is the smallest root in absolute value of Ha(t). Formula (9) follows. D 

We see that with the appropriate change of notation, expression (9) agrees 
with that of M u n f o r d [8] (1981) in the case j = 0, p > q\ and with that of 
W e e s a k u T s [10] (1961) and B i a s i [2] (1976) for the particular case j = 0, 
b = 1, r = 0, replacing iQ, a, <\>v, r)v with b — u, b, a^, p^ and interchanging 
p and g respectively. 

REFERENCES 

[1] BARNETT, V. D.: A three-player extension of the gambler's ruin problem, J. Appl. 
Probab. 1 (1964), 321-334. 

[2] BLASI, A.: On a random walk between a reflecting and an absorbing barrierђ Ann. Probab. 
4 (1976), 695-696. 

487 



MOHAMED A. EL-SHEHAWEY — B. N. AL-MATRAFI 

[3] COX, D. R — MILLER, H. D . : The Theory of Stochastic Processes, Methuen, London, 
1965. 

[4] EL-SHEHAWY, M. A . : On absorption probabilities for a random walk between two dif
ferent barriers, Ann. Fac. Sci. Toulouse Math . (5) I (1992), 95-103. 

[5] FELLER, W . : An Introduction to Probability Theory and Its Applications. Vol. 1 (3rd 
ed.), Wiley, New York, 1968. 

[6] GULATI, C. M.—HILL, J. M . : A note on an alternative derivation of random walk prob
abilities, Sankhya Ser. A 4 3 (1981), 379-383. 

[7] KANNAN, D . : An Introduction to Stochastic Processes, New York, 1979. 

[8] M U N F O R D , A. G. : A first passage problem in a random walk with a quality control 
application, J. Roy. Stat ist . Soc. Ser. B 4 3 (1981), 142-146. 

[9] SRINIVASAN, S. K .—MEHATA, K. M . : Stochastic Processes, McGraw Hill, New Delhi, 
1976. 

[10] W E E S A K U L , B . : Tlie random walk between a reflecting and an absorbing barrier, Ann. 
Math . Stat ist . 32 (1961), 765-769. 

Received August 15, 1994 

Revised April 23, 1995 

' Department of Mathematics 
Faculty of Science 
Damietta 
EGYPT 

** Department of Mathematics 
Faculty of Applied Sciences 
Umm Al-Qura University 
Makkah 
SAUDI ARABIA 

488 


		webmaster@dml.cz
	2012-08-01T12:00:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




