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ON UNCONDITIONAL CONVERGENCE OF SERIES
IN BANACH LATTICES

PAVEL KOSTYRKO

In the theory of real functions the following assertion of W. Sierpinski is
known (see [3], [4] and [5] p. 89): A series if,. of bounded real functions is
unconditionally uniformly convergent, i.e. it is L_riiformly convergent regardless of
the ordering of its terms if and only if the series 2 |f.| is uniformly convergent. The

aim of the present paper is to give a generalization of the above mentioned
assertion for a class of Banach lattices.

The family M(T) of all bounded real functions on T#@ with the product
ordering (i.e. x<y whenever x(t)<y(t) for each te T) and with a norm

|lx|| =sup {|x(¢)|} is a Banach lattice. The mentioned result of W. Sierpinski can
teT
be formulated as follows: The series Y, x. is (in M(T)) unconditionally convergent
n=1

if and only if the series Y, |x.| is convergent (]x|=xv(—x)). This result raises
n=1
a further problem: To give a characterization of those normed lattices in which

a series , x, is unconditionally convergent if and only if the series D |x.]| is
n=1

n=1
convergent.

In the following we shall deal only with a Banach lattice E. To simplify our
notation let us introduce: S — the family of all series in E, i.e. S={Zx.: x, € E},
B={3x,€S: Zx, is unconditionally convergent} and C={Zx,€S: Zx, is
convergent}. Obviously B < C. '

Theorem 1. Let E be a Banach lattice and let B and C have the introduced
meaning. Then the following statements are equivalent:

(a) Z|x|eC, (d) =x,eB and Zx; €B,
(b) Zx€B and £x, € B, (e) =x,eB and 2x;€C,
(c) =x.€B and =x} € B, (f) Zx,€C and 2x, € B,
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(g8) =x,eB and 2x;€C, (j)) =x,eCand =x,€C,
(h) =x,eC and Zx; € B, (k) =xteC and =x,€eC,
(i) =x,eC and Zx};eC,

where x*=xvo(x~=(-x)vo) is the positive (negative) part of x (o — the
additive zero element; see e.g. [2], p. 230).
Proof. The statement can be proved according to the following scheme

= (&) .
/(C)§ ® %(l)\
(a)=>(b)\s /(k)ﬁ(a)
@ O=0;

The proof will be given for the next implications: (a) = (b) > (c) = (e) > (i) >

(k) = (a). In the other cases the proof is analogical.
(a) > (b): According to the Cauchy criterion ([S], p. 86) it follows from the

convergence of the series z |x«| that for each £ >0 there is a positive integer no
k=1

n

E [

k=m+1

< ¢ holds for each n>m = no. If 3, xi, is any subseries of the
ji-1

such that

scries > x%, then
k=1

+
Xk,

m<k;<n

<e¢

> xi+xi)l=

m<k;<n

<

|3,

k=m+1

S Ix
m<k,<n

holds, i.e. according to the Cauchy criterion the series D, x is convergent. Hence it
j=1
follows from the Orlicz criterion of the unconditional convergence ([5], p. 86) that

the series >, x% is unconditionally convergent. Analogically we can verify that the
k=1

series Y, x& is unconditionally convergent.
k=1

The implicaltion (b) > (c) follows immediately from the mentioned Orlicz
criterion and from the fact x = x* — x~. The implications (c) = (e) = (i) = (k) >
(a) are obvious.

Theorem 2. Let E be a Banach lattice and let sets B and C have the introduced
meaning. Then the following statements are equivalent:

(i) =|x.| e C if and only if Zx, € B;
(ii) =Zx, € B implies Ex} e C;
(iii) =x, € B implies =x; € C.
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Proof. We prove the equivalence of statements (i) and (ii): Zx, € B according
to (i) implies Z|x.| € C, and Z|x,| € C according to Theorem 1 (i) implies =x? € C.
(ii) = (i) : =|x.| € C with respect to Theorem 1 (c) implies =x, € B. If Zx, € B, then
according to (ii) =x} € C, and Theorem 1 (e) implies =|x.|e C.

The equivalence of the statements (i) and (iii) can be proved analogously.

Further we shall deal with Banach lattices of finite real functions defined on a set
T# @ (with usual addition, scalar multiplication and the product ordering).

Definition. A Banach Iattice of real functions is said to be a lattice with
concentrated norm whenever:

v 3 V||x||>s:>(ax(t)>a), (1)
e>0 >0 x=o0 teT

v 3 v(ax(:)za):>||xn>n. @)
6>0 n>0 x=o0 \teT

Example 1. The Banach lattice M(T) of all bounded real functions defined on

the set T# @ with the norm ||x|| =sup {|x(¢)|} is a lattice with the concentrated
teT

norm.
Example 2. The Banach lattice L of all finite real Lebesgue integrable

1
functions defined on the interval (0, 1) with the norm | x|| =f [x(¢)] dt is not
0

a lattice with the concentrated norm. Condition (1) is fulfilled, but condition (2) is
not fulfilled.

Theorem 3. Let E be a Banach lattice of finite real functions (defined on the set
T+ @) with the concentrated norm and let B and C be sets of the introduced
meaning. Then Z|x,| e C if and only if 2x, € B.

Proof. It follows from the above Theorem 2 that it is sufficient to prove that
Zx, € B implies Zx7 € C. We shall do it by a contradiction. Let Zx7 ¢ C. Then,
according to the Cauchy criterion, there exists € >0 such that for each positive
integer number no there are m and mo(m > mo= no) such that || xhe+1 + ... + x| =
e. It follows from the property (1) of the concentrated norm that there are 6 >0
and t € T such that x}+1(¢) + ... + x#(t) = 8. Let ni be indices for which x;(¢)>0.

Then x.(t)=0. Obviously < > xu(t) = > () = xa()
i mo<nksm mo<nk=m
= > x() =13 x...(t)l. It follows from the property (2) of the

concentrated norm and from the fact |y(t)| = |y|(¢) that there exists > 0 such that

nS =

Xy

mo<nk<m

x.||- Hence there is a subseries Zx,, of the series =x,

mo<ng:sm
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which is not convergent. Consequently, it follows from the Orlicz criterion that
Zx. ¢ B — a contradiction.

Theorem 4. Let E be any finite dimensional Banach lattice and let B and C have
the introduced meaning. Then Z |x,.| € C if and only if Zx, € B.

Proof. Itis well known that each normed lattice is Archimedean (see e.g. [6],
p. 129). It is also known that if a vector lattice of a finite dimension n (n=1) is
Archimedean, then it is isomorphic to the vector lattice E, of all n-tuples of real
numbers with the product order (see [2], p. 229; [6], p. 89).

Hence it is sufficient to verify the statemhent of Theorem 4 for E,. E, is a lattice
of finite real functions on T={1, ..., n}. We show that it has the concentrated
norm. Let u;=(&,, 0, ..., 0), ..., u, = (0, ..., 0, &) be a base for E,. Without loss
of generality we can assume u;=o, ..., u,=o0 and ||u||=... = ||u.||=1. Let €>0

and x = ﬁ:E.u;ZO. From facts that x* =2, &u, where I={i: =0}, and x=>o if
and onl)'lxilf x=x", it follows & =0 for e:éh i=1,2, ..., n.

The property (1) of the concentrated norm: If £ <||x|| < i |w| = i g, then
there exists r, 1 <r<n, such that ¢/n <E&,. Indeed, in the g;;posite cas‘e—lwe have

e<Y E<n(e/n) = ¢ — a contradiction. Hence it is sufficient to put 6 =¢/n. If
=1

2_‘,1 Eu,
|lx||. Hence for n = & we can verify that the property (2) of the concentrated norm
is fulfilled.

In the following we use notions of M and L spaces, of the unit and of the
spectrum of an M space with unit, according to the monograph [2].

<

>0, x=>Eu=o0and £=6>0 (1<r<n), then <& =||Eu,
i=1

Lemma 1. Each M space with unit is metrically, algebraically and lattice
isomorphic to the space of all continuous real valued functions on its spectrum

T with the norm ||x||=sup {|x(¢)|} ([2], p. 242; [6], p. 202).
teT

Theorem 5. Let E be an M space with unit and let sets B and C have the
introduced meaning. Then =|x.|e C if and only if £x, € B.
Proof. The statement of Theorem 5 is an immediate consequence of Lemma 1,

of the fact that the norm ||x|| =sup {|x(¢)|} is concentrated, and of Theorem 3.
teT

Theorem 6. Let E be an infinite dimensional L space. Then there exists an
unconditionally convergent series Xx, in E such that the series X|x.| is not
convergent.
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Proof. It is easy to verify that the characteristic property of L spaces is
equivalent to the condition: If x;=o,...,xx=o0, then |x,+..+x| =
llxi]] + ...+ ||x]] (k — a positive integer number, k=2). In every infinite
dimensional Banach space there exists an unconditionally convergent series Xx,
which is not absolutely convergent (see [1]). If p is a positive integer number,
then it follows that ||xmsill+ ...+ |[Xxmspll = ||xmerl |+ ...+ [ |xmss] || =
[ |Xm+1]+ ... + |Xm+p| ||. The Cauchy condition for the divergent series X ||x.| is
not fulfilled, hence according to the last equality, it is not fulfilled for the series
= |xa], i.e. |x.| is not convergent.

Corollary 1. The Banach lattice E, is the only Banach lattice which is either an
M space with unit and an L space.

Proof. The Banach lattice E; is obviously either an M space with unit and an L
space. Suppose indirectly that there is a Banach lattice E, which is not isomorphic
to E;, such that it is either an M space with unit and an L space. If E is infinite
dimensional, then according to Theorem 5 X |x,| € C if and only if £x, € B, and
according to Theorem 6 there exists =x, € B such that = |x.| ¢ C — a contradiction.
Hence E is necessary finite dimensional.

Let E be an n-dimensional Banach lattice. Hence it is sufficient to investigate
E., n=2. It follows from the assumptions of Corollary 1 and from the identity
x+y = xvy+xnaythat x| +lyll = llx+yll = lxvyll + [lxayll = llxl vyl
+ |[xAy]l (x=o0, y=0). Put x=(&, 0,0, ..., 0), y=(0, &, 0, ..., 0) and choose
numbers £, >0 and &,>0 such that ||x||=|y||=1. Then it follows from the last
equality that 2=1+1|(0, O, ..., 0)||, i.e. 2=1 — a contradiction.

In the following we shall deal with the set of series S. To the introduced subsets
of S, B and C, we add the set A of all absolutely convergent series in E, i.e.
A ={Zx,€8: T||x.|| < + }. It is known that A = B < C ([5], p. 88). In Banach
lattices it is possible to introduce the next kind of convergence, the convergence in
the absolute value, in the following way: The series X x, converges in the absolute

n=1
value if the series Y, |x.| converges. Let A * stand for the set of all series which are
n=1

convergent in the absolute value, i.e. A*={Zx,€S: £|x.|e C}.

Theorem 7. Let E be a Banach lattice and let A, A* and B have the introduced
meaning. Then

(i) AcA*cB,
(ii) if E is either a finite dimensional Banach lattice or an M space with unit, then
A*=B,
(iii) if E is an L space, then A*=A.
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Proof. (i): Let p be a natural number. The inclusion A c A* follows from the
Cauchy criterion and from the relations || | Xms1| + ... + [Xmep] || < | |Xmet] || + ...
+ [ |xmsol ]| = ll€metll + ... + |[Xm+5]l. The inclusion A* < B is a consequence of
Theorem 1, (a) = (¢).

(ii): A proof of this statement is given in Theorem 4 and Theorem S.

(iii): In the proof of Theorem 6 it is shown that the equality ||x..:|| + ...
+ |[Xmenll = I[|1Xmet] + ... + |xm+p||| holds for each L space. Hence it follows
from the Cauchy criterion that = |x,| e C if and only if Z||x,| < + c.

The set of all the series S of a Banach lattice E can be investigated as a metric

space (S, ), where 9(Zx,, £y,) = 3,2 " min {|[x, — y.||, 1}. It is known that the
n=1

metric space (S, o) is a locally convex linear topological space. The sequence of the

series {Zx{}, converges to the series X, if and only if |[x{’ — x.||— 0 for each
n=1,2, .. ([5], p.- 100, ex. 16).

Lemma 2. The metric space (S, 0) is complete.

Proof. Let {£x}7, be a Cauchy sequence of series. We show that for each
m=1,2, ..., {x%}7 1 is a Cauchy sequence. Let m be a natural number and let £ be
a positive number, € <1. There exists a natural number r, such that o(Zx¢?, Zx{)
< €/2™ holds for all natural numbers r and s, ro<r<s. Then
27" min {||x% — x|, 1} < /2™ and ||x% — x| <e. Hence {x{}:, is a Caucshy
sequence and there exists a limit lim x{? = x,, in the Banach lattice E. It follows
from the above characterization of the convergence with respect to the metric o
that limZx{ =Zx,.

r—o

Further we shall deal with the sets A, A*, B and C from a topological point of
view.

Theorem 8. The sets A, A*, B and C and their complements in S are dense sets
in S.

Proof. With respect to the inclusions A = A*c B < C it is sufficient to prove
that the sets A and S — C are dense.

It is easy to verify that the set K, of all the series Zx, with the property that x, # o
holds only for a finite number of indices is a dense set in S. Indeed if K(Zy., 6) is
an open sphere with the center £y, and the radius § >0, then it is sufficient to
choose m such that » 2™ = 2°"<§ and put x,=y, for n=1,2, ..., m and

n=m+1

x.=o0 forn=m+1, m+2,...,. Obviously Zx, € KinK(Zy., §) and K,c A.
Let K, be the set of all the series Zx, for which x, =x# o0 holds with the
exception of a finite number of indices. With respect to the Cauchy criterion no
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series in K; is convergent, hence K, = S — C. Analogously to the first part of the
proof it can be shown that K; is dense in S.

Theorem 9. The sets A, A* and C are F,s sets in S.

Proof. We prove the statement of Theorem 9 for the set C. First we show that
the function @mn: S— Ey(@mn(Ex.) = ||Xm+1+ ... + x.||) defined for every pair of
natural numbers m and n (m < n) is continuous. We show that for each positive ¢,
£<1,and Zx, € S there is 6 >0 such that |@m.(Zya) — Pma(Ex.)| < € holds for each
series Xy, € K(Zx,, 6). It is sufficient to put 6 =¢/(n—m)2". Then for each
k=1,2,... we have 27* min {||yx — x|, 1} < &/(n—m)2" and for each k=
1,2,...n |lyw=—x|i <e/(n—m). Hence [@m(Zy.) =  @ma(Zx,)|
= lymert oo+ yull = |xmes+ oo + Xl | S | Ymer=Xmaa]| + oo + [lyn — xall<e.

The set C can be expressed by using the Cauchy criterion in the following form
(p, q, m and n are natural numbers):

C={2x,.: v3iv y ||x,,.+,+...+x,.||s1/p}=
n=m+1

p=1 q=1 m=q
=n U O n Cramns (3)

where Cpgmn={ZXn: || Xmsr + ... + X || <1/p} = @rl((— =, 1/p)). The set Cpomn is
closed because the function @... is continuous. The fact that the set C is an F,s set in
S is an easy consequence of the equality (3).

The statement of Theorem 9 for the set A(A*) can be proved analogously. This
follows from the continuity of functions Ym(Zx,) = |xmed] +
+ 1% ]| (Tn(Ex2) = || |Xm+1] + ... + |x.|]|) which are defined for every pair of
natural numbers m and n, m<n, and from the expression

A= UN =O+1 {Zxa: | xmar|| + ... + ||x:]| < 1/p)

p=1q9q=1 m=qn

p=1q=1

(A*= N U Qﬂﬁ, 250 || | Xmar] + oo + [xa] ] sl/p)

Theorem 10. The sets A, A*, B and C are of the first category in S.
Proof. Since each of the sets A, A* and B is contained in C it is sufficient to
prove Theorem 10 for the set C. If for each p=1,2,... we put G, ={Zx,:

3V V |lxmer + ... + x| < 1/p} (q, m and n are natural numbers), then

q>1 m=>q n=zm+1
C=NGC and CG=J N N Coromm 4)
p=1 q=1 m=q n=m+1
where Cpqmn are sets introduced in the proof of Theorem 9.
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It follows from (4) that the set C, is an F, setforeachp =12, For the set K,
introduced in the proof of Theorem 8 there holds K: =S — C,. Indeed, for each
series Zx, € K, and for each natural number g there eXist m = q and n>m such
that ||x,..+1 +...+ x,.|| = (”l - m)||x|| > 1/p Hence the complement of the set C, is
dense. Each F, set, the complement of which is dense, is a set of the first category
and from (4) it follows that C is also of the first category.

Corollary 2. Each of the sets S— A, S—A*, S—B and S — C is residual of the
second category in S.

Problem 1. Theorem 3, Theorem 4 and Theorem 5 give only sufficient condi-
tions for the Banach lattice to have the property (P): Zx, e B if and only if
3 |x.| € C. The problem to characterize Banach lattices (normed lattices) with the
property (P) is open.

Problem 2. The method used in the proof of Theorem 9 is not applicable in
general for the set B to give its Borel classification in S. It follows from Theorem 7
(ii) and from Theorem 9 that if E is either a finite dimensional Banach lattice or an

M space with unit, then B is an F,, set in S. Is the set B an F,; setin S for every
Banach lattice E?
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O BE3YCIIOBHOM CXOOUMOCTU PSOOB B CTPYKTYPAX BAHAXA
Pavel Kostyrko
Pe3iome
B paGoTe onpeneneHbl fOCTaTOYHbIE YCIOBHSA Ha cTPYKTYpy Banaxa E, npu KOTOPbIX HMeeT MeCTO

cooTHoleHue : Pan E X 6e3ycnoBHO cxogutcs B E Torna u ToJLKO TOrAa, KOraa psn 2 |x.| cxomurest
n=]

n=1

B E (|]x| — monmyns anemenra x).
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