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ON UNCONDITIONAL CONVERGENCE OF SERIES 
IN BANACH LATTICES 

PAVEL KOSTYRKO 

In the theory of real functions the following assertion of W. Sierpir iski is 

known (see [3], [4] and [5] p. 89): A series ^ / „ of bounded real functions is 

unconditionally uniformly convergent, i.e. it is uniformly convergent regardless of 

the ordering of its terms if and only if the series 2 l/» I is uniformly convergent. The 
n = l 

aim of the present paper is to give a generalization of the above mentioned 
assertion for a class of Banach lattices. 

The family M(T) of all bounded real functions on T-£0 with the product 
ordering (i.e. j c^y whenever x(t)^y(t) for each teT) and with a norm 

||JC|| =sup {|JC(0|} is a Banach lattice. The mentioned result of W. S i e rp insk i can 
teT 

be formulated as follows: The series ^ ** is (in M(T)) unconditionally convergent 

if and only if the series 2 W is convergent (|JC| = JCV(-JC)) . This result raises 
„ = 1 

a further problem: To give a characterization of those normed lattices in which 

a series ]£ JC„ is unconditionally convergent if and only if the series 2 l*«l is 
n=\ n=\ 

convergent. 
In the following we shall deal only with a Banach lattice E. To simplify our 

notation let us introduce: S — the family of all series in E, i.e. S = {2JC„: JC„ e E), 
B = {2JC„ e S: 2JC„ is unconditionally convergent} and C = {SJC„ e S: 2JC„ is 
convergent}. Obviously B c= C. 

Theorem 1. Lef E be a Banach lattice and let B and C have the introduced 
meaning. Then the following statements are equivalent: 
(a) 2 |JC„ | e C, (d) 2JC„ e B and IxZ (=B, 

(b) ZJC: e B and ZJC; e B, (e) 2x„ e B and !Lx+
n e C, 

(c) 2JC„ G B and Zjct e B, (f) 2JC„ e C and Zxt e B, 
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(g) .Sx„ e B and Hx' e C, (J) 2x„ eC andlxne C, 
(h) 2x„ e C and 2 x ; e B, (k) Zx+

n e C and ~Zx~ e C, 
(i) ZxneC andZxteC, 

where x+ = xvo(x~ = (-x)vo) is the positive (negative) part of x (o — the 
additive zero element; see e.g. [2], p . 230). 

Proof. The statement can be proved according to the following scheme 

(a)=*(b) ( k ) = * ( 3 ) 

\^MB)^rf 
(dW(h)^(j) 

The proof will be given for the next implications: (a) => (b) => (c) => (e) => (i) => 
(k) => (a). In the other cases the proof is analogical. 

(a)=>(b): According to the Cauchy criterion ([5], p. 86) it follows from the 

convergence of the series ~? \xk\ that for each e>0 there is a positive integer n0 
/c = l 

such that ~? I**I < e holds for each n>m^n0. If ~? xt, is any subseries of the 
II k = m + 1 || j -1 

series ~~\ xt, then 

2 < N 2 xt,+xiU\ 2 KIN 2 \*4<£ 

<k,^n || \\m<k,<n || | |m</c ;«/i || \\k-m + \ \\ 

holds, i. e. according to the Cauchy criterion the series ~~\ xt, is convergent. Hence it 

follows from the Orlicz criterion of the unconditional convergence ([5], p. 86) that 

the series ~~\ xt is unconditionally convergent. Analogically we can verify that the 
it=i 

series ~~] x~ is unconditionally convergent. 
k=i 

The implication (b) => (c) follows immediately from the mentioned Orlicz 
criterion and from the fact x = x+ - x~. The implications (c) => (e) => (i) => (k) => 
(a) are obvious. 

Theorem 2. Lef E be a Banach lattice and let sets B and C have the introduced 
meaning. Then the following statements are equivalent: 

(i) ~:\xn \eC if and only if lxn e B ; 
(ii) ~Zxn e B implies I,x+ e C; 

(iii) .Sx„ e B implies ~Zx~eC. 
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Proof. We prove the equivalence of statements (i) and (ii): 2JC„ e B according 
to (i) implies Z|JC„ | e C, and 2|JC„ | e C according to Theorem 1 (i) implies Xx^eC. 
(ii) ---> (i): .2|jc„ | e C with respect to Theorem 1 (c) implies 2JC„ e B. If .£*„ e B, then 
according to (ii) Zxt e C, and Theorem 1 (e) implies 2|JC„| e C. 

The equivalence of the statements (i) and (iii) can be proved analogously. 
Further we shall deal with Banach lattices of finite real functions defined on a set 

T=?- 0 (with usual addition, scalar multiplication and the product ordering). 

Definition. A Banach lattice of real functions is said to be a lattice with 
concentrated norm whenever: 

V 3 V | | x | | ^ £ = > ( 3 j c ( 0 ^ 5 ) , (1) 
e>0 6>0 JC3*O V e T J 

V 3 v(3x(0S-6)=>||je||2- .7 . (2) 
6>0 r/>0 ***o V e T / 

E x a m p l e 1. The Banach lattice M(T) of all bounded real functions defined on 

the set T+0 with the norm ||jc||=sup {|*(0|} is a lattice with the concentrated 
teT 

norm. 
E x a m p l e 2. The Banach lattice L of all finite real Lebesgue integrable 

functions defined on the interval (0, 1) with the norm | |JC| |= I | JC(0 | dt is not 

a lattice with the concentrated norm. Condition (1) is fulfilled, but condition (2) is 
not fulfilled. 

Theorem 3. Lef E be a Banach lattice of finite real functions (defined on the set 
T£0) with the concentrated norm and let B and C be sets of the introduced 
meaning. Then .2|jc„ | e C if and only if 2JC„ e B. 

Proof. It follows from the above Theorem 2 that it is sufficient to prove that 
.Zjc„eB implies Z J C ^ G C . We shall do it by a contradiction. Let _£*«£ C. Then, 
according to the Cauchy criterion, there exists e > 0 such that for each positive 
integer number n0 there are m and m0(m > m0^n0) such that ||jcmo+i + ... + jct,|| ^ 
e. It follows from the property (1) of the concentrated norm that there are 6 > 0 
and te Tsuch that JCmO+i(0+ ••• +xm(t)^d. Let nk be indices for which J C ^ ( 0 > 0 -

Then J C " ( 0 = 0 . Obviously 6 ^ 2 xUt) = 2 (*«*(0 - x~k(t)) 
mo<nk^nt mo<nk^m 

2 *«*(0 = I 2 Xnk(t)\. It follows from the property (2) of the 
mo<n*»<m mo<nn$m | 

concentrated norm and from the fact |y (0 l = lyl(0 that there exists r\ > 0 such that 

= 2 Xn4- Hence there is a subseries 2jc„k of the series 2JC„ 
|| mo<nk*Zm || 
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which is not convergent. Consequently, it follows from the Orlicz criterion that 
2JC„ & B — a contradiction. 

Theorem 4. Let E be any finite dimensional Banach lattice and let B and C have 
the introduced meaning. Then 2 \xn | e C if and only if 2JC„ e B. 

Proof. It is well known that each normed lattice is Archimedean (see e.g. [6], 
p. 129). It is also known that if a vector lattice of a finite dimension n (n ^ 1) is 
Archimedean, then it is isomorphic to the vector lattice En of all n -tuples of real 
numbers with the product order (see [2], p. 229; [6], p. 89). 

Hence it is sufficient to verify the staterhent of Theorem 4 for En. En is a lattice 
of finite real functions on T = { l , . . . , n } . We show that it has the concentrated 
norm. Let Ui = (eu 0, ..., 0), ..., un = (0, ..., 0, en) be a base for En. Without loss 
of generality we can assume u^o, ..., un^o and ||wi|| = ... = ||w„|| = 1. Let e > 0 

n 

and jc = ^ § I u , ^ o . From facts that jc+ = ^.f .u . where 1= {i: £ . ^ 0 } , and J C ^ O if 
i = 1 iel 

and only if JC = JC+, it follows § ^ 0 for each i = l,2, ..., n. 
n n 

The property (1) of the concentrated norm: If e^| | jc | | ^ ^ IISM'II = 2 £«> t^ i e n 

there exists r, l ^ r ^ n , such that e/n^I~r. Indeed, in the opposite case we have 

e^^%i<n(£/n) = e — a contradiction. Hence it is sufficient to put d = £/n. If 

6 > 0 , X = ^M^O and § r^<5>0 ( l ^ r ^ r z ) , then S ^ £ = ||£ii r | | ^ I S £«J = 
i=\ | | , - i || 

||JC||. Hence for r) = 6 we can verify that the property (2) of the concentrated norm 
is fulfilled. 

In the following we use notions of M and L spaces, of the unit and of the 
spectrum of an M space with unit, according to the monograph [2]. 

Lemma 1. Each M space with unit is metrically, algebraically and lattice 
isomorphic to the space of all continuous real valued functions on its spectrum 

Twith the norm ||JC|| =sup {|jc(t)|} ([2], p. 242; [6], p . 202). 
teT 

Theorem 5. Let E be an M space with unit and let sets B and C have the 
introduced meaning. Then 5l\xn\eC if and only if 2jcn eB. 

Proof. The statement of Theorem 5 is an immediate consequence of Lemma 1, 

of the fact that the norm ||JC|| =sup {|jc(f)|} is concentrated, and of Theorem 3. 
teT 

Theorem 6. Let E be an infinite dimensional L space. Then there exists an 
unconditionally convergent series 2JC„ in E such that the series 2|JC„| is not 
convergent. 
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Proof. It is easy to verify that the characteristic property of L spaces is 
equivalent to the condition: If Xi^o, ..., xk^o, then ||JC, +...+.v*|| = 
||JCI|| + . . . + ||jCk|| (k — a positive integer number, k^2). In every infinite 
dimensional Banach space there exists an unconditionally convergent series I.xn 

which is not absolutely convergent (see [1]). If p is a positive integer number, 
then it follows that ||jcm+i|| + ... + ||jcm+p|| = || |jcm+,| || + ... + || |jcm+p| || = 
|| |jCm+i| + . . . + |jcm+p|||. The Cauchy condition for the divergent series 2| |JC„|| is 
not fulfilled, hence according to the last equality, it is not fulfilled for the series 
2|JC„|, i.e. -£|JC„| is not convergent. 

Corollary 1. The Banach lattice Ei is the only Banach lattice which is either an 
M space with unit and an L space. 

Proof. The Banach lattice Ei is obviously either an M space with unit and an L 
space. Suppose indirectly that there is a Banach lattice E, which is not isomorphic 
to Ei, such that it is either an M space with unit and an L space. If E is infinite 
dimensional, then according to Theorem 5 2 |JC„| e C if and only if 2JC„ e B, and 
according to Theorem 6 there exists 2JC„ e B such that 2 |JC„ | £ C — a contradiction. 
Hence E is necessary finite dimensional. 

Let E be an n-dimensional Banach lattice. Hence it is sufficient to investigate 
En, n^2. It follows from the assumptions of Corollary 1 and from the identity 
x + y = xvy + xAy that ||*|| + ||y|| = ||x + y|| = | |*vy | | + | |*Ay|| = | |x | |v | |y | | 
+ \\XAy\\ (x^o, y^o). Put JC = (£I , 0, 0, ..., 0), y = (0, e2, 0, ..., 0) and choose 
numbers d > 0 and e2>0 such that ||JC|| = ||y|| = 1. Then it follows from the last 
equality that 2 = 1 + ||(0, 0, ..., 0)||, i.e. 2 = 1 — a contradiction. 

In the following we shall deal with the set of series S. To the introduced subsets 
of S, JB and C, we add the set A of all absolutely convergent series in E, i.e. 
A = {2jc„eS: 2| |JC„|| < + oo}. It is known that AczBcC ([5], p. 88). In Banach 
lattices it is possible to introduce the next kind of convergence, the convergence in 

the absolute value, in the following way: The series 2 JC„ converges in the absolute 
n = l 

value if the series 2 l*« I converges. Let A* stand for the set of all series which are 
-.=1 

convergent in the absolute value, i.e. A* = {2JC„ e S: 2 |JC„| e C}. 

Theorem 7. Let E be a Banach lattice and let A, A* and B have the introduced 
meaning. Then 

(i) AczA*czB, 
(ii) if E is either a finite dimensional Banach lattice or an M space with unit, then 

A* = B, 
(iii) if E is an L space, then A* = A. 
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Proof, (i): Let p be a natural number. The inclusion A cz A* follows from the 
Cauchy criterion and from the relations || |JCW+I| + ... + |jcm+p| || ^ |||jCm+i||| + ... 
+ |||*m+P||| = ||*m+i|| + ••• + ||JCm+p||. The inclusion A * c B is a consequence of 
Theorem 1, (a) --> (c). 

(ii): A proof of this statement is given in Theorem 4 and Theorem 5. 
(iii): In the proof of Theorem 6 it is shown that the equality ||xm+i|| + ... 

+ ||-X"m+„|| = |||xm+i| + ... + |jcm+p| || holds for each L space. Hence it follows 
from the Cauchy criterion that 2 |JC„| e C if and only if 2 ||x„|| < + °°. 

The set of all the series S of a Banach lattice E can be investigated as a metric 

space (S, g), where C?(ZJC„, 2y„) = ]£ 2 " min {| |JC„-y„||, 1}. It is known that the 
M = l 

metric space (S, g) is a locally convex linear topological space. The sequence of the 
series {I,xn

r)}7=i converges to the series SJC„ if and only if ||x(„r)-;t„||—»0 for each 
n = l,2, ... ([5], p. 100, ex. 16). 

Lemma 2. The metric space (S, g) is complete. 
Proof. Let {1x(

n
r)}T=i be a Cauchy sequence of series. We show that for each 

m = 1, 2, ,.., {xm}}r i is a Cauchy sequence. Let m be a natural number and let e be 
a positive number, £ < 1 . There exists a natural number r0 such that g(I.xn

r\ 2jciv)) 
< e/2m holds for all natural numbers r and s, r0^r<s. Then 
2~m min {Hx^-jc^H, 1} < e/2m and | | JC (^-JC (^| | < e . Hence { J C ^ J ^ I is a Caucshy 

sequence and there exists a limit lim jc(„r) = jcm in the Banach lattice E. It follows 

from the above characterization of the convergence with respect to the metric g 

that limZjc(„r) = Zjc„. 

Further we shall deal with the sets A, A*, B and C from a topological point of 
view. 

Theorem 8. The sets A, A*, B and C and their complements in S are dense sets 
in S. 

Proof. With respect to the inclusions A c A * c : B c : C it is sufficient to prove 
that the sets A and S — C are dense. 

It is easy to verify that the set Ki of all the series 2JC„ with the property that JC„ =/= o 
holds only for a finite number of indices is a dense set in S. Indeed if K(Zyn, d) is 
an open sphere with the center 2y„ and the radius <5>0, then it is sufficient to 

choose m such that 2 2"n = 2"m<<5 and put jc„ = y„ for n = l,2, ..., m and 
n = m + l 

JC„ = o for n = m + 1, m + 2, ...,. Obviously 2JC„ eK inK( .2y„, 6) and KiczA. 
Let K2 be the set of all the series 2JC„ for which JC„ = JC^O holds with the 

exception of a finite number of indices. With respect to the Cauchy criterion no 
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series in K2 is convergent, hence K2<zS-C. Analogously to the first part of the 
proof it can be shown that K2 is dense in S. 

Theorem 9. The sets A, A* and C are Fa6 sets in S. 
Proof. We prove the statement of Theorem 9 for the set C. First we show that 

the function qpm„: S—>Ei(q9m„(2x„) = ||jtm+i + ... + x„||) defined for every pair of 
natural numbers m and n (m<n) is continuous. We show that for each positive e, 
e < l , and I,xn eS there is <5>0 such that |(pm„(2y„)- (pm„(2jc„)|<£ holds for each 
series Zy„ e K(2x„, 6). It is sufficient to put 6 = e/(n-m)2n. Then for each 
k = l , 2 , ... we have 2~k min {\\yk - Jtk||, 1} < el(n — m)2n and for each k = 
1,2, ..., n ||y*-*fc|j <el(n-m). Hence |(pm„(2y„) - <pm„(Zjt„)| 
= I H y m + 1 + ...+ynll " | | j C m + l + . . . + J C „ | | | ^ | | y m + l - X m + l | | + ... + | | V„ " JC„ | | < E. 

The set C can be expressed by using the Cauchy criterion in the following form 
(/?, q, m and n are natural numbers): 

C = fzjt„: V 3 V V ||jcm+i + ... + x„||^l/p} = 
I p5=l qSsl m~£q „5c m + l J 

= n u n n cPqmn, (3) 
p = l q = l m = q n = m + l 

where Cpqmn= {2x„: ||xm+i + ... + x „ | | ^ l / > } = cpmn((- oo, 1/p)). The set Cpqmn is 
closed because the function q>mn is continuous. The fact that the set C is an Fa6 set in 
S is an easy consequence of the equality (3). 

The statement of Theorem 9 for the set A (A*) can be proved analogously. This 
follows from the continuity of functions i/;m„(.£jc„) = | |*m + i | | + ... 
+ ||*„||(rm„(.£*„) = | | |x m + i | + ... + \xn11|) which are defined for every pair of 
natural numbers m and n, m<n, and from the expression 

A = n u n n {2x.:i|JC.,+1|i+...+ii.t1.ii«i/p} 
p = l q = l m = q n = m + l 

( A * = n u n n {z*..num+,i + ... + w n «i/P}) 
\ p = l q = l m = q n = m + l / __ 

Theorem 10. The sets A, A*, B and C are of the first category in S. 
Proof. Since each of the sets A, A* and B is contained in C it is sufficient to 

prove Theorem 10 for the set C. If for each p = l , 2 , ... we put CP = {2JC„: 

3 V V ||;tm+i + ... + *„|| ^ \/p) (q, m and n are natural numbers), then 
qk*l m>q ni»m + l 

C = n C P and CP = U n (I Cpqmn, (4) 

p = l <j = l m = q n = m + l 

where Cpqmn are sets introduced in the proof of Theorem 9. 
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It follows from (4) that the set Cp is an Fa set for each p = 1, 2, For the set K2 

introduced in the proof of Theorem 8 there holds K2czS — Cp. Indeed, for each 
series 2JC„ e K2 and for each natural number q there exist m ^ q and n > m such 
that | |xm +i + ... + *„ | | = (n — m ) | | x | | > l / p . Hence the complement of the set Cp is 
dense. Each Fa set, the complement of which is dense, is a set of the first category 
and from (4) it follows that C is also of the first category. 

Corollary 2. Each of the sets S-A, S- A *, S-B and S - C is residual of the 
second category in S. 

Problem 1. Theorem 3, Theorem 4 and Theorem 5 give only sufficient condi­
tions for the Banach lattice to have the property (P): Sx., e B if and only if 
2 |JC„| e C. The problem to characterize Banach lattices (normed lattices) with the 
property (P) is open. 

Problem 2. The method used in the proof of Theorem 9 is not applicable in 
general for the set B to give its Borel classification in S. It follows from Theorem 7 
(ii) and from Theorem 9 that if E is either a finite dimensional Banach lattice or an 
M space with unit, then B is an Fao set in S. Is the set B an Fa& set in S for every 
Banach lattice E ? 
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О БЕЗУСЛОВНОЙ СХОДИМОСТИ РЯДОВ В СТРУКТУРАХ БАНАХА 

Ра\е\ Ко81угко 

Резюме 

В работе определены достаточные условия на структуру Банаха Е, при которых имеет место 
оо ао 

соотношение: Ряд ^ хп безусловно сходится в Е тогда и только тогда, когда ряд ^ I*" I сходится 
л - 1 п - 1 

в Е (\х\ — модуль элемента д:). 
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