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ABSTRACT. In this paper we investigate the Baire system generated by the
family of all Darboux quasicontinuous, almost everywhere continuous functions,
and prove that every function f of Mauldin’s class a > 1 is the limit of a sequence
of Darboux functions f,, of Mauldin’s class a,, < a, n =1,2,....

Let us establish some terminology to be used later.

A function f: R — R is said to be quasicontinuous at a point = € R if for
all open neighbourhoods U of z and V of f(z) there exists a nonempty open
set W cUN fF~YV), ([5]).

Denote by Q the family of all quasicontinuous functions f: R — R, by A the
family of all almost everywhere continuous functions f: R — R (with respect to
the Lebesgue measure) and by D the family of all Darboux functions f: R — R.

Given a fixed countable ordinal number o > 0 and fixed family K of functions
f:R > R we put

BO (’C) = ,C)
B,(K) = { f:R—>R: f is the limit of the sequence of functions

B;(K), n=1,2,...p.
fn€ U By, }

Let P denote the family of all functions f: R — R such that the set C(f)
of its continuity points is dense.
In [3] it is proved that
B,(DNQ)="P.

AMS Subject Classification (1991): Primary 26A15, 26A21.
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In [6) Mauldin proved that for every countable ordinal number a > 0,

B, (A) = M

a)?
where f € M_ if and only if there exists a function g: R — R of Baire class «

and an F, set A of measure zero such that {:r eER: f(z)#g(x } CA.
In thls paper I prove that B, (DNQNA)=M; NP,

B (M;NPND)=M, and B (DN U M,) =M
B<La

o
THEOREM 1. The following equality is true:

Bi(DNANA)=M,NP.

Proof. Since B,(PNQ) =P and B,(A) = M, we have B,(DNQNA)C
M, NP.

Let f € M, NP. There exist a function g: R — R of Baire class 1 and an
F_ set B of measure zero such that {z € R: h(z) # g(z)} C B.

Put h = f — g. Evidently h € M; NP and

{reR: h(z) #£0} C B.

Let
F,={z€eR: osch(z)>27"}, n=12.... (1)

Since all sets BNF, and BN (F,\F,_;), n=1,2,... are F_ sets of measure
zero, we can write

BNF, =UF,,

2
BnN(F\F, ,)=UF,, for n=23,..., @)

where all sets F, . are closed and pairwise disjoint, n,m =1,2,... (8-

For a fixed k > 1 there are pairwise disjoint closed intervals Ik'n’m‘j =

[k m.j? Ok, j] (n+m<k+1, F, , #0and j=1,2,...), contained in
R\ F,\ U F, ., such that:
n+m<k+1

@) ifz €y, .m Such that |z —y| <1/k;

(4) for each z € F,, . and for each r > 0 there are indices j,, j, such that
I C(a:aH—r)andI C(z—r2x);

k,n,m,j1 k,n,m,ja2

(5) if there is the limit lim z, =z, where z; € I} , .. .y (7(;) > j(iy) for

1— 00

iy > i) thenz € F, .

there is a point y € F),
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For each interval I , ., . (n+m < k+1, j = 1,2,...) there is a function

h Ik,n,m,j — R such that:

(6) hk,n,m,j(ak,n,m,j) = hk,n,m,j(bk,n,m,j) = O;

(7) hk,l,m,j(Ik,l,m,j) =R;

(8) hk,n,m,j(Ik,n,m,j) = [-27"*2277+2] for n > 1;

(9) Ay is continuous on the interval (ay; ., )0y, ;] andforn>1a
function hk’n,m’ j is continuous on the interval [

Let hj: R — R be the function defined by

kynym,j

%mwr%%wﬂ'

Ry nm j(®) for z €I
hy(z) = ¢ h(z) for z € F

n,m?

n,m,j’

0 otherwise

ifn+m<k+1and j=12,....
From (9), (6) and (5) it follows that h, is continuous at all points of the set

G=R\ U F)\ U Wagim?
n+m<k+1 m<k j
Since R\ G is of measure zero, h, is almost everywhere continuous.

By (1), (2), (4), (7), (8) and (9), h;, is quasicontinuous and has the Darboux
property.

The function g is the limit of a sequence of continuous functions g,, k =
1,2,....Let f, =g, +h, for k=1,2,....

The function f, is quasicontinuous as the sum of the quasicontinuous function
h, and the continuous function g, ([4]). The same f, is almost everywhere
continuous and continuous at each point of the set G.

Now we shall prove that every f, (kK =1,2,...) has the Darboux property.
Assume the contrary that f, does not have the Darboux property. There are real

numbers a, b, ¢ such that a < b, ¢ E(min(fk(a),fk(b)), max(fk(a),fk(b)))

and c ¢ f,((a,b)).
For definiteness assume that f,(a) < f,(b). Let

d=inf{z € (a,b]: fi(z) > c}-

Since g, is continuous and f, = g, + h, is not continuous at the point d, hy, is
not continuous at d. Consequently, d € R\ G.
If f.(d) < ¢ and there are indices n, m, j such that m < k and d = ay;

then we may observe that the restricted function hk| Iiimi has the Darboux

property and it is of Baire class 1. Consequently, fk| L has the Darboux

1} )mh’
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property as the sum of continuous function g, I Liim. and the Darboux function

thIk L ; Which is of Baire class 1 ([1]). If f,(d) < c and d = inf{z € (a,b]:

y1,M,J

fi(z) > c} then there is a point z € (a,b) such that f(2) = c. This contradicts
the relation ¢ ¢ f, ((a,b)).

If f,(d) < c and there is an index m < k such that d € F, ,, then, by (4),
there is an interval I, ,, ; C (a,b). Since the restriction function f| Lyt

has the Darboux property, we have, by (7), f.((a,b)) = felIg1,m,;) =R and
¢ € f.((a,b)). This contradicts the relation ¢ ¢ f,((a,d)).

If f,(d) < ¢ and there are indices n, m such that n > 1, n+m <k+1 and
de€F,,,then |k (d)] < 27"+, Since f,(d) = h(d) + g,(d) < ¢, it follows
from the continuity of g, at the point d and from (5) that there is an interval
I =[d,e] with e € (a,b) \ U, ,; such that:

j

(10) |g(z) — g(d)] < 27+

(11) h(d) + g(z) <c
for every = € (d,e).

From the definition of d there is a point u € (d,e) such that f,(u) > c.

If there is an interval I, , . - with u € I , .. . then from (8) and (11) there
isa point w € Iy , 1, ; such that

fr(w) = gy (w) + hy(w) < g (w) + hy(d) < c.

Since f| has the Darboux property,
k Ik,n,m,j

cE fk(Ik,n,m,j) C fk((aa b)))

which contradicts the relation ¢ ¢ f;((a,b)).
Ifug¢ Ul,n,, then hy(u) =0o0r u € F, . Let I, . . C I. Since
j b b k2 ) b b b

|hy, (u)| < 277+1, it follows from (8) and (10) that there is a point v € I}
such that:

n,m,j

fr(v) = hy(v) + 9, (v) = 272 4 9 (v)
> 2—n+2 + gk(u) _ 2—n+1 — 2—'n+1 + gk(u)
> hy(u) + g (u) > c.
As above, it follows from (11) that there is a point w € I , . . such that
f(w) < ¢ and c € f,((a,b)), which contradicts the relation c ¢ f, ((a,b)).

Similarly, we may consider the case, where f,(d) > c.
So every function f, (k=1,2,...) has the Darboux property.
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Since fy =g, +h,, f=9+hand g= klim g it is sufficient for the proof
—00
of the equality f = lim f, to prove that A = lim h.
k—oo k—o00
If z€F, . then hy(z) = h(z) for k> n+m and h(z) = klim hi ().
! —00
Suppose that h is continuous at z. For fixed € > 0 there is an index k; > 1
such that 27%0+2 < ¢. Since z ¢ F}_, there is a positive number r such that
(z—rz+r)NnF, =0.
Let ky, > ky be an index such that 1/k, < r. From (3), (8) and from the defi-
nition of h, it follows, that for k > k,, |h,(z)| < 27F*2 < €. So kli)m h(z) =
o0
0= h(z).

Now, let = € F,, \ B, for some index n. Since F, C Fy and every [ , ., . C
R\ F, C R\ F, for k > n, it follows from (2) and from the definition of h; that
hi(z) =0 = h(z) for £k > n. So klim hi(z) = h(z). This completes the proof.

—
* O
THEOREM 2. The following equality is true:

M, = B,(M,nPND).

Proof. Since M, =B, (M;), My D B, (M, NPND).

Now, let f € M,. There exist a function g of Baire class 2 and an F_ set
B of measure zero such that:

{reR: f(z)#g(z)}CB.

o0
We can write B = |J B,,, where all the sets B, are closed and B, C B, ,, for
n=1
n=12,....
The function g is the limit of a sequence of functions g, of Baire class 1.
For k=1,2,... let
g,(z) for z e R\ B,
hy(z) = { y
f(z) for xz€B,.

Evidently, every function h, (k=1,2,...) is pointwise discontinuous. For k =
1,2,... there is ([2]) an almost everywhere continuous function ¢, : R — R of
Baire class 1 such that:

e {zeR: t,(x)#0} is F, set of measure zero;

e {zeR: t,(z)#0}NB=0;

e{z€R: t,(@) £0}n{z € R: t, () #0} = 0if b #k,

(ki ky=1,2,...);
o hy+t,€PND.
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Let f, =h,+t,, k=1,2,.... Since

{:L'EIR: fe(@) # gy (@)} c{z e R: t,(z) #0} UB,,

we have f € M. So f e M,NDNP for k=1,2,....
If x € B then there is an index n such that z € B, for k > n and conse-
quently, f,(z) = f(z) for £ >n. So klirn fi(x) = f(z).
—» 00
If z ¢ B then h (z) = g,(x) for k= 1,2,.... Since klim 9,(z) = g(z) and

lim ¢, (z) = 0, we have

k—o00
Jim fi(z) = lim g, () = g(z) = f(2).
This completes the proof. a

From Theorems 1 and 2 there follows:

COROLLARY 1. For denumerable ordinal numbers o > 1 the following equality
1s true:

B, (A)=B,(ANAND).
THEOREM 3. For every denumerable ordinal number o > 0 the following
equality is true:

B,(Pn U M,) =M

B<a

a’

Proof. For a = 2 this theorem follows from Theorem 2. For o = 1 the
proof is the same as the proof of Theorem 2, where the g, are continuous and
consequently h, € A. (Instead of [2] we need [7].)

Assume that a > 2. The inclusion

Bl(Dn U Mﬂ) CM,
B<La
is obvious. If f € M then there exist a function g of Baire class o and an F,
set B of measure zero such that

{zeR: f(z)#g(z)} CB.

The function g is the limit of the sequence of functions g, of Baire class £, ,

o0
where 8, <a (n=1,2,...) and B = |J B, where B, C B, , and all the
n=1
sets B, are closed (n=1,2,...).
Let C, ,, CR\ B (n,m =1,2,...) be a family of pairwise disjoint perfect
sets of measure zero such that for every open interval I and for every n =
1,2,... there is m such that C,  C I.Forall n,m = 1,2,... let h, ,:

C, ., = [=m,m] be a continuous function.
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For k=1,2,... let us put

hpm(z) ifz€Cy ., m=12,...,
i) =< f(z) if z € B,
9, () otherwise.

Obviously, f, has the Darboux property. Since
{zeR: fi(z)#g(x)} CB,UUC,

and the set B, UUJCy ,, is an F_ set of measure zero, the function fr € Mg,
m

where g, < a.
The equality f(z) = klim fx(z) for every z € R, is obvious. a
— 00

PROBLEM 1. Is it true the following equality

MNP =B,( UMznQND) for a>17

B<la
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