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ON MAULDIN'S C L A S S I F I C A T I O N 

OF REAL FUNCTIONS 

EWA STROŇSKA 

(Communicated by Lubica Hold ) 

ABSTRACT. In this paper we investigate the Baire system generated by the 
family of all Darboux quasicontinuous, almost everywhere continuous functions, 
and prove t h a t every function / of Mauldin's class a > 1 is the limit of a sequence 
of Darboux functions fn of Mauldin's class a n < a , n = l , 2 , . . . . 

Let us establish some terminology to be used later. 
A function / : R -> R is said to be quasicontinuous at a point x G R if for 

all open neighbourhoods U of x and V of f(x) there exists a nonempty open 
set W cUnf-\V), ([5]). 

Denote by Q the family of all quasicontinuous functions / : R —> R, by A the 
family of all almost everywhere continuous functions / : R —> R (with respect to 
the Lebesgue measure) and by V the family of all Darboux functions / : R —> R. 

Given a fixed countable ordinal number a > 0 and fixed family K of functions 
/ : R -> R we put 

B0(IC) = IC9 

Ba (/C) -= | / : R —>R: / i s the limit of the sequence of functions 

fne \JB0(1C), n = l ,2 , . . . } . 
(3<a J 

Let V denote the family of all functions / : R -> R such that the set C(f) 
of its continuity points is dense. 

In [3] it is proved that 
B1(VHQ) = V. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 26A15, 26A21. 
K e y w o r d s : continuity, quasicontinuity, Darboux function, Baire system, Mauldin's classifi­
cation. 
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In [6] M a u 1 d i n proved that for every countable ordinal number a > 0, 

Ba{A) = Ma, 

where / G Ma if and only if there exists a function g: R -> R of Baire class a 
and an FfJ set A of measure zero such that { x G l : f(x) =-- g(x)} C A. 

In this paper I prove that BX(V n Qn A) = MxnV, 

Bx(MxnVnV) = M2 and Bxhn {JM0)=Ma. 
V (3<oc J 

THEOREM 1. The following equality is true: 

Bx(VnQnA) = MxnV. 

P r o o f . Since Bx(VnQ) =V and BX(A) = Mx we have Bx(VnQnA) C 

Mxnv. 
Let f £ MxnV. There exist a function g: R —> R of Baire class 1 and an 

Fa set B of measure zero such that {x G R : /i(x) 7= g(x)} C 5 . 
Put h = f - g. Evidently h G Mx D P and 

{x G R : /i(x) 7^0} C B . 

Let 
Fn = {xeR: osc/i(x) > 2 " n } , n = l , 2 , . . . . (1) 

Since all sets BnFx and B n (Fn \ Fn_x), n = 1,2, . . . are F a sets of measure 
zero, we can write 

(2) 
- J n ( F B \ f B _ 1 ) = U-- l lTO for n = 2 , 3 , . . . , 

771 

where all sets Fn m are closed and pairwise disjoint, n, m = 1, 2 , . . . ([8]). 

For a fixed k > 1 there are pairwise disjoint closed intervals IkjTl}rnj = 

k , n , m , j A , n , m J (n + m < k + 1, F n m ^ 0 and j = 1 ,2 , . . . ) , contained in 

K\Fn\ IJ - ^ SUGh t h a t * 
n-\-m_k-\-1 

(3) if x G Ik,n,m,j t n e r e i s a P o i n t 2/ ~- F n > m
 s u c n t r i a t |x - y\ < 1/fc; 

(4) for each x G Fn m and for each r > 0 there are indices j x , j 2 such that 
Jfc,n.m.ji c fax + r) and I M i m j i 2 C ( x - r , x ) ; 

(5) if there is the limit lim x{ = x , where ^{^ Iknm 7(^ ( j ( h ) > -K^) f o r 

2—>00 ' ' ' ^ I 

it>i2) then a: €•",_„, . 

288 



ON MAULDIN'S CLASSIFICATION OF REAL FUNCTIONS 

For each interval Ik^mj (n + m < fc + 1, j = 1,2,...) there is a function 
hi, „ ™ „•: h „ m „• -> R such that : 

Ac,n,m,j / c ,n ,m, j 

W hknmj(aknjnj) = hknmj(bknmj) = 0; 
(7) hktltmJ(IktltmJ) = R; 

(8) hktntmJ(IktntmJ) = [ -2-+ 2 ,2"«+ 2] for n > 1; 

(9) t^ x . is continuous on the interval (aklmj, bklmj] and for n > 1 a 

function hk^mJ is continuous on the interval K> n ) m JA,n,m, j] • 
Let hk: R -> R be the function defined by 

| hk,n,mj(X) for ^ ^ 4 , n , m , j 5 

K(x)= I h(x) for x G F n m , 
[ 0 otherwise 

ifn + ra<fc + l and j = 1,2, — . 
From (9), (6) and (5) it follows that hk is continuous at all points of the set 

G=(R\ U d \ U U K M i } ' 
V n+m<k+l 7 m<k j 

Since R \ G is of measure zero, hk is almost everywhere continuous. 
By (1), (2), (4), (7), (8) and (9), hk is quasicontinuous and has the Darboux 

property. 
The function g is the limit of a sequence of continuous functions gk, k = 

1,2,.... Let fk = gk + hk for fc = l , 2 , . . . . 
The function fk is quasicontinuous as the sum of the quasicontinuous function 

hk and the continuous function gk ([4]). The same fk is almost everywhere 
continuous and continuous at each point of the set G. 

Now we shall prove that every fk (fc = 1,2,... ) has the Darboux property. 
Assume the contrary that fk does not have the Darboux property. There are real 

numbers a, b, c such that a < 6, c el min(/A.(a), fk(b)), max(/A;(a), fk(b))j 

and c ^ fk((a,b)). 
For definiteness assume that fk(a) < fk(b). Let 

d = inf {x e (a, b] : fk(x) > c} . 

Since gfc is continuous and fk= gk + hk is not continuous at the point d, hk is 
not continuous at d. Consequently, d G R \ G. 

If fk(d) < c and there are indices n, ra, j such that ra < fc and d = aklmj 

then we may observe that the restricted function hk\j . has the Darboux 
/c,l , m , j 

property and it is of Baire class 1. Consequently, fk\lki m • ^ a s *^e Darboux 

289 



EWA STRONSKA 

property as the sum of continuous function gk II . and the Darboux function 

/iJ r which is of Baire class 1 ([1]). If fk(d) < c and d = inf{x G (a, 6] : 
AC,l,77l,j 

/fc(x) > c} then there is a point z G (a, 6) such that fk(z) = c. This contradicts 
the relation c£ fk ((a, 6)). 

If /^(d) < c and there is an index m < k such that d e Flm then, by (4), 
there is an interval Iklmi C (a,6). Since the restriction function fk\j 

' ' ' AC, 1 , 7 7 1 , J 

has the Darboux property, we have, by (7), fk((a,b)) = fk(IkAjTnj) = K and 
c G /fc((a, 6)) • This contradicts the relation c £ /^((o, 6)). 

If /^(d) < c and there are indices n, m such that n > l , n + m < H l and 
d G F n j m , then \hk(d)\ < 2 " n + 1 . Since fk(d) = hk(d) + gk(d) < c, it follows 
from the continuity of gk at the point d and from (5) that there is an interval 
/ = [d, e] with e G (a, 6) \ (J ^ , w - such that: 

(10) l g , ( x ) - g , ( d ) | < 2 - ^ 1 ; 
(11) ^ ( d ) + ^ ( x ) < c 

for every x G (d, e). 
From the definition of d there is a point u G (d, e) such that fk(u) > c. 
If there is an interval Ikinimj with u G -ffe,n>mj then from (8) and (11) there 

is a point w G Ik,n,mj s u c ^ ^ a t 

A H = ffjfefa) + M™) < 9k(w) + K(d) < c-

Since fk\j has the Darboux property, 
k,n,m,j 

c € / f c ( / M t m i i ) C / f c ( ( a , 6 ) ) , 

which contradicts the relation c ̂  /fc((a, b)). 
If u £ UA.n.mj t h e n M " ) = 0 or ^ G F n m . Let 4 n m j . C / . Since 

3 

\hk(u)\ < 2~ n + 1 , it follows from (8) and (10) that there is a point v G Iktntmj 
such that: 

/*(«) = h(v) + gk(v) = 2"" + 2 + gk(v) 

> 2""+2 + gk(u) - 2~ n + 1 = 2 - n + 1 + gk(u) 

>h(u) + gk(u)>c. 

As above, it follows from (11) that there is a point w G Ifcnmj-
 s u c n that 

fk(w) < c and c € / f e ((a, b)), which contradicts the relation c $ /fe ((a, 6)). 
Similarly, we may consider the case, where fk(d) > c. 
So every function fk (k = 1,2,...) has the Darboux property. 
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Since fk = gk + hk, f = g + h and g = lim gk, it is sufficient for the proof 
fc->oo 

of the equality / = lim / . to prove that h = lim hk. 
k-»oo k->oo 

If x e Fnm then hk(x) = h(x) for k>n + m and h(x) = lim hk(x). 
Suppose that h is continuous at x. For fixed e > 0 there is an index k0 > 1 

such that 2_/c°+2 < e. Since x ^ Fk , there is a positive number r such that 

(a? - r, x + r) n Fko = 0 . 

Let k2 > k0 be an index such that l/k2 < r. From (3), (8) and from the defi­
nition of hk it follows, that for fc > fc2, |/ifc(a;)| < 2~fco+2 < e. So lim /ifc(x) = 

0 = h(x). 
Now, let x e Fn\B, for some index n. Since Fn C Ffc and every Ik,n,mj c 

R\Ffc C R \ F n for fc > n, it follows from (2) and from the definition of hk that 
hk(x) = 0 = h(x) for fc > n. So lim /ifc(x) = h(x). This completes the proof. 

k—>oo 

• 
THEOREM 2. T/ie following equality is true: 

M2 = B1(MlnVDD). 

P r o o f . Since M2 = B1(M1), M2D B1(M1CiVnV). 
Now, let / e M2. There exist a function g of Baire class 2 and an Fa set 

B of measure zero such that: 

{xeR: f(x)^g(x)}cB. 

oo 
We can write B = (J F?n, where all the sets I?n are closed and Bn C -Bn+1 for 

n = l 

n - 1 , 2 , . . . . 
The function p is the limit of a sequence of functions gn of Baire class 1. 

For k = 1,2,... let 

h ( ) = i 9k{x) f ° r xeR\B> k{X) \f(x) iorxeBk. 

Evidently, every function hk (fc = 1,2,...) is pointwise discontinuous. For fc = 
1,2,... there is ([2]) an almost everywhere continuous function tk: R -> R of 
Baire class 1 such that: 

• {x G R : tk(x) ^ 0} is FG set of measure zero; 
• { x G R : tk(x) ^ O } n B = 0; 
• {x e R : tki(x) ^ 0} n {x e R : tk2(x) ^ 0} = 0 if fcx ^ h 

(fc15 fc2 = 1 , 2 , . . . ) ; 

• hk + tkevnv. 
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Let fk = hk+tk, k = 1,2, Since 

{xeR: fk(x)^gk(x)}c{xeR: tk(x)^0}uBk, 

we have fk G M1. So fk G Mx n V n P for fc = 1,2,. . . . 

If x G B then there is an index n such that x e Bk for k > n and conse­
quently, A(x) = f(x) for k > n . So lim A(x) = f(x). 

k-too 

If x £ B then hk(x) = gfc(x) for A; = 1,2,. . . . Since lim gk(x) = r/(x) and 
k—>oo 

lim t. (x) = 0, we have 
fc->oo 

lim /fc(rr) = lim gk(x) = g(x) = f(x). 
k-»oo k->oo 

This completes the proof. • 

From Theorems 1 and 2 there follows: 

COROLLARY 1. For denumerable ordinal numbers a > 1 the following equality 
is true: 

Ba(A) = Ba(AnQnv). 

THEOREM 3. For every denumerable ordinal number a > 0 the following 
equality is true: 

BJvn {JMp)=Ma. 

P r o o f . For a — 2 this theorem follows from Theorem 2. For a — 1 the 
proof is the same as the proof of Theorem 2, where the gk are continuous and 
consequently hk G A. (Instead of [2] we need [7].) 

Assume that a > 2. The inclusion 

вЛvn \jмß)cмa 
/3<a 

is obvious. If / G Ma then there exist a function g of Baire class a and an F^ 
set B of measure zero such that 

{xeR: f(x)^g(x)}cB. 

The function g is the limit of the sequence of functions gn of Baire class Pn, 
oo 

where /3n < a (n = 1,2,... ) and B = \J Bn where J5n C Bn+1 and all the 
n = i 

sets Bn are closed (n = 1,2,... ). 

Let Cnm C R\B (n, m = 1,2,... ) be a family of pairwise disjoint perfect 
sets of measure zero such that for every open interval / and for every n = 
1,2,... there is m such that Cnm C I. For all n,ra = 1,2,... let hnrn'' 
Cnm^t [—m, m] be a continuous function. 
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For k = 1,2,... let us put 

' hk,m(x) i f x e C f c , m > m = l , 2 , . . . , 

/*(*)= | /(*) if xeBk, 
gk{x) otherwise. 

Obviously, fk has the Darboux property. Since 

{ x € R : fk(x)^gk(x)}cBkU[JCktm 
m 

and the set Bk U IJ Cfc m is an i7^ set of measure zero, the function /* £ ̂ /? fc 
771 

where /3k < a. 
The equality /(x) = lim fk{x) for every x G 1 , is obvious. l 

/e—>oo 

PROBLEM 1. Is it true the following equality 

Manv = Bl( IJ M0nQni>) /or a > 1 ? 
V /3<a ' 
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