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VECTOR DANIELL INTEGRALS

SUSUMU OKADA

Consider a linear map from a Riesz space of functions on a set into a locally
convex space. If it is continuous with respect to the monotone convergence of
sequences, then it is called a vector Daniell integral. Thanks to the Dini theorem,
every vector-valued Radon measure is a vector Daniell integral. Vector-valued
Radon measures have been studied by Bourbaki [3] and Thomas [17].
Kluvanek [8] has investigated Banach space-valued Daniell integrals, adapting
the method of F. Riesz from [15]. There has been an increasing interest recently in
the theory of measures on non-locally compact spaces, and of Daniell integrals such
as conical measures which are not generated by measures (set functions). Here we
present a theory of Daniell integrals on abstract sets with values in locally convex
spaces.

In §1, we define a few variants of the Daniell integral and explore the
relationships between them.

Among the essential themes which have to be developed in an integration theory
are the Beppo Levi theorem, the Lebesgue convergence theorem and the com-
pleteness of the L,-space. To have the Beppo Levi theorem, we extend the domain
of a Daniell integral, applying the procedure of Stone [16] which has already been
used in special cases by Bauer [2], Bourbaki [3], Kluvanek [9], Thomas [17]
and others. The extension so obtained is called the Stone extension of the given
Daniell integral. Its properties are studied in § 2 and §4. The Beppo Levi theorem
is proved in §3.

To obtain the Lebesgue convergence theorem, we require an extra condition on
a Daniell integral, namely that it maps order intervals into weakly compact sets.
The details are discussed in § 5. This condition has been studied by Kluvanek [8]
in the case of Banach space-valued Daniell integrals. Many authors have investi-
gated linear maps from an abstract Riesz space into a Banach space which satisfy
this condition. Thomas [17] has developed locally convex spacevalued Radon
measures with this condition.

The L,-space obtained from the Stone extension is not always quasi-complete
with respect to the convergence in mean. In § 8, we therefore construct another
extension guaranteeing quasi-completeness. We deal there with Daniell integrals
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which satisfy the well-known min (f, 1)-condition of Stone and for which the
Lebesgue convergence theorem is valid.

In §6 we study the direct sum of Daniell integrals.

The relationship between Daniell integrals and vector measures is discussed in

§7.

1. Daniell integral and Stone integral

Let € be a set. A subset of Q and its characteristic function will be denoted by
the same symbol.

Let X be a real quasi-complete locally convex Hausdorff space and X' its dual.
Let P(X) be the set of all continuous seminorms on X.

The set R? of all real-valued functions on  is a Riesz space (vector lattice) with
respect to the pointwise order. Let L be a Riesz subspace of R” and L* its positive
cone, thatis, L"={feL: f=0}. Let I: L— X be a linear map. For every p € P(X)
and every feL let

p(D(f)=sup {p(I(9)): g L. |g|<If]}.
In particular, if X=R, then

[11(f)=sup {|I(9)|: g €L, |g|<|f]}
whenever fe L. Clearly, for every p € P(X) and every fe L, the equality

p(D(f)=sup {|x'oI|(f): x" e U}} (1

holds, where Uj, is the set of all functionals x’ € X’ such that |[(x’, x)|< p(x) for
‘each x € X.

A linear map I: L — X is called a Daniell integral if the sequence {I(f,)}.en is
convergent to 0 in X for every sequence {f.}..~ of functions in L which is
decreasing and pointwise convergent to 0.

A linear map I: L — X is said to be a weak Daniell integral if, for every x’ € X',
the functional x'oI: L— R is a real-valued Daniell integral.

A linear map I: L— X is called a Stone integral if the following conditions are
satisfied : :

(i) If peP(X) and feL, then p(D(f)<;

(ii) If pe P(X) and if felL and f.eL, n €N, are functions such that

HEIAL e

then i
p(D(N< X P(D(L)- ©)
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Proposition 1.1. Every Daniell integral is a weak Daniell integral.

Lemma 1.2. A linear map I: L— X is a Stone integral if and only if x' o1 is a real
Stone integral for every x' € X'.
Proof. This follows from the equality (1).

Lemma 1.3 ([14: no. 11]). If I: L— R is a Daniell integral, then there exist two
non-negative Daniell integrals I" and I : L—R such that I(f)=1"(f)—1 (f) for
every felL and |I|(g)=1"(g)+1 (g) for every geL".

Lemma 1.4. If I: LR is a linear map, then I is a Stone integral if and only if
I is a Daniell integral.

Proof. Suppose that I is a Stone integral. Let us take any sequence {f. }nenin L
which is decreasing and pointwise convergent to 0. Then, since 0<f,<

i (fa = fa+1), we have
I|(F<ITI(f)) = lim [T|(f)<|TI(F).

Thus |I|(f,)—0 as n— . That is, I is a Daniell integral.

On the other hand, by Lemma 1.3, if I is a Daniell integral, then I is a Stone
integral.

From Lemmas 1.2 and 1.4 we have

Proposition 1.5. If I: L— X is a linear map, then I is a weak Daniell integral if
and only if I is a Stone integral.

Corollary 1.6. Every Daniell integral is a Stone integral.

Vector-valued Radon measures are Daniell integrals.

Example 1.7. Let C¢(T) be the linear space of all continuous functions with
compact support on a locally compact Hausdorff space T. For a compact subset K
of T the set of all functions in C¢(T) with vanish outside K is denoted by C¢(K)
and equipped with the uniform norm. A linear map I from C¢(T) into
a quasi-complete locally convex Hausdorff space is said to be a Radon measure if,
for every compact subset K of T, the restriction of I to C¢(K) is continuous. From
the Dini theorem it is clear that I is a Daniell integral.

2. Stone extension

Let Q be an abstract set. Let I be a Stone integral from a Riesz subspace L of R
into a quasi-complete locally convex Hausdorff space X.
Given p € P(X), define
a(p=int { 3 p(D(A): foeL, 1< 3 111}
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for every feR®, understanding that 0,(f) =« unless there exist functions f, € L,
n €N, such that (2) holds.

For every p € P(X) let F,(I) be the space of functions f on £ such that g,(f) <.
The intersection of the family {F,(I): p € P(X)} is denoted by F(I) or simply by F.

Proposition 2.1. Let p € P(X).
(i) If feR® and f, eR?, neN, and if (2) holds, then

0(N=X 0,(1). @

(ii) o, is a seminorm on F,(I).

(iii) 0,=p(I) on L.

Proof. To prove (i), we may assume that g,(f,) < ® for every n e N. Given € >0
and n €N, there exist functions f... € L, m eN, such that

1< 3 1fonl and S, p(D(fun) <0 (f) + 627"
Consequently,

o

op(f)S E_] p(I)(.fnm)s Zl op(fn) +e€,
so that (i) holds.

Statement (ii) is now clear.

To prove (iii) it suffices to show that for every f € L the inequality o,(f) = p(I)(f)
holds. For every € >0 choose functions f, € L, n €N, such that (2) holds and

S G <a(N+e.

Statement (iii) now follows from the inequality (3).

The family {o,: p € P(X)} of seminorms on F gives a locally convex topology.
From now on, F will always be equipped with this topology. The space F is not
always complete (see Example 2.12). However, if X is metrizable, then F is
complete. More generally, we have

Proposition 2.2. If F(I) has a countable basis {0, }..~of continuous seminorms,
then F(I) is complete.

Proof. We may assume that 0, <o,<.... Take any Cauchy sequence {f,}.cn
in F. Let f{” =, for every n e N. Assume that for m € N we have chosen functions
f2,neN,i=1,2,..., m,such that {f{’},.~is a subsequence of {f{ "}, .~ and such
that

o(f" - f) <27 (%)
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whenever jeN, keN, k>j. Then we select a subsequence {fi"+) o of the
sequence {f\™},~ such that if i =m+ 1, then (5) is valid for all jeN and k €N,
k >j. Define the function f on Q by

fw)= f‘”(w)+2(f5.":” Fo) (@) (6)

for every w € Q such that the series (6) converges, and by f(w) =0 otherwise. Let
i eN. It follows from Proposition 2.1 that

o(f—f)< D a(fo - fary<

m=—n

< i ,( f'rln:-ll) f(m+|))+ 2 ( (m+1) ff,',"))g?. n+2
for every n>i. Hence, fe F and {f,}..~n converges to f in F.
The closure of L in F will be denoted by K,(I) or simply by K. Clearly, K, is
a Riesz subspace of R”.
For every p € P(X), let &, be the natural map from X into the completion X, of
X/p '(0). Since m,.I: L— X, is a Stone integral, we have the following proposi-
tion (cf. [3: I, §4, no. 4]).

Proposition 2.3. For the Stone integral I: L — X, the space K,(I) coincides with
the intersection of the family {K,(w,oI): p € P(X)} of spaces.

Let X be the completion of X. Then every p € P(X) has a unique extension p to
X. Since p(I(f)) < 0,(f) for every p € P(X) and every f € L, the Stone integral I has
a unique extension I,: K,— X, which we call the Stone extension of I. For every
p € P(X) and every fe K, let

PL)(f)=sup {p(1.(g)): g € Ki, |g|<|fl}.

Lemma 2.4. Let p € P(X). Then p(I,)= o0, on K,(I).

Proof. Since p(Ii(f)) < a,(f) for every fe K, it follows that p(I,)<o, on K,.
Thus p(1,) is continuous on K, with respect to the topology induced from F. On the
other hand, o, <p(I;) on L by Proposition 2.1 ; hence the same inequality holds on
K, since both g, and p(I,) are continuqus on K;.

Proposition 2.1 and Lemma 2.4 imply that the locally convex topology on K,
defined by the family {p(I,): p € P(X)} of seminorms is equal to the topology
induced from F and that the locally convex topology on L given by
{p(I): p e P(X)} coincides with the topology induced from K;. Hereafter, L and
K, will be endowed with these topologies, which we call the topologies of
convergence in mean.

The following proposition is a direct consequence of Proposition 2.2.
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Proposition 2.5. If the space X is metrizable, then K,(I) is a complete metriz-
able space.

Theorem 2.6. The Stone extension I,: K,(I)— X is a Stone integral.

Proof follows from Proposition 2.1 and Lemma 2.4

A Stone integral is called Stone-closed if its Stone exten ion coincides with itself.
As we shall see, the Stone extension of a Stone integral i Stone-closed.
Given p € P(X), define

8, =int { 3 H()(): 1 e Kuv 1A1< 5 111}

for every fe R?, understanding that 6,(f) o unless there exi t functions f, € K|,
n eN, such that (2) holds.

Lemma 2.7. If pe P(X), then 8, o, on R®.

Proof. Since p(I,)=p(I) on L, we have 8§ <o,. On the other hand, since
p(I,)= 0, by Lemma 2.4, we have §,>o0,.

Theorem 2.8. The Stone extension of a Stone integral 1s Stone-closed.
A function feR? is said to be I-null if

0,(f)-0 (7)

for every p e P(X). The set of all I-null functions is denoted by N(I). Then
N(I) <= K,(I). Moreover N(I,) — N(I) by Theorem 2.8 A sub et of £ will be called
I-null if its characteristic function belongs to N(I). A property which holds for all
points of Q outside some I-null set is said to hold almost everywhere (a. e.) in £ or
for almost all (a.a.) w € Q.

For every function feR?, let

S()—{weQ:f(w) 0}
We omit the proof of the following

Proposition 2.9. (i) if f, e N(I), n €N, and if a function f € R” satisfies (2), then
fe N(D).

(ii) A function feR*® is I-null if and only if S(f) is an I-null set.

(iii) If feR® and if A is an I-null set, then fA € N(I).

(iv) If fe K,(I), if geR? and if f=g a.e., then g € K,(I).

Propositions 1.5 and 2.3 imply the following

Proposition 2.10. If ¥ is a continuous linear map from X into another
quasi-complete locally convex Hausdorff space Y, then ¥ I: L— Y is also a Stone
integral and

K(I)cKi(¥.I).
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Furthermore, the natural injection from K,(I) into K,(¥.I) is continuous.
If I is a Daniell integral, then Wo I is also a Daniell integral.

Proposition 2.11. Let (X, o(X, X')) be the space X endowed with the weak
topology o(X, X'). Let 1: X—(X, o(X, X')) be the identity map. Then
l) K]CK|(toI)C ﬂ Kl(x,oI); and

x'eX’

(ii) if pe P(X) and fe K,(I), then
PI)(f)=sup {|(x'I)|(f(: x" € U,}.

Proof. Statement (i) follows from Propositions 2.3 and 2.10. Since x'oI, =
=(x'oI)r on K,(I) for every x' € X', Statement (ii) follows from (1).

The space K, is not always complete as the following example shows.

Example 2.12. For any uncountable set £, let X =R be equipped with the
product topology. Let

L ={feR": S(f) is a finite subset of Q}.

Define I: L— X to be the natural injection. Then I is a Daniell integral. Note
that we can regard it as a Radon measure. In fact, let € be endowed with the
discrete topology; then C¢(22)=L and I is a Radon measure.

Clearly,

F=K,={feR?:S(f) is countable}.

The space K, is not quasi-complete with respect to the topology of convergence in
mean.

Even if the space X is not metrizable, K; or F can be metrizable.

Example 2.13. Let L =1,, and let X =(l.)’ equipped with the weak* topology.
Then the natural injection from L into X is a Daniell integral for which F = K, =1,.
The topology of the convergence in mean on L coincides with the /;-norm topology
although X is not metrizable.

The Daniell integral in the following example does not satisfy the equality:

K,(I)= ﬂx K. (x'oI).

Example 2.14. Let L denote the Riesz space C [0, 1]. Let X be the Banach
space C[0, 1] with the uniform norm. Then the identity map from L onto X is
a Daniell integral.

3. Beppo Levi theorem

Let Q be a set and L a Riesz subspace of R®. Let X be a quasi-complete locally
convex Hausdorff space.
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Let A be an index set. Given subsets W, of X, A € A, we say that the series
>, Wi is convergent if the series . x, is convergent in X for any choice of x € W,
AeA AeA
LeA.

For any subset W of X let

p(W)=sup {p(x): xe W}.
Lemma 3.1. [8: Lemma 7.1]. If W,, neN, are subsets of X and if the series
> W, is convergent, then the sequence { p(E W,)} is convergent for every
n 1 [

neN
p € P(X).
Suppose that I: L — X is a Stone integral. For a subset V of L and a function fe L
put

IV, H={I(g):9€V,|g|<|f]}.

Proposition 3.2. IfI: L— X is a Stone integral and if f, € L, n € N, are functions
such that the series

S I £ )

is convergent, then the series

S 1) ©)

is convergent for a.a. w € Q2.
Proof. Let A denote the set of all w € Q for which the series (9) is divergent.
Let p € P(X). Since the equality

(2 1l)=p(Z 1t 1)

holds for all natural numbers m, n such that m <n, Lemma 3.1 implies that the
sequence {Zlf,l} is p(I)-Cauchy. If we let g,=> |f.| for every neN, then
=1 neN |

there exists an increasing sequence {n(k)}«en such that

P(D(Gnrny = Gn) <2 *.

Since

A S2(9,.(k+1)— In)) s
k—i

Proposition 2.1 implies that 0,(A)<2' 'forevery i e N. Hence A is an I-null set.
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Theorem 3.3. LetI: L— X be a Stone-closed Stone integral. If f, e L, n €N, are
functions such that the series (8) is convergent and if f € R? is a function such that

f(@)= 3 (@) 10)

for a.a. we L, then feL and

f= Z. fas (11)
where (11) is convergent in the mean convergent topology on L.
Proof. Let p e P(X). Following the notation in the proof of Proposition 3.2, we
have

Up(f" zfz) S;p(l)(g,.(,v”) — Gnp) <2'7*

for every natural number n = n(k), k e N. Hence f € L, and (11) holds in mean.

Corollary 3.4. Let I: L— X be a Stone integral such that L is sequentially
complete and includes all I-null functions. If f, € L, n €N, are functions such that
the series (8) is convergent, and if f € R? is a function such that (10) holds for a.a.
we Q, then felL and (11) holds in L.

Proof. Since the sequence {E f,-} is Cauchy in L, it is convergent to some
i neN

i=1
function g € L. On the other hand, by Theorem 3.3, the function f belongs to K,
and (11) holds in K,. Thus f=g a.e., which implies that f=(f—g)+gelL.

Consequently (11) holds in L.
The conclusion of Theorem 3.3 does not always imply that I is Stoneclosed.
Example 3.5. Let 2=[0,1] and B the Borel field on Q. Let v be the
Lebesgue measure on Q. Let L=L,(Q, M, v). Define the Daniell integral I:
L—>RXR*” by

10=([_fav. (f@)u-a)

for every feL. Then L is sequentially complete with respect to the mean
convergence topology. Clearly, N(I) = {0}. Hence, the conclusion of Theorem 3.3
holds. But I is not Stone-closed; in fact, K;(I)=L,(L, B, v), where B is the
completion of B with respect to v.

It seems to be open whether the conclusion of Theorem 3.3 implies the
sequentially completeness of L. Note that if the conclusion of Theorem 3.3 is valid
and if the quotient space L/N(I) is Dedekind complete, then L is sequentially
complete (cf. (1: Exercise 7.9 and Theorem 13.2]).
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4. Stone extension of the Daniell integral

Let Q be a set and L a Riesz subspace of R®. Let I be a Daniell integral from L
into a quasi-complete locally convex Hausdorff space X.

The purpose of this section is to show that the Stone extension I, of I is a Daniell
integral with values in X.

Lemma 4.1. Let pe P(X) and feR®. If there exist functions f, e R?, neN,

such that f(w)<lim sup |f.(w)| for every we Q and the series , 0,(f.) is
n 1

convergent, then (7) holds.
Proof is immediate from the inequalities

f(w)<lim sup [f,(w)|< 3,

f(w)|
for every w € £ and every NeN.
Lemma 4.2. Let p € P(X). Suppose that {f.}..~ is a decreasing sequence of

functions in L*. If f e R® is the pointwise limit of {f.}..~ and satisfies (7), then the
sequence {p(I(f.))}.en is convergent to 0.

Proof. The equality (7) implies that, for every £€>0, there exist functions
g.€L’, neN, such that

f< 2, g and Y, p(I)(g.)<e.
n 1
Then, for every n €N, the inequality
Le(h 2e) +230

is valid. Since the sequence { fa— E g,}
1 n

to 0, we have

is decreasing and pointwise convergent
eN

hm sup p(I(f.))<2e.

Lemma 4.3. If a sequence {f.}.en~ in K,(I) is decreasing and pointwise conver-
gent to 0, then the sequence {I\(f.)}.n is convergent to 0 in X.

Proof. Given p € P(X) and £ >0, there exists a decreasing sequence {g.}nen in
L* such that 0,(f. —g.)<e2 " for every neN. For every w € Q, let

f(w)=mf {g.(w): neN}.

Since f(w)<limsup |g.(w)—f.(w)| for every we X, Lemma4.l and the
inequality
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oo

2 OP(gn _fn)<£

n=1
imply that (7) holds. For every n e N we have
pL(f)) < 0,(f. — g.) + p(1(g4)),

so that Lemma 4.2 applies.

Lemma 4.4. Let I, be the Stone extension of I. Then the image I,(K.(I)) is
included in X.
Proof. Let fe Ki. Then there exist functions f, € L*, n €N, such that

fs;:‘,lfn. - (12)

Let g,=>. f for every neN. Then the sequence {g.Af}.e~ is increasing and

-1
pointwise convergent to f. Take a net {f, },rfrom L which is convergent to f in K.
Then, for every neN, we have

lim f,Ag.=fAgn
yerl

in K,, so that the limit I,(fAg,) of the bounded net {I,(f,Ag.)},cr lies in X.
Lemma 4.3 implies that the sequence {I,(fA g.)}.n~ is convergent to I,(f) in X;
therefore, I,(f) belongs to X.

We can now write p(I,) instead of p(I,) for every p e P(X) because I, maps K,
into X.

The results of thls section are sumarized in

Theorem 4.5. Let I: L— X be a Daniell integral. Then its Stone extension
I,: K\(I)> X is also a Daniell integral.

5. Saturability

Let Q be a set and L a Riesz subspace of R?. Let X be a quasi-complete locally
convex Hausdorff space.

A Stone integral I: L — X is called saturable if for every decreasing sequence
{f.}nen in L™ the sequence {I(f.)}.~ converges weakly in X. The Orlicz—Pettis
theorem ensures that the sequence {I(f.)}..n is then convergent in X with respect
to the Mackey topology.

Proposition 5.1. Every saturable Stone integral is a Daniell integral.

Proof follows from Theorem 3.3.

The integrals in Examples 2.12, 2.13 and 3.5 are saturable; the integral in
Example 2.14 is not saturable.
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Lemma 5.2. Let I: L— X be a saturable Dan’ Il integral, and let {f,} ~ be n
increasing sequence of non-negative function in K,(I) with an upper bound g € L
Then the pointwise limit f of {f,}..~ belongs to K,(I) and th s quence {I,(f.)} ~
is convergent to I,(f) in X.

Proof. Given £¢>0 and p € P(X), there e ists an increasing sequence {g,} ~
of functions in L* such that

gn<g and p(I)(f. g.)<e

for every n e N. Since I is saturable, the sequence {I (f,)}. ~ which is Cauchy 1n
the quasi-complete space X, is convergent there. Theorem 3 3 now applies.

Let A be a family of sub ets of Q. The spa e of all A- impl functions on £ 1s
denoted by sim (A). For every set A in A, let

AnA—{BeA:Bc A}
For a Daniell integral I: L— X let
R(I)—{AcQ:AecK,(])} (13)
Lemma 5.3. If I: L— X is a saturable Daniell integral, th n
(i) R(I) 1s a ring,
(1) if the constant function 1 belongs to L, then R(I) 1s a o algebra;

(iii) if LA1 1s included in L, then every function 1n L™ is the pointwise limit of
some non-negative, increasing sequence in sim (R(I)), wher

LAl {fal-fel}.

Proof. Statement (i) holds since K, 1s a Riesz space.

Statement (ii) follows from Lemma 5.2.

To prove (iii), let fe L*. For a positive number a let A —f '((a, )) Given
every n €N, let

fa=((f=fra))Al;

then f,eL" and f, <f a. Since the sequence {f.}..n 1s ncre ing and pointwi e
convergent to A, Lemma 5.2 ensures that A € K,. Hence if b R and b > a, then
{weQ:a<f(w)<b} belongs to R(I) Given neN, let

Al —{weQ:(k—1)2 "<f(w)~k2 "}

for every keN, 2<k<2", and let
2n
g. 2 (k—1)2 "Ar.
k 1

Then the sequence {g.}.en in sim (R(I)) is increasing and pointwise convergent
to f.
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We say that an additive set function on a ring of sets, with values in a locally
convex space, is a vector measure.

Lemma 5.4. If the constant function 1 belongs to L and if I:L— X is
a saturable Daniell integral, then the set function u(I): R(I)— X defined by

u(D(A)=1(A), AeR(D (14)

is a o-additive vector measure.
Proof follows from Theorem 4.5 and Lemma 5.3.
The following lemma is due to [11: Theorem on Extension].

Lemma 5.5. Let R be a ring of subsets of Q. For a scalarly o-additive vector
measure u: R— X, the following statements are equivalent: ’

(i) u extensible to an X-valued vector measure fi on the 8-ring 6(R) generated
by R;

(ii) for every A e R, the set u(AnNR) is relatively weakly compact in X.

If (i) or (ii) holds, then i(BN&8(R)) is a relatively weakly compact set in X for
every B e 6(R).

Given a subset V of X, its balanced convex hull is denoted by bco V.
A characterization of saturability is given in the following

Theorem 5.6. A Stone integral I: L— X is saturable if and only if, for every
function fe L, the set I(L, f) is relatively weakly compact in X.

Proof. The ‘if’ part is obvious (cf. [8: Théoreme 4.4]).

Suppose now that I is a saturable integral. Fix a function f € L*. The Riesz space

M(f)={g/f:geL, |g|<af for some aeR}

contains the constant function 1. Let us define the saturable Daniell integral
J:M(f)— X by

J(g/f)=1(9)

for every g/f e M(f). Then, without loss of generality we can assume that f=1
since J(M(f), 1)=1I(L, f).

By Lemmas 5.3 and 5.4, the set function u(I) from the o-algebra R(I) into X is
a o-additive vector measure. Thus it follows from Lemma 5.5 that the set
u(D(R(I)) is relatively weakly compact. Let geL such that 0<g<1. By
Lemma 5.3, there exist non-negative functions g, € sim (R(I)), n €N, such that the
sequence {I;(g.)}..n is convergent to I,(g) in X. Since every I,(g.) belongs to
beo u(I(R(I)) by Abel’s summation, the set I(L*, f) is included in the closure of
beco u(I)(R(I)). From the Krein theorem (cf. [13: 24.4 (4')]) it follows that I(L, 1)
is a relatively weakly compact set.
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Lemma 5.7 ([8: Lemme 1.2]). Let W,, n €N, be non empty sub ets of X. If the

series >, W, is convergent in X, then o 1s the rie > W,
n 1

n 1

Lemma 5.8. Let A be anindexs t. If the s ries >, W, of compact subsets of X 1s
A

convergent, then Z W, 1s a compact ub et f X.

rLeA

Proof. We use the map @ from the Cartes’an product W of sets W,, A € A, into

X defined by @((x,)) D, x for every (x,) € W. Since @ is continuous, the image
AeA

®d(W)= > W, 1s compact

AeA
The following lemma is an application of [7: 17 12].

Lemma 5.9. A complete subset A of X 1s weakly compact if and only if & (A) is
weakly compact in X for every p € P(X).

In the case of Banach space valued Daniell integrals, the following theorem has
been proved by Kluvinek [8: Théoréme 4.1].

Theorem 5.10. A Daniell integral I: L — X 1s saturable if and only if its Stone
extension is.

Proof. If the Stone extension I, is saturable, then 1t is clear that I is saturable

Conversely, suppose that I is aturable. Fir t as ume that 1s a Banach space
with norm || ||. For brevity, let 0 o, Fix a function fe Choose functions
f.eL", neN, such that (12) holds and

£

Y o(f)<a(f) 1.

n 1

If g, is a function in K, such that |g | <f, for every i eN, then

(EllolS0) 5o

ton

whenever meN and neN, m>n. Hence the eries

gll(KI,f) (15)

is convergent in X. Given n €N, the set I,(K,, f,), which 1s included in the closure
of I(L, f.), is relatively weakly compact in X by Theorem 5.6. By Lemmas 5.7 and
5.8, the set (15) is relatively weakly compact. To prove that the set I,(K,, f) is
included in the set (15), take a function h € K7 for which h <f. For every n e N let

(S (S0
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where Zf, =0.Then h. € K7, h,<f, for every n €N, and > h, = h. Consequently,

n—=1
it follows that I,(h) = I,(h,) lies in the set (15).
n 1

Now let X be an arbitrary quasi-complete space. The above argument asserts
that since m,0ol,=(m,0oI); on K(I), the set m,(I,(K,, f)) is relatively weakly
compact in X, for every p € P(X). Then, by Lemma 5.9, the set I,(K,, f) is
relatively weakly compact in X. Thus the Stone extension I, is saturable by
Theorem 5.6.

Corollary 5.11. A Daniell integral I: L— X is saturable if and only if the
sequence {I(f,)}..~ is summable in X for every sequence {f,}..n of functions in L
such that there exists a function f € L which satisfies that

0< 2fn(w)sf(w)

for a.a. we L.
Now we give the Lebesgue convergence theorem with respect to a Daniell
integral.

Theorem 5.12. A Daniell integral I: L — X is saturable if and only if it satisfies
the following condition :

(LC) If {f.}nen is a sequence of functions in K,(I) which converges to a function
FeR? a.e. in Q, and if there is a function g € K(I) such that |f,|<g a.e. for every
n eN, then f belongs to K,(I) and the sequence {f,}.en is convergent to f in K,(I).

Proof. It suffices the prove the ‘only if’ part. By Proposition 2.9, we may
assume that f(w)=1lim f,(w) for every w € Q and that |f,(w)|<g(w) for every
w € Q and every neN.

First suppose that the sequence {f,}..n is increasing. Then the condition (LC)
holds by Theorem 3.3.

Similarly the condition (LC) holds even if the sequence {f.}..~ is decreasing.

In the general case, let

go(w)=inf {f(w):ieN,i=n} and h.(w)=sup {fi(w):ieN, i=n}

for every w € Q and every n € N. From the above arguments we have g,, h, € K, for
every neN. Since |g.|<g for every neN and since the sequence {g,}.cn is
increasing and pointwise convergent to f, the first step assures us that fe K.
Further, since the sequence {h, — g.}..n is decreasing and pointwise convergent to
0, the sequence {p(I;)(h,—g.)}nen is convergent to 0 for every p e P(X).
Consequently, f,— f as n— o in K; since |f—f.|<h, — g. for every n eN. Thus
the condition (LC) holds.
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Corollary 5.13. If I:L— X is a saturable Daniell integral, then K,(I) is
a Dedekind o-complete Riesz space.

A subset of a locally convex space Y is called quasi-closed if it contains all limit
points of its bounded subsets. For a subset M of Y, the intersection of all
quasi-closed subsets of Y which include M is said to be the quasi-closure of M
(cf. [13:23.1]).

Corollary 5.14. If I: L - X is a saturable Daniell integral, then K,(I) is equal to
the quasi-closure of L in F(I).
Proof. Fix a non-negative function f € K,. Take a sequence {¢.,}..~ and a net
{f,}yer from L" as in the proof of Lemma 4.4. Then, since
f=1lim lim f, A g,

n—owo yel

in K, the function f belongs to the quasi-closure of L in F.

6. Direct sum

Let A be an index set. Let {€2,},.4 be a family of pairwise disjoint sets and Q2
its union. For every A € A, let L, be a Riesz subspace of R® ; then we may regard L,
as a Riesz subspace’ of R®.

Let X be a quasi-complete locally convex Hausdorff space. For every A € A let
L: L,— X be a Stone integral. We denote by L the Riesz subspace of R which
consists of the functions f € R? such that fQ, belongs to L, for every A € A and the
series

AZ‘ L(L,, f,) (16)

is convergent in X.
Define the map I:L— X by

I(f)zA;\IA(fQA)

for every fe L. This map I is called the direct sum of the family {I, },. . of Stone
integrals.

Proposition 6.1. IfI,: L, — X, A € A, are Daniell integrals, then their direct sum
I:L— X is a Daniell integral. )

Proof. We take functions FeL" and f,eL", neN, such that (10) holds for
every w € . The Orlicz—Pettis theorem implies that

o

10= 3 1(Z () =3, 3 L(.2)=31¢).

n=
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Consequently, I is a Daniell integral.
From Proposition 1.5 we have

Corollary 6.2. The direct sum of a family of Stone integrals is a Stone integral.

The family of all finite subsets of A is a directed set with respect to inclusion and
denoted by D(A).

Proposition 6.3. Let I: L— X be the direct sum of Stone integrals I,: L, — X,
A € A. Then, for every function feL, the net

{3 0e) (17)

AeD(A)

is convergent to f in L; that is,
f=2 (f%) (18)

in the mean convergence topology on L.
Proof. Let p e P(X). By applying Theorem 3.3, we can easily prove that the set

E={AeA: p(I)(f2)>0}

is countable, that the function . (fQ,) defined pointwise belongs to K,(I) and that,

AeXZ

for every £ >0, there exists a A € D(A) such that

p(I,)( > fQA> <e.

AeENA

Thus, if g if a function in L such that |g|<]hf— D, fQ.|, then p(I(g))<e. Thus
AeA

(18) holds in L.

Proposition 6.4. Let I: L— X be the direct sum of Stone integrals L: L, — X,
A € A. Then L is quasi-complete if and only if L, is quasicomplete for every A € A.

In particular, if X is complete, then L is complete if and only if L, is complete for
every Le A.

Proof. Suppose that L is quasi-complete. Then, for every A € A, the space L, is
also quasi-complete since L,/L, nN(I,) can be regarded as a closed subspace of the
quasi-complete Hausdorff space

L/LAN(I). (19)

Suppose now that L, is quasi-complete for every A€ A. To prove that L is
quasi-complete, take a bounded Cauchy net {f} _. in L. Without loss of
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generality, we may assume that =0 for every y € I. For every p € P(X), there
exists a real number M, such that

p(D(f")<M,, vyerl. (20)

Since {f”€,},r is a bounded Cauchy net, it converges to a function f; in L, for
every Ae . Let

f(@)= 3, fi(@)

for every w € Q. We shall show that fe L. For every A € A let g, be a functionin L}
such that g, <f.. For every 1 € A and every ye I let g\” = g, Af". Then the net
{g{”},er is convergent to g, in L, for every A€ A. For every yeI define the
function g e L by

g(w)= 9" (w), weQ.
AeA

Clearly {g™},.ris a Cauchy net in L ; therefore, given p € P(X) and ¢ >0, there
exists a 0 € I' such that

p(Z 1= 3 L) <e

for every A € D(A). On the other hand, since the series >, L,(g{) is convergent in
AeA

X, there exists a =€ D(A) such that if A, e D(A) and A, © 5 E, then
p(3 LoDy = 3 higt™) <e;
AeA Ae®
therefore
p(z L(g)— >, IA(.LJA))<3E-
rLeA rAe®

Hence the net

{Eh(g}‘)}unm) @n

AeA

is Cauchy in X. Moreover, the net (21) is bounded. Indeed, (20) implies that
p(Z 1)) =p@ (3 £)=tmp()( T (M2)) <M,
AeA reA Ye reA

Thus the net (21) is convergent in X. In other words, the series (16) is convergent ;
therefore we have felL.

We now claim that the net {f*},ris convergent to f in L. Given p € P(X) and
£>0, there exists an a € I' such that

p(D(" =) <e
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for all yeTI and 6 eI" such that Y, 8=q. Fix a yeT such that y=a. Let h be
a function in L such that [h|<|f® —f| Then

p(I) (AEEA(hQA)) =p(D) (AEA(f‘Y’QA —fk)) =
=lim p(I) (rs_‘z (o —f“")Q,\) <e.

By Proposition 6.3, we have p(I)(h)<e¢. That is, p()(f” - f)<e.
If X is complete, then the completeness of L can be proved similarly.
From Theorem 5.6 and Lemma 5.8 we have

Proposition 6.5. Let I be the direct sum of the family {I, }, . . of Stone integrals.
Then I is saturable if and only if I, is saturable for every A € A.

7. Vector measure

Let €2 be a set and let X be a quasi-complete locally convex Hausdorff space.

Let R be a ring of subsets of €2 and let u: R— X be a vector measure. We say
that u is locally bounded if, for every A € R, the set u(ANR) is bounded in X.

Let I,:sim (R)— X be the linear map which extends u.

Proposition 7.1. The map I, is a Stone integral if and only if u is a locally
bounded, scalarly o-additive vector measure.

Proof. Suppose that I, is a Stone integral. Then, by Proposition 1.5 the
measure u is locally bounded and scalarly g-additive.

Conversely suppose that u is locally bounded and scalarly o-additive. Fix any
functional x’ € X'. To prove that x’s I, is a Daniell integral, take a sequence {f,}en
of non-negative fun .tions in sim (R), which is decreasing and pointwise convergent
to 0. There exists a set A € R such that

S(fi)=A. (22)

Since x'ou can be extended to a o-additive measure on the o-algebra Ané(R) by
Lemma 5.5, the sequence {x’'cL.(f.)}.en~ is convergent to 0. Thus I, is a Stone
integral.

The proof of the following proposition is straightforward.

Proposition 7.2. If the map 1, is a Daniell integral, then u is a o-additive vector
measure.

Problem. If u is a o-additive vector measure, is I, a Daniell integral ?

The folfowing example shows that not every Stone integral is a Daniell integral.

Example 7.3. For every n €N let e, be the unit vector with the n-th co-ordin-
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ate one. Let R be the ring of all finite subsets of N and their complements. Define
the vector measure u: R— ¢, by letting

u(AN=3, (e~ err)

for every finite set A € R and u(B)= —u(N\ B) for every cofinite set B € R, where
eo=0. Then u is locally bounded and scalarly o-additive. But u is not o-additive.
Hence I,:sim (R)— ¢, is not a Daniell integral but a Stone integral.

Proposition 7.4. The map I, is a saturable Daniell integral if and only if u can be
extended to a o-additive measure on the d-ring 5(R).

Proof. If I, is a saturable Daniell integral, then Lemma 5.5 and Theorem 5.6
ensure that u can be extended to a o-additive measure on 6(R).

Suppose new that u is extensible to a o-additive vector measure on §(R), which
we denote also by u. Let {f,}..~n be a sequence of non-negative functions in
sim (R) which is decreasing and pointwise convergent to 0. Choose a set A € R
which satisfies (22). Since u is o-additive on the o-algebra An8(R), the Lebesgue
convergence theorem for a vector measure (cf. [12: Theorem I1.4.2]) implies that
the sequence {L.(f.)}.~ is convergent to 0. In other words, I, is a Daniell integral.
Given a function f €sim (R), it follows from Abel’s summation that the set

L, (sim (R), f) (23)
is a linear combination of sets of the form:
bco u(BNR), BeR.

Thus, by Lemma 5.5 and the Krein theorem, the set (23) is relatively weakly
compact.

Let M(R) be the linear space of the functions fe R such that there exist
non-negative functions f,, g, €sim (R), neN, for which the sequence {f.}.en is
increasing and pointwise convergent to f* and the sequence {g,}..~ to f~.

Suppose first that R is a g-algebra. Recall that a function f € M(R) is said to be
u-integrable if f is (x', u)-integrable for every x’ € X' and if, given A € R, there
exists an x4 € X such that

(x', xa) =J fd{x',u), x'eX'.
A
We denote by E(u) the space of all u-integrable functions. For evéry feE(n), let
=] 1Al wl:xe vy},

where [(x’, u)| is the total variation of (x', u).
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Proposition 7.5. Let u be a vector measure defined on a o-algebra R of subsets
of Q. Then

E(u)=M(R)nKi(L,) (24)

and p(u)=p((L).) on E(u) for every p € P(X).

Proof follows from Theorem 3.3 and [12: Theorem I1.4.1].

Now we wish to extend the definition of u-integrability to the case where R is
a d-ring. Proposition 7.5 shows us how to proceed: in this more general situation,
the space E(u) of u-integrable functions is defined by (24) and endowed with the
topology induced from K;(I,). For simplicity, we write

p(W)(f)=p((L))(f)

for every p € P(X) and every fe E(u).

The following example shows that the equality E(u) = K;(I,) does not always
hold.

Example 7.6. (cf. [12: Example IV.6.1]). Let £=]0, 1] and R o-algebra of
all Borel subsets of Q. Let X =R? equipped with the product topology. Define the
vector measure u: R— X by

u(A)=A (25)

for every A € R. Then K,(I,) =R?, and (L,), is equal to the identity map of R®. On
the other hand, E(u)= M(R).

Next we start from a saturable Daniell integral I from a Riesz subspace L of R
into X.

The following lemma is a direct consequence of Theorem 5.12 (cf. Lemmas 5.3
and 5.4).

Lemma 7.7. (i) The family defined by (13) is a 8-ring.

(ii) The set function u(I): R(I)— X given by (14) is a o-additive vector
measure.

(iii) if I satisfies the following inclusion:

K(DA1<c K, (1), (26)
then
K.(I)c M(R(D)). (27)

Theorem 7.8. If I satisfies (26), then its Stone extension I, : K,(I)— X coincides
with the Stone extension (I, p)::Ki(I,;y)—>X of the Daniell integral
I.y: sim (R(I))— X. In particular, K,(I) = E(u(I)).

Proof. For simplicity, let

J=ILm, u=u(I) and R=R(I).
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By Theorem 5.12 and Lemma 7.7 (iii) we have

~p(I)(AH =p( (sim R), ))=pUJ)(f)

for every p € P(X) and every f € sim (R). From Theorem 3.3 and Lemma 7.7 (iii) it
follows that K,(I) is included in K,(J), that J, =1, on K,(I) and that p(J,)=p(I,)
on K(I). Hence Lemma 2.7 ensures that F(I)= F(J). Thus K,(I)= K,(J).

Corollary 7.9. If I satisfies the inclusion (26), then u(I,)= u(I) and R(1,,) =
=R(I).

8. Closed Daniell integral

Let Q be a set and L a Riesz subspace of R®. Let X be a quasi-complete locally
convex Hausdorff space.

A Stone integral I: L — X is called closed (resp. quasi-closed) if L is a complete
(resp. quasi-complete) locally convex space with respect to the mean convergence
topology. A Stone integral is said to be closable (resp. quasi-closable) if its Stone
extension is closed (resp. quasi-closed).

By Proposition 2.5, every metrizable space-volued Stone integral is closed.
Example 2.12 or 3.5 shows that not every saturable Daniell integral is closable;
Example 2.14 shows that not every closed Daniell integral is saturable.

Let I: L - X be a Stone integral. Let L(I) denote the quotient space (19), and
K.(I) the quotient space K,(I)/N(I). The seminorms on L(I) (resp. K,(I)) derived
from p(I) (resp. p(1)), p € P(X), are also denoted by p(I) (resp. p(I.)). Let us
take a function f from L (resp. K,); the element of L(I) (resp. K,(I)) which
contains f will be written [f]. The Stone integral I (resp. I,) induces the linear map
[I] (resp. [I]) from L(I) resp. K,(I) into X.

Proposition 8.1. Let I: L— X be either a closed Stone integral or a saturable,
quasi-closed Daniell integral. Then

L+N()=K.(I);

that is, L(I) is identical with K,(I).

Proof. If I is closed, then the statement is obvious. If I is saturable and
quasi-closed, then the statement follows from Corollary 5.14.

Let R be a &-ring of subsets of Q. A o-additive vector measure u: R— X is
called closed (resp. quasi-closed) if R (resp. every bounded closed subset of R) is
complete with respect to the uniformity induced from K;(I,), where R is consi-
dered to be a subset of K,(I,). Note that yu is not always closed even when I, is
closable (see Example 7.6). If R is a o-algebra, then u is closed if and only if u is
quasi-closed. But not every quasi-closed vector measure is closed as the following
example shows.
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Example 8.2. Let Q be an uncountable set and R the é-ring of all finite

subsets of Q. Let X be the Hilbert space [-(£2) equipped with the weak topology.
The vector measure from R into X defined by (25) is not closed but quasi-closed.

Proposition 8.3. Let I:L— X be a closable (resp. quasi-closable), saturable
Daniell integral which satisfies (26). Then the o-additive vector measure
u(I): R(I)— X given by (13) and (14) is closed (resp. quasi-closed).

Proof follows from the fact that the quotient space R(I)/R(I)nN(I) is a closed
subset of K;(I).

Let E(u) denote the quotient space E(u)/E(u)nN(1L,). The equivalence class of
a function fe E(u) is denoted by [f].

Proposition 8.4. If R is a o-algebra and if u: R— X is a closed vector measure,
then

(1) E(u) is complete;

(i) E(u)+ N(Iu)= K.(L,), that is, E(u)= K.(L);

(iii) I, is a closable Daniell integral.

Proof. Let j: X— X be the natural injection. By [12: Theorem IV.4.1], the
space E(jou) is complete. Lemma 4.4 implies that E(u)= E(jOu). Thus State-
ments (i) to (iii) follow.

Lemma 8.5. Let R be a 6-ring and let u: R— X be a quasi-closed vector
measure. If {f,}ycr is a Cuachy net in E(u) and if there are pairwise disjoint sets
A,, neN, in R such that

Us)=UA.,
vyel n 1
then the net {f,},<r is convergent'in E(u).

Proof. Given neN, by Proposition 8.4 there exists a function f, € E(u) such
that S(f.)c A. and the net {f,A.},cr is convergent to f, in E(u). Since the

sequence { ’2] f,}"

is Cauchy in E(u), the series
N

€

2 (L):«(Ki(L), f.)

is convergent in X. Hence the function f defined pointwise by (10) belongs to E(u)
and (11) holds in E(u). Applying Theorem 5.12, we can prove that the net {f,},cr
is convergent to f in E(u).

Lemma 8.6. Let u and R be as in Lemma 8.5. If f, € E(u), y e I', are functions
such that the net {[fy]}ver is increasing and bounded above in the Riesz space
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E(), then there exists a function g € E(u) such that {[f,]}+ r1s convergent to [g]
in E(u) and

[9]=sup {[f,]: ye I} (28)

in E(u).

Proof. We may assume that f, =0 for every y € I'. There exists a function f>0
in E(u) such that [f,]<[f] for every yeI. Since fe M(R), there exists an
increasing sequence {A.}.en in R such that

sHc U A, (29)

Fix a positive number € and a seminorm p P(X) By Theorem 12 there exists n
N eN such that

p(u)(f—fAN) €

Let v denote the restriction of u to A~. There exi ts a non negative measure A
defined on the o algebra A NR such that A,(A)—0, A € ANnR if and only if
p(v)(A)—0 (cf. [12: Theorem II.1.1]). Thus the net {f Ax} r is Cauchy with
respect to A,, so that it 1s also Cauchy with respect to p(v) (cf. [12: Lemma
I11.2.1]). Hence we can choo e an a € I'such thatif y, e I’ nd y, > «, then

p(W)(f, A~ — fsAN) <E.
Consequently
p(W)(f, = ) <p(V)(f,A~n — f Ax) +2p(0)(f — fAN) <3E€.

Thus {f,},.r is a Cauchy net in E(u). See that, by Lemma 8.5, there exists
a function g € E(1t) to wh ch the net {f,},ris convergent in E(u). Furthermore,
(28) holds in E(u).

Propos’tion 8.7. Let u be a quasi-clo ed, o add tive vector measure on a § ring

R of subsets of Q, with values in X. Then
(1) E(u) 1s sequentially complete;

(i) E(“) + N(L)~ Ki(L.), th tis, E(M) - Ki(L);

(iii) E(u) is a Dedekind complete Riesz space.

Proof. Statement (i) is a direct con equence of Lemma 8.5.

To show (ii), let f € K;. Then there exists pairwise disjoint sets A, € R, neN,
such that (29) holds. Given neN, by Propo ition 8.4 there exist function
g. € E(n) and h, € N(I,) such that

S(g.)= A, and fA,—g,+h,.
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Let

9(©)= 3, 0.(0) and h(w)=' h(0)

for every w e Q. Then we obtain g € E(1) by Theorem 5.12 and h e N(I,) by
Proposition 2.9. Thus

f=g+heE(u)+N(IL)
Statement (iii) follows from Lemma 8.6.

Lemma 8.8. Let R be a &-ring (resp. a o-algebra) and let u: R— X be
a g-additive vector measure. Then there exist a set Q, a 8-ring (resp. a o-algebra)
Q of subsets of Q, an injective ring homomorphism a: R— Q and a quasi-closed
(resp. closed) vector measure fi: @ — X such that

(i) a(R) is a dense subset of Q;

(i) fa(a(A))=u(A) for every A eR.

Gii) p(a)(a(A))=p(v)(A) for every p €e P(X) and every A €R.

In particular, if R separates points of Q, then

(iii) Q< Q; and

(iv) ReQnQ.

Proof. A sketch of the proof has been given in [11: Theorem on Closure]. If R
is a 8-ring we just apply [13: 23.1.(4)] to make the vector measure fi map Q
into X.

Lemma 8.9. Under the same notation as in Lemma 8.8 there exists a Riesz
homomorphism y: E(u)— E(ji) such that

(1) ¥(E(u)) is a dense subspace of E(ji);

(i) [(L): )W () =T):(f) for every fe E(u);

(i) p(B)(w(f))=p(u)(f) for every p € P(X) and every f € E(p).

Proof. For simplicity, let I=1I, and J=1I;. There exists a unique Riesz
homomorphism ¢: sim (R)—sim (@) which extends a. Fix a function f € sim (R)
and a seminorm p € P(X). Since I =J.¢ on sim (R), we have

p(D(N<p(@().

Given £>0, there exists a function h esin (Q) with |h|<|@(f)| such that

p(e()<pU(h))+e.

There exist pairwise disjoint sets A; € Q and real numbers a;, i=1,2, ..., n, n€N,
such that
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For every i eN such that 1<i<n, there exists a set B;e R for which

P(J)(Ai@a(B,-))<e/<§|a,-|+1).

Let

g =(=il a,'B,‘>/\f.
Since p(J)(h—@(g))<e, we have

p(N(@e(N)-2e<p(g))<pD)().
Thus

p(N(@(f)=p(D)(f).

Let ¢ =m0 @, where w: K,(J)— (J) is the natural projection. We shall show that
¥ has a unique extension to E(u). Given a non-negative function f in E(u), we
choose an increasing sequence {f, }..n in sim (R) which is pointwise convergent to
f. Since the sequence {f,}..~ is convergent to f in E(u) by Theorem 5.12, the
sequence {0 @®(f.)}.en is Cauchy in the sequentially complete space E(ji), and so
there exists a unique limit of {o®(f,)}.en is E(j), independent of the sequehce
{f.}nen. This unique limit is denoted by ¥ (f). Now Statements (i) to (iii) hold.

Theorem 8.10. Let I: L - X be a saturable Daniell integral which satisfies (26).
Then there exist a set Q, a Riesz subspace L of R®, a saturable Daniell integral
I: L— X and a Riesz homomorphism W: L— L(I) such that

(i) L is a sequentially complete space ;
(i) L(I) is a Dedikind complete Riesz space;

(iii) if {[g,])},er is a decreasing net in L(I) such that inf {[g,]:yeI'}=0 in
L), then it is convergent to 0 in L(I);

(iv) W(L) is a dense subspace of L(I);

v) (MloW=TIonlL;
(vi) p(DoW=p(I) on L for every p e P(X);

(vii) ¥ induces a topological Riesz isomorphism W from L(I) onto a dense
subspace of L(I) such that W([f]) = W(f) for every feL.

In particular, if K,(I) separates points of Q, then Q can be chosen such that
(viii) Q< Q.

Proof. For brevity, let u=u(I). Theorem 7.8 implies that K,(I)= E(u) and
I, =(I,),. We take a set 2, a -ring Q and a vector measure fi: @— X such that (i)
to (iii) of Lemma 8.8 hold. Then there exists a Riesz homomorphism y: E(u)—
E(ji) such that (i) to (iii) of Lemma 8.9 hold. Let t: L— K,(I) be the natural
injection and let
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Y=yot, L=E(G) and I=(I,),.

Then Statements (i) to (vii) hold.

If K\(I) separates points of £, then the 6-ring R(I) separates points of €, and so
(viii) follows from Lemma 8.8 (iv).

Lemma 8.11. Under the same notation as in Theorem 8.10 there exist an index
set A and a system {e,},.. of non-negative functions in L such that
() [e]rle]=0if A, A €A, A#A';
(ii) if fis a function in L* such that [e,]JA[f] =0 for every A € A, then [f]=0;
(iii) if f is a function in L*, then

[1=sup { 3, [/2.1: A€ D)

in L(I), where Q, =S(e\);

(iv) if fe L is a function, then the net (17) is convergent to f in L.

Proof. By Zorn’s lemma we can choose an index set A and a system { €, }1ca in
L* such that (i) and (ii) hold. Statements (iii) and (iv) follow from Theorem 8.10
(ii), (iii).

Lemma 8.12. Let I:L— X be a saturable Daniell integral. If L contains
a function e such that e(w) >0 for every w € 2, then there exist a Riesz subspace M
of R, a Riesz isomorphism ¢ from L onto M and a Daniell integral J: M— X such
that

(i) M contains the constant function 1;

(i) J(@(f))=I(f) for every felL;

Gii)) p(N(@(f))=p(I)(f) for every p e P(X) and every feL.

Proof. Define the linear map ¢ from L onto the Riesz subspace M=
={fle:felL} of R® by @(f)=f/e for every fe L. Let J: M— X be defined by
J(@(f)) =I(f) for every fe L. Then the statements follow.

We are now ready to show that every saturable Daniell integral can be extended
to a quasi-closed Daniell integral.

Theorem 8.13. Let I: L — X be a saturable Daniell integral which satisfies (26).
Then there exist a set Q, a Riesz subspace L of R®, a saturable, quasi-closed
Daniell integral I: L— X and a Riesz homomorphism ®: L— L,(I)=L/LAN(I)
such that

(i) @(L) is a dense subspace of L,(I);

(i) (I(®()=I(f) for every felL;

(iii) p(D)(P(f))=pI)(f) for every p e P(X) and every felL;

(iv) @ induces a topological Riesz isomorphism & from L(I) onto a dense
subspace of L,(I) such that ®([f])= ®(f) for every feL.

In particular, if X is complete, then I is closed.
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Proof. (I) Take a saturable Daniell integral I: L— X as in Theorem 8.10.
There exist an index set A and a system {g;},c in L* such that (i) to (iv) of
Lemma 8.11 hold. Given A € A, let L, denote the Riesz subspace {f€::feL} of
R®\. The restriction I, of I to L, is a saturable Daniell integral.

(II) Fix an arbitrary A € A. There exist a Riesz subspace M, of R“A, a Riesz
isomorphism @ : L, — M, and a Daniell integral J,: M, — X such that (i) to (iii) of
Lemma 8.12 are valid. Let u(4)=u(J,). Theorem 7.8 implies that

() =I,p)' and Ki(J,)=E(u(r)).

Let j,: M, — E(u(1)) be the natural injection. By Proposition 8.4 and Lemmas 8.8,
8.9, there exist a set Q,, a Riesz subspace H, of R% | a saturable and closed Daniell
integral J,: H,— X and a Riesz homomorphism v, which maps E(u(1)) onto
a dense subspace of H,(J,) such that [J,Joys =(Ji): and p(J.)ey: = p(u(R)) for
every p € P(X).

(III) Let € be the disjoint union of the family {€,: A € A} of sets. Let J: H—> X
be the direct sum of the family {Ji:Ae A} of Daniell integrals. Then J is
a quasi-closed, saturable Daniell integral by Propositions 6.4 and 6.5.

(IV) For every ALe A, let @, =Y,0jioqu. Fix a seminorm p € P(X) and a set
A e D(A). We claim that

PO 3 @) =p(D( 3 5)

for every f, e L., A € A. Indeed, this follows from the fact that &,(L,) is a dense
subspace of H;(J,) for every A€ A.

(V) Let felL. For every A€ A, there exists a function g, € H, such that
[g:]= D (f2)). Let

9(@)= 3, 0.(0)

for every we . To show that the function g belongs to H, we may assume
that f=0 and ¢, =0, A € A. For each A € A, we take any function h, € H} such
that h, <g,. Fix a seminorm p € P(X). Since the net (17) is convergent to f
in L, Proposition 2.9 and Theorem 5.12 ensure that the set

E={leA:p(D)(fQ2)>0},

is countable, and so we can write = = {A,: n e N}. Note that p(I)(h) =0 whenever
AeA\E. For every neN, let

L=L, &.=®,, and h,=h,,.
Given €>0 and n €N, there exists a function k, € L}, such that k, <f, and
p(N([h] = Pu(k,))<e27".
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Thus if m and n are natural numbers such that m = n, then it follows from (IV) that

pO(Zh)<p)(E (h1- @k))+p(D(3 k)<
<e+ p(f)(ék,—).

Since by Theorem 5.12 the sequence {2 k,-} is Cauchy in L, the net
i=1

neN

(2l

AeA

is Cauchy in X. Since this net is bounded in X, it is convergent in X. Hence the
function g belongs to H. Furthermore, from (IV), Proposition 6.3 and Lemma 8.11
(iv), it follows that

p(N)(g)=p)(f) (30)

for every p € P(X).
(VI) Take a function f e L. For every A € A, let g; be as in (V) and let h, € H, be
a function such that [gx] =[h.] in H(J). It follows from Proposition 6.3 and (V) that

PA)( S (0= h))=0

for every p € P(X). This enables us to define the Riesz homomorphism IT:
L — H(J) by

=[S al fet.
Then it follows from (30) that
p(DUII(f)) = p(I)(f)

for every p € P(X). Moreover, Proposition 6.3 and Lemma 8.11 (iv) ensure that
[J]JoIT=1 on L.

(VII) Let ®=II.W:L— H(J). Then ¢ is a Riesz homomorphism. Let 7:
H— H(J) be the natural projection, and let L be the quasi-closure of 7~'(®(L))
in H. The restriction [ of J to L is a saturable Daniell integral. We can
identify L,(I)=L/LAN(f) with the quasi-closure of @®(L) in H(J). Hence
we may regard @ as a map into L,(I). Statements (i) and (ii) are now clear.

(VII) Given a seminorm p € P(X), we claim that the equality

p(H=pQ) (31)

holds on L. Since p(J)=p(l) on L, the seminorm p(f) is continuous on L with
respect to the topology induced from H. Hence, it suffices to prove that p(f)=p(J)
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on 7~ '(®(L)). For each function g e 7~'(®(L)) there exists a function f € L such
that [g] = @(f). Then Theorem 8.10 (vi) and (V) imply that

p()(g)=p(D(f).

Thus p(J)(g)<p(I)(g). That is, (31) holds on L.

(IX) By (VIII) the topology of convergence in mean on L is identical to the
topology induced from H. Since L is a quasi-closed subspace of the quasicomplete
space H, it is quasi-complete. In other words, Iis quasi-closed. Moreover, from
Theorem 5.6, the integral I is saturable. Statement (iii) now follows from (V) and
(VIID).

(X) If X is complete, then H is complete by Proposition 6.4. Thus I is closed.

The Riesz space constructed in Theorem 8.13 will be called the L,-extension of L
with respect to I.

Proposition 8.14. If I: L — X is a saturable, quasi-closable Daniell integral such
that (26) holds, then K,(I) coincides with L(I).

Proof. Since K,(I) is quasi-complete, it is topologically Riesz isomorphic to
L(I).
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BEKTOPHBIE UHTETPAJIbI JAHUJJIA
Susumu Okada

Pesome

B pa6ote ctpouTcs Teopus MHTErpasioB [JaHM3/Is Ha aGCTPAKTHOM MHOXECTBE CO 3HAYEHUSIMH
B JIOKAQJIbHO BbINMYKJIbIX MPOCTPaHCTBaX. [ 1aBHOE BHUMAHHUE YENEHO CIIENYIOLMM BOMPOCaM : TeOpeMaM
Benno Jlesu u JleGera u nonHote npoctpanctBa L,. [Ing nony4yenuss Teopembl Benmo JleBu cnepyer
paclMpuTh MHTEerpan no cxeme CroyHa. Teopema JleGera uMeeT MECTO TOrAa ¥ TOJILKO TOTAA, KOraa
uHTerpan [danuansg oTo6paxacT ynopsao4eHHbIE MPOMEXYTKH B c1a60 KOMMAaKTHbIE MHOXECTBA.
IlpocTpaHcTBO L,, NonyyeHHOe HaMM M3 CTOYHOBCKOIO PpAacCUIMpDEHHs, HE BCerja SBISETCS KBa3u
noaubiM. [ToaToMy B § 8 MbI cTpouM Apyroe pacumpenue, obecrednBaroliee KBa3u MONHOTY COOTBET-
cTBylowEero npocrpaHcTsa L. 3aech npennonaraercs BbIMOJHEHHe H3BecTHOro min (f, 1) — ycnosus
Croyna. [IpsMbie cyMmbl uHTerpanoB JlaHuans paccmatpuBaeM B §6, a CBSi3b MEXAy WHTErpaaoM
IlaHuans ¥ BEKTOPHBLIMK MepaMbl B § 7.
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