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A GENERALIZATION
OF THE INDIVIDUAL ERGODIC THEOREM

RADKO MESIAR

The Individual Ergodic Theorem deals with Cesaro averages of a stationary
sequence of integrable random variables on a given probability space (£2, a, P).
Such a sequence can always be canonically represented in the form {XoT"}, where
X is an integrable random variable on a suitable probability space, T is a measure
preserving transformation.

Let a sequence {X,} of integrable random variables satisfying certain properties
be given. We ask: what can we say about Cesaro averages of the sequence
{X,.T"}?

Throughout this paper let (2, a, P) be a given probability space, let X, Y, X,
X iy Xoy ooy Yi, Yo, o, Y, ... be integrable random variables on it. Let T:
2 — Q be a measure preserving transformation, K >0 a real constant.

Lemma 1 [3, Theorem 1.8]. If {a.}.-, is a bounded sequence of real numbers,
then the following statements are equivalent:

n—1
(1) n 2]“-"“’0-
i=0
(2) 3AI<Z”, J of density zero, i.c.,

(card {Jn{0,1,...,n—1}}
n

)-o.
such that lim a, =0 provided n ¢ J.

Theorem 1. Let X,—0 a.e., |X,|<K, forn=1,2, ... Then

1 n
=>XoeT' >0 ae.
i=1
Proof. By the Egoroff Theorem there exists a decreasing sequence of measur-
able sets {B,}n.-: such that P(B,)\0 and on B,=Q - B, we have X,—0
uniformly, m =1, 2, ... It is easy to see that there exists an increasing sequence of
1 i

positive integers {N; };~, such that for all n = N;, w € B} we have | X, (w)| < (E) .
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Let No=1, B,= Q. Denote C, =B, for N;<n <N,,,. We have C,\, P(C,)\0,
i
X, < (%) on C. for Ny<n<N...
Put J(w)={ieZ", T'(w)e C;}. By Lemma 1 it follows that for every J(w) of

density zero there holds

- EXIOT((D)-—)O

i=1
as lim X, o T"(w) =0, provided n ¢ J(w) holds. Thus we will prove that for a.e.

w € Q, J(w) is of density zero. As
n—-1
card (J(w)n{0,1, ...,n—1}} = D x0T (w),
i=0

it is in fact the same as proving that

n—1

= N xcoT'—0 ae.

i=0
It is easy to see that yc, \\O a.e. We have

n—1

0<1|mmfl§:xc,o’1‘<hmsup Exqu<hmsup EkaoT
i=0
fork—1,2,...

s n—1
Denote f, =lim supni SxaoT, k=1, 2, ... From the Individual Ergodic
n i=0

n—1

Theorem we have f, —hm 1 E Yoo T a.e., J fidP = j xcdP = P(C,). Itis easy
Q Q

i=0
to see that f,\, and f fidP\\0 so that f,\\0 a.e. This fact proves Theorem 1.
Q

Remark. In Theorem 1 we need some type of stationarity. This is in fact
implied by T being measure preserving. Next Example 1 shows that the stationarity
is essential.

Example 1. There exist two sequences {X,} and {Y,} such that X, -0 a.e.,
| X, |<K X, and Y, have the same probability distributions for n =1, 2, ..., but

1
lim — ZY does not exist for any w € Q.

i=1
Let =0, 1), let a be the Borel o-field on 2, let P be the Lebesque measure
on Q. Let X;=X,= X172y X3 =...= X=X, 14 --» Y1=Xi, Y:=x2 1
Y:=Xs, Yi=Xxamun,. Ys=Ys=Xan3a, Y7 =..= Y10—X(3/4.1), ... so that
X,—0ae., |[X,|<1forn=1,2,... but

328



lim mf— ZY‘ 0# L+ =lim sup — EY,

l-l 2 ni=1

Theorem 2. Let X, —0 a.e,, 0<sX,<Y forn=1,2, ... Then

—ZX.JT'—»O a.e.

ni=xa

Proof. Denote Y*=min (Y, k) for k=1,2

» ... similarly denote X for
n=1,2,...,k=1,2,... It is easy to see that

0<X,-X¥<y-Y®
so that

0<—2K T——ZX‘” T<> Z(Y Y®)oT

i=1

_ for n=1,2,..., k=1,2, ...
Since by Theorem 1 we have for k=1, 2, ...

—2X§*’o’1‘—>0 a.e.,

n i<

it follows that

0<lim sup — EX.OT‘<hmsup E(Y Y®)T ace.

i=1
Denote

k—lxmsup E(Y Y®)T, k=1,2,.

nix

From the Individual Ergodic Theorem it follows that
j gde=I (Y - Y®)dP.
Q Q
It easy to see that g.\\. From the Beppo—Levi Theorem it follows
f (Y - Y®)dP\0
Q
so that g.\\0 a.e. This proves Theorem 2.

Corollary 1. Let X,—0 a.e, |X.|<Y forn=1,2, ... Then

= EX,oT'—>0 a.e.

ni=

Proof. Applying Theorem 2 to both { X} and {X.} we get what was claimed.
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Corollary 2. Let X, > X a.e., |X,|<Y forn=1,2, ... Then
1 EX,OT'—alim-l- SX.T ae.
nis n nin

Proof. Applying Corollary 1 to the sequence {X, — X} and using the Individual
Ergodic Theorem we get what was claimed.
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OBOIEHUE WHOINBHUIYAJIIBHOV 3PTOOUYECKOV TEOPEMBI
Panko Mecbap
Pe3ome

WHpuBuyanbHas 3progudeckas TeopeMa KacaeTcsl CXORMMOCTbH cpeamux ‘Ye3sapa nocne-
moBatensHOCTH {XoT"}, rne X uuTerpmpyemas ciydailHas BeJWYMHA H T Mepy coxpaHsiomas
Tpaschopmalus. Mbl 3aHEIMaeMCS CXOMMOCTBIO cpefiuux Yesapa nocnegoBarensHoctd { X, o T™}, re
X, NOCIER0BATENLHOCTh HHTEMPHPYEMBIX CIy4aHHBIX BETHYMH.

Teopema. ITycts X, > X n.B., |X,|<Y, n=1,2, ... raeY uHrerpupyemas ciyqanHasd BeIHYHHA.
Torna

%ix,orﬁll'lln% iXoT 1.B.

im1 i=1
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