Mathematic Slovaca

Radomír Halaš
Decompositions of directed sets with zero

Mathematica Slovaca, Vol. 45 (1995), No. 1, 9--17

Persistent URL: http://dml.cz/dmlcz/132009

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

DECOMPOSITIONS OF DIRECTED SETS WITH ZERO

RADOMÍR HALAŠ
(Communicated by Tibor Katrin̆ák)

Abstract

A correspondence is shown between decompositions of directed ordered sets with zero and suitable neutral and complemented pairs of ideals satisfying certain conditions (P) and (P^{\prime}).

The aim of this paper is to show a relationship between direct decompositions of ordered sets and suitable ideals similarly as it was done for lattices ($[1$; Chapter 3, §4, Theorem 1]).

Let (S, \leq) be an ordered set. If there is no danger of misunderstanding, we will denote it shortly by S. The inverse relation of \leq is denoted by \geq.

For a subset $X \subseteq S$ of an ordered set S, we define an upper (lower) cone of X in S :

$$
\begin{aligned}
& U_{S}(X):=\{x \in S: \quad \forall a \in X: x \geq a\} \\
&\left(L_{S}(X):=\{x \in S: \quad \forall a \in X: x \leq a\}\right)
\end{aligned}
$$

Remark. Subscripts will be omitted if there is no danger of misunderstanding.

We shall write briefly $L_{S} U_{S}(X)$ or $U_{S} L_{S}(X)$ instead of $L_{S}\left(U_{S}(X)\right)$ or $U_{S}\left(L_{S}(X)\right)$, respectively. If $A, B \subseteq S$, we denote by $L_{S}(A, B)$ and $U_{S}(A, B)$ the sets $L_{S}(A \cup B)$ and $U_{S}(A \cup B)$, respectively.

A subset $I \subseteq S$ is called an $i d e a l$ of S if $L_{S} U_{S}(\{a, b\}) \subseteq I$ whenever $a, b \in I$ (the case $I=\emptyset$ is not excluded).

Recall that an ordered set S is directed if $U_{S}(\{a, b\}) \neq \emptyset$ for each $a, b \in S$. A lattice of all ideals in S will be denoted by $\operatorname{Id}(S)$. Let us note that the set $L(x)$ is an ideal for each element $x \in S$ and meet in $\operatorname{Id}(S)$ coincides with set-theoretic intersection. If S has the least element, it will be denoted by 0_{S}, and then the

AMS Subject Classification (1991): Primary 06A10, 06A99.
Key words: Ideal lattice, Neutral (Complemented) pair of elements of ideal lattice.

RADOMÍR HALAŠ

set of all non-void ideals forms a complete lattice $\operatorname{Id}_{0}(S)$, which is clearly a sublattice of $\operatorname{Id}(S)$.

For basic properties of ideals in ordered sets see [5].
Let L be a lattice. An element $a \in L$ is neutral if one of the following (equivalent) conditions is valid: (see [1])
(i) For each $x, y \in L$, the sublattice of L generated by $\{a, x, y\}$ is distributive.
(ii) There exists an embedding ϕ of L into the direct product $M \times N$ of lattices M, N such that M has a zero element $0, N$ has a unit element 1 , and $\phi(a)=(0,1)$.
Let $K, L \subseteq S$ and let $C_{1}(K, L)=\bigcup\{L U(a, b) ; a, b \in K \cup L\}$. Inductively, let $C_{n+1}(K, L)=\bigcup\left\{L_{S} U_{S}(a, b) ; a, b \in C_{n}(K, L)\right\}$ for each $n \in \mathbb{N}$.

Lemma 1. Let S be an ordered set, $K, L \in \operatorname{Id}_{0}(S)$. Then

$$
K \vee L=\bigcup\left\{C_{n}(K, L) ; n \in \mathbb{N}\right\}
$$

Proof. Evidently, $K \vee L \supseteq \bigcup\left\{C_{n}(K, L) ; n \in \mathbb{N}\right\} \supseteq K \cup L$. It suffices to show that the set $\bigcup\left\{C_{n}(K, L) ; n \in \mathbb{N}\right\}$ is an ideal.

Let $a \in C_{m}(K, L), b \in C_{n}(K, L)$ for some $m, n \in \mathbb{N}$. Without loss of generality, we suppose $m \geq n$. Since the sets $C_{n}(K, L)$ form a chain, we have $a, b \in C_{m}(K, L)$. By the definition of $C_{m}(K, L)$, it is obvious that $L U(a, b)$ _ $C_{m+1}(K, L)$, hence $\bigcup\left\{C_{n}(K, L) ; n \in \mathbb{N}\right\}$ is an ideal.
Lemma 2. Let A, B be ordered sets. Suppose $S=A \times B$ is a directed set with the zero element 0_{S}. Then also A has the zero element 0_{A}, and B has the z. ro element 0_{B}, and the sets $I=\left\{\left\langle a, 0_{B}\right\rangle ; a \in A\right\}, J=\left\{\left\langle 0_{A}, b\right\rangle ; b \in B\right\}$ are ideals of S. Moreover, for every $K, L \in \operatorname{Id}_{0}(S)$ we have $(K \vee L) \cap I$ $(K \cap I) \vee(L \cap I)$ and $(K \vee L) \cap J=(K \cap J) \vee(L \cap J)$, where the symbol \vee denotes join in $\operatorname{Id}_{0}(S)$.

Proof. Let $\mathfrak{a}=\left\langle a, 0_{B}\right\rangle$ and $\mathfrak{b}=\left\langle b, 0_{B}\right\rangle \in I$. Since S is directed, we obtain

$$
\begin{aligned}
L_{S} U_{S}(\mathfrak{a}, \mathfrak{b}) & =L_{S}\left(\left\{\langle z, w\rangle ; \quad z \in U_{A}(a, b), w \in B\right\}\right) \\
& =\left\{\left\langle q, 0_{B}\right\rangle ; q \in L_{A} U_{A}(a, b)\right\} \subseteq I
\end{aligned}
$$

thus I is an ideal. It can be done similarly for J.
The inclusion $(K \vee L) \cap I \supseteq(K \cap I) \vee(L \cap I)$ is obvious. By Lemma 1, it suffices to show that $C_{n}(K, L) \cap I \subseteq(K \cap I) \vee(L \cap I)$ for each $n \in \mathbb{N}$.
(1) Let $n=1$. Then $C_{1}(K, L)=\bigcup\left\{L_{S} U_{S}(x, y) ; x, y \in K \cup L\right\}$. Without loss of generality, let $x \in K, y \in L$ and $x=\left\langle x_{1}, x_{2}\right\rangle, y=\left\langle y_{1}, y_{2}\right\rangle$. Suppose that $\left\langle a, 0_{B}\right\rangle \in C_{1}(K, L) \cap I$ and $\left\langle a, 0_{B}\right\rangle \in L_{S} U_{S}(x, y)$.

Then $a \in L_{A} U_{A}\left(x_{1}, y_{1}\right)$. Obviously, $\left\langle x_{1}, 0_{B}\right\rangle \in K,\left\langle y_{1}, 0_{B}\right\rangle \in L$, hence $\left\langle a, 0_{B}\right\rangle \in(K \cap I) \vee(L \cap I)$.
(2) Suppose that $C_{n}(K, L) \cap I \subseteq(K \cap I) \vee(L \cap I)$. We shall prove that this holds for $n+1$.

Let $\left\langle b, 0_{B}\right\rangle \in C_{n+1}(K, L)$. Then
$\left\langle b, 0_{B}\right\rangle \in L_{S} U_{S}\left(\left\langle x_{1}, x_{2}\right\rangle,\left\langle y_{1}, y_{2}\right\rangle\right) \quad$ for some $\quad\left\langle x_{1}, x_{2}\right\rangle,\left\langle y_{1}, y_{2}\right\rangle \in C_{n}(K, L)$.
This implies $b \in L_{A} U_{A}\left(x_{1}, y_{1}\right)$, where $\left\langle x_{1}, 0_{B}\right\rangle,\left\langle y_{1}, 0_{B}\right\rangle \in C_{n}(K, L) \cap I$. By the induction hypothesis, $\left\langle x_{1}, 0_{B}\right\rangle,\left\langle y_{1}, 0_{B}\right\rangle \in(K \cap I) \vee(L \cap I)$, therefore $\left\langle b, 0_{B}\right\rangle \in$ $(K \cap I) \vee(L \cap I)$.

Theorem 1. Let A, B be ordered sets. Suppose $S=A \times B$ is a directed set with the zero element 0_{S}.

Then the sets $I=\left\{\left\langle a, 0_{B}\right\rangle ; a \in A\right\}$ and $J=\left\{\left\langle 0_{A}, b\right\rangle ; b \in B\right\}$, where 0_{A} or 0_{B} are the zero elements of A or B, respectively, are neutral and complemented elements in $\mathrm{Id}_{0}(S)$ satisfying the following conditions (P) and $\left(\mathrm{P}^{\prime}\right)$:
(P): $\forall i \in I, j \in J \quad \exists x \in S: \quad L_{S} U_{S}(i, j)=L_{S}(x)$,
$\left(\mathrm{P}^{\prime}\right): \forall x \in S: \quad L_{S}(x)=\bigcup\left\{L_{S} U_{S}(i, j) ; i \in L_{S}(x) \cap I, j \in L_{S}(x) \cap J\right\}$.
Remark. The condition (P) is equivalent with the existence of $\sup (i, j)$ in S for every $i \in I, j \in J$.

Proof. Obviously, $I \cap J=\left\{\left\langle 0_{A}, 0_{B}\right\rangle\right\}$ and $\left\langle a, 0_{B}\right\rangle,\left\langle 0_{A}, b\right\rangle \in I \vee J$. For every $\langle a, b\rangle \in S$ we have

$$
\langle a, b\rangle \in L_{S} U_{S}\left(\left\langle a, 0_{B}\right\rangle,\left\langle 0_{A}, b\right\rangle\right) \subseteq I \vee J
$$

therefore $I \vee J=S$.
If $K \in \operatorname{Id}_{0}(S)$, then clearly $K \supseteq(K \cap I) \vee(K \cap J)$. Suppose that $\langle a, b\rangle \in K$. Then $\left\langle a, 0_{B}\right\rangle \in K \cap I$ and $\left\langle 0_{A}, b\right\rangle \in K \cap J$, which implies $\left\langle a, 0_{B}\right\rangle,\left\langle 0_{A}, b\right\rangle \in$ $(K \cap I) \vee(K \cap J)$, thus $\langle a, b\rangle \in(K \cap I) \vee(K \cap J)$ and $K=(K \cap I) \vee(K \cap J)$.

Let us prove that $K \cap I$ is an ideal in I :
if $\left\langle x, 0_{B}\right\rangle,\left\langle y, 0_{B}\right\rangle \in K \cap I$, then $L_{I} U_{I}\left(\left\langle x, 0_{B}\right\rangle,\left\langle y, 0_{B}\right\rangle\right)=L_{I}\left\{\left\langle w, 0_{B}\right\rangle ; w \in\right.$ $\left.U_{A}(x, y)\right\}=\left\{\left\langle q, 0_{B}\right\rangle ; q \in L_{A} U_{A}(x, y)\right\} \subseteq K \cap I$.

Analogously, $K \cap J$ is an ideal in J.
Now we are going to prove that there exists an embedding ϕ of $\operatorname{Id}_{0}(S)$ to $\operatorname{Id}_{0}(I) \times \operatorname{Id}_{0}(J)$ such that $\phi(I)=\left\langle I,\left\{\left\langle 0_{A}, 0_{B}\right\rangle\right\}\right\rangle$ and $\phi(J)=\left\langle\left\{\left\langle 0_{A}, 0_{B}\right\rangle\right\}, J\right\rangle$.

Let us define the mapping $\phi: \operatorname{Id}_{0}(S) \rightarrow \operatorname{Id}_{0}(I) \times \operatorname{Id}_{0}(J)$ by the rule:

$$
\phi(K)=\langle K \cap I, K \cap J\rangle
$$

If $\phi(K)=\phi(L)$, then $K \cap I=L \cap I, K \cap J=L \cap J$, and therefore $K=$ $(K \cap I) \vee(K \cap J)=(L \cap I) \vee(L \vee J)=L$, hence ϕ is injective. We shall prove that ϕ is a lattice homomorphism. Evidently,

$$
\phi(K \cap L)=\phi(K) \cap \phi(L)
$$

RADOMÍR HALAŠ

Denote by \vee^{*} the join in $\operatorname{Id}_{0}(I)$.
By Lemma 2, $(K \vee L) \cap I=(K \cap I) \vee(L \cap I)$.
Let $M \in \operatorname{Id}_{0}(I)$ such that $M \supseteq(K \cap I) \cup(L \cap I)$. Let us prove, that $M \in \operatorname{Id}_{0}(S):$
let $\left\langle a, 0_{B}\right\rangle,\left\langle b, 0_{B}\right\rangle \in M$; then

$$
L_{I} U_{I}\left(\left\langle a, 0_{B}\right\rangle,\left\langle b, 0_{B}\right\rangle\right)=L_{S} U_{S}\left(\left\langle a, 0_{B}\right\rangle,\left\langle b, 0_{B}\right\rangle\right) \subseteq M
$$

thus M is an ideal in S.
Therefore $M \supseteq(K \cap I) \vee(L \cap I)$. But $(K \cap I) \vee(L \cap I)$ is an ideal in I which contains $(K \cap I) \cup(L \cap I)$, thus
$(K \cap I) \vee(L \cap I)=(K \cap I) \vee^{*}(L \cap I) \quad$ and $\quad(K \vee L) \cap I=(K \cap I) \vee^{*}(L \cap I)$, thus ϕ is a lattice homomorphism.

Further,

$$
\phi(I)=\left\langle I,\left\{\left\langle 0_{A}, 0_{B}\right\rangle\right\}\right\rangle, \quad \phi(J)=\left\langle\left\{\left\langle 0_{A}, 0_{B}\right\rangle\right\}, J\right\rangle
$$

i.e. I, J are neutral elements in $\operatorname{Id}_{0}(S)$.

Let $\left\langle a, 0_{B}\right\rangle \in I$ and $\left\langle 0_{A}, b\right\rangle \in J$. Then $L_{S} U_{S}\left(\left\langle a, 0_{B}\right\rangle,\left\langle 0_{A}, b\right\rangle\right)=L_{S}(\{\langle u, v\rangle ;$ $\left.\left.u \in U_{A}(a), v \in U_{B}(b)\right\}\right)=L_{S}(\langle a, b\rangle)$, thus the ideals I, J satisfy the condition (P).

Finally, we shall prove that I, J satisfy the condition (P^{\prime}). It suffices to show that C is an ideal.

Let $a \in L_{S} U_{S}(i, j)$ and $b \in L_{S} U_{S}\left(i^{*}, j^{*}\right)$, where $i, i^{*} \in L_{S}(x) \cap I$, and $j, j^{*} \in L_{S}(x) \cap J$.

Then $i, i^{*}, j, j^{*} \leq x$. Suppose $x=\langle m, n\rangle, i=\left\langle k, 0_{B}\right\rangle, i^{*}=\left\langle k^{*}, 0_{B}\right\rangle, j$ $\left\langle 0_{A}, l\right\rangle$ and $j^{*}=\left\langle 0_{A}, l^{*}\right\rangle$. If $\alpha=\left\langle m, 0_{B}\right\rangle$ and $\beta=\left\langle 0_{A}, n\right\rangle$, then $i, i^{*} \leq \alpha$ and $j, j^{*} \leq \beta$.

Let $C=\bigcup\left\{L_{S} U_{S}(i, j) ; \quad i \in L_{S}(x) \cap I, \quad j \in L_{S}(x) \cap J\right\}$.
We obtain $U_{S}\left(i, i^{*}\right) \supseteq U_{S}(\alpha)$, and $U_{S}\left(j, j^{*}\right) \supseteq U_{S}(\beta)$. Hence $L_{S} U_{S}(a, b)$ $L_{S} U_{S}\left(i, i^{*}, j, j^{*}\right) \subseteq L_{S} U_{S}(\alpha, \beta) \subseteq C$. Thus C is an ideal, $C \supseteq\left(L_{S}(x) \cap I\right)$ $\left(L_{S}(x) \cap J\right)$, and by Lemma 2, we have $C=\left(L_{S}(x) \cap I\right) \vee\left(L_{S}(x) \cap J\right)=L_{S}(x)$.

We can state also the opposite statement:
Theorem 2. Let S be a directed ordered set with the zero 0_{S} and I, J be neutral and complemented ideals in $\operatorname{Id}_{0}(S)$. If these ideals satisfy the conditions (P) and (P '), then $S=I \times J$.

Proof. For $x \in S$ we have: $x \in L_{S}(x)=L_{S}(x) \cap(I \vee J)=\left(L_{S}(x) \cap I\right) \vee$ $\left(L_{S}(x) \cap J\right)$ by the neutrality of I, J. Thus by (${ }^{\prime}$ '), $x \in L_{S} U_{S}(i, j)$ for some $i \in L_{S}(x) \cap I, j \in L_{S}(x) \cap J$. This gives
$L_{S}(x) \subseteq L_{S} U_{S}(i, j), \quad U_{S}(i), U_{S}(j) \supseteq U_{S}(x), \quad L_{S} U_{S}(i, j) \subseteq L_{S} U_{S}(x)=L_{S}(x)$,
and consequently

$$
\begin{equation*}
L_{S}(x)=L_{S} U_{S}(i, j) \tag{*}
\end{equation*}
$$

Now we shall show that the foregoing expression is unique:
$L_{S}(x) \cap I=L_{S} U_{S}(i, j) \cap I=\left(L_{S}(i) \vee L_{S}(j)\right) \cap I=L_{S}(i) \vee\left(L_{S}(j) \cap I\right)=L_{S}(i)$.
Analogously,

$$
\begin{equation*}
L_{S}(x) \cap J=L_{S}(j) \tag{**}
\end{equation*}
$$

Let $\phi: S \rightarrow I \times J$ be a mapping defined by:

$$
\phi(x)=\langle i, j\rangle,
$$

where $i \in I, j \in J$ are such that $L_{S}(x)=L_{S} U_{S}(i, j)$.
Let $\langle i, j\rangle \in I \times J$. Since the ideals I, J satisfy the condition (P), there exists an element $x \in S$ with $L_{S}(x)=L_{S} U_{S}(i, j)$, and therefore ϕ is surjective. From the uniqueness condition $(* *)$ and $(*)$ it is clear that ϕ is also injective.

Let $x, y \in S, x \leq y$. Then $L_{S}(x) \subseteq L_{S}(y)$, and for $L_{S}(x)=L_{S} U_{S}(i, j)$, $L_{S}(y)=L_{S} U_{S}\left(i^{\prime}, j^{\prime}\right)$ we obtain: $L_{S}(i)=L_{S}(x) \cap I \subseteq L_{S}(y) \cap I=L_{S}\left(i^{\prime}\right)$, i.e. $i \leq i^{\prime}$. Analogously, $j \leq j^{\prime}$.

Conversely, if $i \leq i^{\prime}, j \leq j^{\prime}$, then $L_{S} U_{S}(i, j) \subseteq L_{S} U_{S}\left(i^{\prime}, j^{\prime}\right)$, thus $L_{S}(x) \subseteq$ $L_{S}(y)$ and $x \leq y$. In summary, we have $S=I \times J$.

COROLLARY. There exists a one-to-one correspondence between decompositions of directed ordered sets with zero and pairs of neutral complemented ideals satisfying the conditions (P) and (P ').

Remark. The following examples show that the foregoing conditions (P) and (P ') are independent.

Figure 1.

RADOMÍR HALAS

Example 1. Let S be an ordered set whose diagram is visualized in Fig. 1. Then $I=\{a, b, d, f, g, k\}, J=\{a, c\}$ are ideals of $\operatorname{Id}_{0}(S), I \cap J=L(a)=\left\{0_{S}\right\}$ and $I \vee J=S$. The ideals I, J satisfy the condition (P):

$$
\begin{array}{ll}
L U(b, c)=L(e), & L U(f, c)=L(j), \quad L U(k, c)=L(m) \\
L U(d, c)=L(h), & L U(g, c)=L(l),
\end{array}
$$

I, J satisfy the condition $\left(\mathrm{P}^{\prime}\right)$ and are neutral elements of $\operatorname{Id}_{0}(S)$. Thus $S=$ $I \times J$.

Example 2. Let S be an ordered set visualized in Fig. 2. Let $I=\{a, c, 0\}$ and $J=\{b, d, 0\}$. Then $I \cap J=\{0\}$ and $I \vee J=S$. Since the lattice $\operatorname{Id}_{0}(S)$ is distributive (see Fig. 3), every element of $\operatorname{Id}_{0}(S)$ is neutral. However, the condition (P) for I and J is not satisfied: $c \in I, d \in J$, but $c \vee d$ does not exist. On the contrary, the condition (P^{\prime}) is valid: (subscripts are omitted), for
$x=0: \quad L(x) \cap I=\{0\}, \quad L(x) \cap J=\{0\}, \quad L(0)=L U(0) ;$
$x=c: \quad L(x) \cap I=\{c, 0\}, \quad L(x) \cap J=\{0\}, \quad L(c)=L U(c, 0) \cup L U(0) ;$
$x=a: \quad L(x) \cap I=\{a, c, 0\}, \quad L(x) \cap J=\{0\}$,
$L(a)=L U(a, 0) \cup L U(c, 0) \cup L U(0,0)$;
$x=e: \quad L(x) \cap I=\{a, c, 0\}, \quad L(x) \cap J=\{d, 0\}$, $L(e)=L U(a, d) \cup L U(a, 0) \cup L U(c, d) \cup L U(c, 0) \cup L U(d, 0) \cup L U(0,0)$;
$x=1: \quad L(x) \cap I=I, \quad L(x) \cap J=J, \quad L(1)=L U(a, b)=S$.
It does not hold $S=I \times J$, because $\operatorname{card}(S)=8$ and $\operatorname{card}(I \times J)=9$.

Figure 2.

Figure 3.

Example 3. Let S be an ordered set visualized in Fig. 4. It is an ordered set in Fig. 1 with one more element r, where r is a join of elements e, h. Thus the lattice $\operatorname{Id}_{0}(S)$ is the same as that for an ordered set in Fig. 1. Hence, $L(k)$,
$L(c)$ are complemented neutral ideals in $\operatorname{Id}_{0}(S)$. Let us show that the condition (P) is valid:

$$
c \vee b=e, \quad c \vee d=h, \quad c \vee f=j, \quad c \vee g=l, \quad c \vee k=m
$$

and by symmetry, there exists a join of the remaining elements of S. However, the condition (P^{\prime}) is not valid: for an element r one has:

$$
\begin{aligned}
& L_{S}(r) \cap L_{S}(k)=\{b, d, a\}, \quad L_{S}(r) \cap J=\{c, a\} \quad \text { and } \\
& \begin{array}{|l}
\bigcup\{L U(i, j): i \in L(k, r), \quad j \in L(c, r)\} \\
\quad=L_{S} U_{S}(b, c) \cup L_{S} U_{S}(b, a) \cup L_{S} U_{S}(d, c) \cup L_{S} U_{S}(d, a) \cup L_{S} U_{S}(a, c) \\
\quad=L_{S}(e) \cup L_{S}(h) \cup L_{S}(d) \cup L_{S}(b) \cup L_{S}(c)=L_{S}(e) \cup L_{S}(h) \neq L_{S}(r) .
\end{array}
\end{aligned}
$$

Figure 4.
From Examples 2, 3 we see that the conditions (P), (P') are independent.
Decompositions of ordered sets were studied also by M. Kolibiar, see [4], [5].

We can compare the above obtained results with those of [3].
DEFINITION. (see [3]) Let S be a directed ordered set. An equivalence θ on S will be called a congruence relation on S if the following conditions are satisfied:
(i) For each $a \in S,[a] \theta(=\{x \in S ;(x, a) \in \theta\})$ is a convex subset of S.
(ii) If $a, b, c \in S, a \leq c, b \leq c$, and $(a, b) \in \theta$, then there is $d \in S$ such that $a \leq d \leq c, b \leq d$ and $(a, d) \in \theta$.
(iii) If $a, b, u, v \in S, u \leq a \leq v, u \leq b \leq v$ and $(u, a) \in \theta((a, v) \in \theta)$, then there is $t \in S$ such that $b \leq t \leq v, a \leq t,(u \leq t \leq b, t \leq a)$ and $(b, t) \in \theta$.

RADOMÍR HALAŠ

It is proven in [4] that if S satisfies the restricted ascending chain condition, there is a one-to-one correspondence between the direct product decompositions of S into two components, and congruences θ_{1}, θ_{2} of S satisfying
(1) $\theta_{1} \cap \theta_{2}=\mathrm{id}_{S}$,
(2) given x_{1} and x_{2} of S, there exists an element $x \in S$ such that $\left(x, x_{1}\right) \in$ θ_{1} and $\left(x, x_{2}\right) \in \theta_{2}$.

ThEOREM 3. Let S be a directed ordered set with the zero 0_{S}, and I, J be neutral and complemented ideals in $\operatorname{Id}_{0}(S)$ satisfying the conditions (P), (P '). Then there exist congruences θ_{I}, θ_{J} of S satisfying the conditions (1), (2) such that $S / \theta_{I} \cong I$ and $S / \theta_{J} \cong J$.

Proof. It has been proven in Theorem 2 that for each $x, y \in S$ there exist unique $i_{x}, i_{y} \in I, j_{x}, j_{y} \in J$ such that $L(x)=L U\left(i_{x}, j_{x}\right), L(y)=L U\left(i_{y}, j_{y}\right)$ and

$$
x \leq y \Longleftrightarrow i_{x} \leq i_{y}, \quad j_{x} \leq j_{y}
$$

Let us define the relation θ_{I} on S by the rule:

$$
(x, y) \in \theta_{I} \Longleftrightarrow i_{x}=i_{y} .
$$

It is evident that θ_{I} is an equivalence. We shall prove that θ_{I} is a congruence:
(i) If $x \leq y \leq z$ and $(x, z) \in \theta_{I}$, then $i_{x} \leq i_{y} \leq i_{z}$, but $i_{x}=i_{z}$, hence $i_{x}=i_{y}=i_{z}$.
(ii) It suffices to put $L(d)=L U\left(i_{a}, j_{c}\right)$. Then $a \leq d \leq c, b \leq d$ and $(a, d) \in \theta_{I}$.
(iii) We put $L(t)=L U\left(i_{b}, j_{v}\right)$. Then $b \leq t \leq v, a \leq t$ and $(b, t) \in \theta_{I}$.

Analogously, we obtain a congruence θ_{J} :

$$
(x, y) \in \theta_{J} \Longleftrightarrow j_{x}=j_{y} .
$$

If $(x, y) \in \theta_{I} \cap \theta_{J}$, then $i_{x}=i_{y}, j_{x}=j_{y}$, hence $x=y$ and

$$
\theta_{I} \cap \theta_{J}=\operatorname{id}_{S}
$$

If $x_{1}, x_{2} \in S$, then for $L(x)=L U\left(i_{x_{1}}, j_{x_{2}}\right)$ we have

$$
\left(x, x_{1}\right) \in \theta_{I}, \quad\left(x, x_{2}\right) \in \theta_{J}
$$

Finally, θ_{I}, θ_{J} are decomposition congruences of S.
The proof of the remaining part of the theorem is clear.

DECOMPOSITIONS OF DIRECTED SETS WITH ZERO

REFERENCES

[1] GRÄTZER, G.: General Lattice Theory (Russian translation), Moscow, 1982.
[2] HALAŠ, R.: Pseudocomplemented ordered sets, Arch. Math. (Brno) 29 (1993), 3-4, 153160.
[3] KOLIBIAR, M.: Congruence relations and direct decompositions of ordered sets, Acta Sci. Math. (Szeged) 51 (1987), 129-135.
[4] KOLIBIAR, M.: Congruence relations and direct decompositions of ordered sets II. In: Contribution to General Algebra 6. Hälder-Pichler-Tempski, 1988, pp. 167-172.
[5] RACHŮNEK, J.: O-idèaux des ensembles ordonnées, Acta Univ. Palack. Olomouc Fac. Rerum Natur. Math. 45 (1974), 77-81.

Received October 7, 1992
Revised April 13, 1993

Department of Algebra and Geometry Faculty of Science Palacký University
Tomkova 40
CZ-77146 Olomouc
Czech Republic

