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DECOMPOSITIONS OF 

DIRECTED SETS WITH ZERO 

RADOMIR HALAS 

(Communicated by Tibor Katrindk) 

ABSTRACT. A correspondence is shown between decompositions of directed 
ordered sets with zero and suitable neutra l and comp lemented pairs of ideals 
satisfying certain conditions (P) and (P ') . 

The aim of this paper is to show a relationship between direct decompo
sitions of ordered sets and suitable ideals similarly as it was done for lattices 
([1; Chapter 3, §4, Theorem 1]). 

Let (S, <) be an ordered set. If there is no danger of misunderstanding, we 
will denote it shortly by S. The inverse relation of < is denoted by > . 

For a subset X C S of an ordered set S, we define an upper (lower) cone of 
X in S: 

US(X) :={xeS : Va E X : x > a} , 

(LS(X) :={xeS: VatX : x<a}). 

R e m a r k . Subscripts will be omitted if there is no danger of misunder
standing. 

We shall write briefly LSUS(X) or USLS(X) instead of LS(US(X)) or 
US(LS(X)), respectively. If A, B C S, we denote by LS(A,B) and US(A,B) 
the sets LS(A U B) and US(A U B), respectively. 

A subset / C S is called an ideal of S if LsUs({a, b}) C / whenever a, b G I 
(the case 7 = 0 is not excluded). 

Recall that an ordered set S is directed if Us({a, b}) ^ 0 for each a, b G S. A 
lattice of all ideals in S will be denoted by Id(S) . Let us note that the set L(x) 
is an ideal for each element x G S and meet in Id(S) coincides with set-theoretic 
intersection. If S has the least element, it will be denoted by O5, and then the 
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set of all non-void ideals forms a complete lattice Ido(S'), which is clearly a 
sublattice of Id(5) . 

For basic properties of ideals in ordered sets see [5]. 
Let L be a lattice. An element a G L is neutral if one of the following 

(equivalent) conditions is valid: (see [1]) 

(i) For each x,y G F, the sublattice of L generated by {a,x,H} is dis
tributive. 

(ii) There exists an embedding <f> of L into the direct product M x N 
of lattices M , N such that M has a zero element 0, IV has a unit 
element 1, and 0(a) = (0,1). 

Let K, L C S and let CX(K, L) = \J{LU(a, b); a, 6 G K U L} . Inductively, 
let Cn+1(K,L) = \J{LsUs(a,b)\ a,beCn(K,L)} for each n G N. 

LEMMA 1. Let S be an ordered set, K,L G Idn(S'). Then 

KvL = \J{Cn(K,L)', nGN}. 

P r o o f . Evidently, K V L D \J{Cn(K, L); n G N} D JC U F. It suffices to 
show that the set \J{Cn(K, L)\ n G N} is an ideal. 

Let a G Cm(K,L), b G Cn(K,L) for some ra, n G N. Without loss of gen
erality, we suppose m > n. Since the sets Cn(K,L) form a chain, we have 
a,6 G Cm(K,L). By the definition of Cm(K,L), it is obvious that LU(a,b) _ 
C777 + 1 (AT, L) , hence lJ{Cn(iv', L ) ; n G N} is an ideal. C 

LEMMA 2. Jet A, B be ordered sets. Suppose S = A x B is a directed set 
with the zero element O5. Then also A has the zero element 0^ , and B has the 
Zi ro element OB, and the sets I = { (a ,0#) ; a £ A}, J = {(0,4,6); 6 G B} 
arc ideals of S. Moreover, for every K,L G Idn(S') we have (K V L) n J 
[K n J) V (L n J) and (Jv V L) n J = (K n J ) V (L n J ) , uj/iere lbe surabOl V 
denotes join in Ido(S'). 

P r o o f . Let a = (a, OB) and b = (6, O5) G J . Since 5 is directed, we obtain 

LsUs(a,b) = Ls({(z,w)i zeUA(a,b), w G B}) 

= {(9, 0 B ) ; g G L A M a , 6 ) } C / , 

thus J is an ideal. It can be done similarly for J. 
The inclusion (K V L) n J 2 ( I T n J ) V ( L n J) is obvious. By Lemma 1, it 

suffices to show that Cn(K, L) n I C (K n I) V (L H I) for each n G N. 
(1) Let n = 1. Then CX(K,L) = \J{LsUs(x, y) ; x,H G JT U F } . Without 

loss of generality, let x G iv , 2/ G K and x = (x i , x 2 ) , 2/ = (2/1? 2/2)- Suppose 
that (a, 0B) G C i ( J f , L ) n J and (a,0B) eLsUs(x,y). 
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Then a E L A U A (# i ,y i ) . Obviously, ( X I , 0 B ) E if, (2/1, OB) E L, hence 
(a ,0B) E ( i f n / ) V ( L n / ) . 

(2) Suppose that Cn(if, L) n / C (K n / ) V (L n / ) . We shall prove that this 
holds for n + 1. 

Let (6,0/?) G C n + i ( i f , L ) . Then 

( 6 , 0 B ) G L5C/5 ( (x i ,x 2 ) , (2/1,2/2)) for some (x i ,x 2 ) , (2/1,2/2) G Cn(/C, L ) . 

This implies 6 E LAUA(x1 ,?/1), where ( # I , 0 B ) , (2/15 OB) G Cn(K, L) H / . By the 
induction hypothesis, (xi, OB) , (2/1, OB) £ (if H / ) V (L H / ) , therefore (6, OB) E 
(if n i) v (L n / ) . • 

THEOREM 1. Le£ A, B be ordered sets. Suppose S = A x B is a directed set 
with the zero element 0s. 

Then the sets I = {(a, OB) *, a e A} and J = {(0A,6) ; 6 E B}, where 0A or 
OB are the zero elements of A or B, respectively, are neutral and complemented 
elements in Ido(S') satisfying the following conditions (P) and (P ' ) : 

(P): Vi€l,j€J 3x&S: LsUs{i,j) = Ls{x), 
(P'): VxeS: Ls{x) = \J{LsUs{i,j); ieLs{x)nI, jeLs{x)f)J}. 

R e m a r k . The condition (P) is equivalent with the existence of sup(i, j) 
in S for every i E / , j E J. 

P r o o f . Obviously, I n J = { ( 0 A , 0 B ) } and (a ,0 B ) , (0A, 6) e IV J. For 
every (a, 6) E S we have 

( a ,6 )EL 5 U s ( ( a ,0B) , (0 A , 6 ) ) C I V J , 

therefore I V J = S. 
If if E Id 0 (S) , then clearly if D (if n / ) V (if n J). Suppose that (a, 6) E if. 

Then (a ,0B) E if n / and (0A,6) E if n J, which implies (a, 0 B ) , (0A, 6) E 
(if n I) v (if n J), thus (a, 6) E (if n I) v (if n J) and if = (if n /) v (if n J). 

Let us prove that if n / is an ideal in / : 
if (x ,OB) , (2/,OB) E If n I , then L/tf/((a: ,0B) , (2/,OB)) = L / { ( W , 0 B ) ; W E 
UA(x,H)} = {(g,0B); aEL A U A (x ,2 / )} C if n l . 

Analogously, if n J is an ideal in J. 
Now we are going to prove that there exists an embedding </> of Ido(S) to 

Ido(I) x Ido(J) such that cf>(I) = ( I , {(0A , O B ) } ) and </>(J) = ( { ( 0 A , 0 B ) } , J>. 
Let us define the mapping </>: Ido(S') —> Ido(I) x Ido(J) by the rule: 

cf)(K) = (if n I, if n J). 

If (f)(K) = 0(L) , then i f n / = L n / , if n J = L n J, and therefore if = 
(if n / ) V (if n J) = (L n / ) V (L V J) = L, hence </> is injective. We shall prove 
that </> is a lattice homomorphism. Evidently, 

cf)(K n L) = <t>(K) n (j)(L). 
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Denote by V* the join in Id 0 (J) . 
By Lemma 2, (K V L) n J = (K n J) V ( J n J ) . 
Let M G Id0(J) such that M D ( K n I ) U ( L n I ) . Let us prove, that 

M e l d o ( S ) : 
let (a ,0 B ) , (b ,0 B ) G M ; then 

J / ^ / ( ( a , 0 5 ) , ( b , 0 B ) ) = J ; 5 ^ ( ( a , 0 / J ) , ( 6 , 0 5 ) ) C M , 

thus M is an ideal in S. 
Therefore M D (Jf n J) V (L n J ) . But ( I T n / ) V ( L n J) is an ideal in J which 

contains (K n J) U ( J fl J ) , thus 

(jfnJ)v(FnJ) = (IYnJ)v*(FnJ) and (KvL)n / = (Kn / )v* (Ln / ) , 

thus (j) is a lattice homomorphism. 
Further, 

</»(/) = (I,{{0A,0B)}), 4>(J) = ({(0A,0B)},J), 

i.e. J , J are neutral elements in Idrj(.S'). 

Let (a, 0B) G J and (0A,b) G J . Then LsUs((a, 0B), (OA, &)) = L 5 ( { ( w , v ) ; 
^ £ tlA(a) 5 ^ £ ^JB(o)}) = Ls((a, b)), thus the ideals J , J satisfy the condition 

(p)-_ 
Finally, we shall prove that J , J satisfy the condition (P') . It suffices to 

show that C is an ideal. 
Let a G LsUs(i,j) and b G LsUs(i*J*)1 where i, i* G Ls(-c) n J , and 

3,3* eLs(x)nJ. 
Then M*,3 ,3* < x. Suppose x = (ra, n ) , i = (&, 0^) , £* = (k*,0s), j 

(0,4,/) and j * = (0,4,/*). If a -= (ra, 0#) and /3 = (0,4, n ) , then i,i* < Q and 
3,3* < /3-

Let c = U { i s ^ ( i , i ) ; ^ L s W n / , 3GJ5(z)nJ}. 
We obtain E/s(i,i*) 2 Us(a), and Us(j,j*) 2 UsO9). Hence LsUs(a,b) 

LsUs(i,i*JJ*) C LsUs(a,(3) C C . Thus C is an ideal, C 2 ( J 5 ( x ) n J) 
(Ls (x )n J ) , and by Lemma 2, we have C = (Ls(x)nl) V (Ls(x)n J) = Ls(x). 

We can state also the opposite statement: 

THEOREM 2. Let S be a directed ordered set with the zero 0S and I. J be 
neutral and complemented ideals in ldo(S). If these ideals satisfy the conditions 
(P) and ( P ' ) ; tben S = I xJ. 

P r o o f . For x G S we have: x G L5(-c) = Ls(x) n (J V J ) = (i5(-c) H J) V 
(J;s(x) n J ) by the neutrality of J , J . Thus by (P ' ) , x G LsUs(iJ) for son e 
z G L5(a;) n J , j G Ls(x) H J . This gives 

Ls(x)CLsUs(iJ), Us(i),Us(j)DUs(x), LsUs(iJ) C LsUs(x) = Ls(x), 
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and consequently 

Ls(x) = LsUs(i,J). (*) 

Now we shall show that the foregoing expression is unique: 

Ls(x)n/ = LsUs(iJ)nI = (Ls(i) VLs(j)) nI = Ls(i) V (Ls(j) n7) = Ls(i). 

AnalogoLisly, 

Ls(x)nJ = Ls(j)-

Let (j>: S -+ I x J be a, mapping defined by: 

<t>(x) = (i,j) , 

(**) 

where i G I, j G J are such that Ls(x) = LsUs(i,j). 
Let (i,3) G / x J. Since the ideals I , J satisfy the condition ( P ) , there 

exists an element x G S with Ls(x) = LsUs(i,j), and therefore ^ is surjective. 
From the uniqueness condition (**) and (*) it is clear that (j) is also injective. 

Let x,y G S, x < y. Then Ls(x) C Ls(y), and for .Ls(x) -= LsUs(i,j), 
Ls(y) = LsUs(i'J') we obtain: L s ( 0 = - M * ) n / C L s ( y ) n J = Ls(i'), i.e. 
i < i'. Analogously, j < j ' . 

Conversely, if i < i', j < j ' , then LsUs(i,j) C LsUs(i',j'), thus Ls(^) ^ 
Ls(y) and x < y. In summary, we have S = I x J. • 

COROLLARY. There exists a one-to-one correspondence between decomposi
tions of directed ordered sets with zero and pairs of neutral complemented ideals 
satisfying the conditions (P) and ( P ' ) . 

R e m a r k . The following examples show that the foregoing conditions (P) 
and (P') are independent. 
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E x a m p l e 1 . Let 5 be an ordered set whose diagram is visualized in Fig- V 
Then I = {a,b,d,f,g,k}, J = {a,c} are ideals of Id 0 (5) , I n J = L(a) = {Os} 
and I V J = 5 , The ideals I, J satisfy the condition (P ) : 

LU(k,c) = L(m): 
LU(b,c) = L(e), LU(f,c) = L(j), 

LU(d, c) = L(h), LU(g, c) = L(l), 

I, J satisfy the condition (P') and are neutral elements of Ido(s)- Thus S = 
IxJ. 

E x a m p l e 2. Let S be an ordered set visualized in Fig. 2. Let I = {a, c, 0} 
and J = {b,d,0}. Then I f] J = {0} and // V J = 5 . Since the lattice Ido(s ) 
is distributive (see Fig. 3), every element of Id0(5) is neutral. However, the 
condition (P) for / and J is not satisfied: c £ I, d G J, but c V d does not 
exist. On the contrary, the condition (P') is valid: (subscripts are omitted), for 

.- = 0 : L(x)<ll = {0}, L(x)DJ={0}, L(0) = LU(0); 

x = c: L(x) n I = {c,0} , I ( i ) n J = {0}, L(c) = LU(c,0)ULU(0); 

x = a: L(x)C\I = { a , c ,0} , L(x)f)J = {0}, 

L(a) = LU(a, 0) U LU(c, 0) U XU(0,0); 

x = e: L(x)f)I = { a , c ,0} , L(x)D J = {d,0} , 

L(e) = LU(a, d) U LU(a, 0) U LU(c, d) U LU(c, 0) U LU(d, 0) U ZU (0 ,0) ; 

,r = l : L(x)Hl = I, L(x)HJ = J, L(l) = LU(a,b) = S . 

It does not hold S = I x J, because card(S) = 8 and card(7 X J) = 9. 

1 

Figure 3. 

E x a m p l e 3. Let 5 be an ordered set visualized in Fig. 4. It is an ordered 
set in Fig. 1 with one more element r , where r is a join of elements e, h. Thus 
the lattice Ido(5) is the same as that for an ordered set in Fig. 1. Hence, L(k), 
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L(c) are complemented neutral ideals in Ido(5) . Let us show that the condition 
(P) is valid: 

c V ò = e, c V d=h, c V / = j , c V g = l, : V k 

and by symmetry, there exists a join of the remaining elements of S. However, 
the condition (P') is not valid: for an element r one has: 

Ls(r) n Ls(k) = {b, d, a) , Ls(r) D J = {c, a} and 

\J{LU(i,j): i£L(k,r), j G L(c,r)} 

= LsUs(b, c) U LsUs(b, a) U LsUs(d, c) U LsUs(d, a) U LsUs(a, c) 

= Ls(e) U Ls(h) U Ls(d) U Ls(b) U L5(c) = Ls(e) U £<?(/*) ^ F5(r). 

From Examples 2,3 we see that the conditions ( P ) , (P') are independent. 

Decompositions of ordered sets were studied also by M. K o 1 i b i a r , see 

[4], [5]. 
We can compare the above obtained results with those of [3]. 

DEFINITION, (see [3]) Let 5 be a directed ordered set. An equivalence 6 on S 
will be called a congruence relation on S if the following conditions are satisfied: 

(i) For each a G S, [a]0 (= {x G 5 ; (x, a) G #}) is a convex subset of 5 . 
(ii) If a, b, c £ S, a < c, b < c, and (a, b) G 0, then there is d G S such 

that a < d < c, b < d and (a,d) G 9. 
(iii) If a,b,u,v £S,u<a<v,u<b<v and (u,a) G 0 ((a,v) G 0), 

then there is t G S such that b <t < v, a < t, (u < t < b, t < a) and 
(b,t)E0. 
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It is proven in [4] that if S satisfies the restricted ascending chain condition, 
there is a one-to-one correspondence between the direct product decompositions 
of S into two components, and congruences 0i , 02 of S satisfying 

(i) 0i n 02 = id 5 , 
(2) given x\ and x<i of 5 , there exists an element x G S such that (x, x\) G 

01 and (x, X2) G 02 . 

THEOREM 3. Let S be a directed ordered set with the zero O5. and I. J be 
neutral and complemented ideals in Idn(S') satisfying the conditions (P) . (P') . 
Then there exist congruences 9j, 0 j of S satisfying the conditions (1). (2) such 
that S/Qi = J and S/0J = J. 

P r o o f . It has been proven in Theorem 2 that for each x, y G S there exist 
unique ix,iy G J , jx,jy G J such that L(x) = LU(ixJx), L(y) = LU(iy,jy) 
and 

% —i y ^ '* ^x -i 1y •> Jx —i Jy • 

Let us define the relation 0/ on S by the rule: 

(x,y) G0/ 

It is evident that 0/ is an equivalence. We shall prove that 0/ is a congruence: 

(i) If x < y < z and (x,z) G 0/ , then ix < iy < iz, but ix = iz, hence 

^x — Iy ^z • 
(ii) It suffices to put L(d) = LU(ia,jc). Then a<d<c,b<d and 

(a, d) e0i. 
(iii) We put Z(*) = LU(ibJv). Then 6 < tj < U, a < t and (6, *) G 0 / . 

Analogously, we obtain a congruence 0 j : 

(x,y) e6j <=> j x =jy. 

If (x, y) € Oi Pi9j, then ix = iyi j x — jy, hence x = y and 

07 fl 0 j = id5 • 

If .Ti,x2 G 5 , then for Z(x) = LU(iXl,jX2) we have 

(x,xi) G 0 / , (x,x2) G 0 j . 

Finally, 0/ , 0j are decomposition congruences of S. 

The proof of the remaining part of the theorem is clear. • 
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