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THE OSCILLATION OF A DIFFERENTIAL 

EQUATION OF SECOND ORDER 
WITH DEVIATING ARGUMENT 

JOZEF DZURINA 

ABSTRACT. Our aim in this paper is to present criteria for oscillation and 
asymptotic behaviour of the equation 

(r(t)u'(t))'+p(t)f(u[g(t)])=0. 

The considered equation is in canonical or noncanonical form. 

We consider the second order differential equation with deviating argument 

(r(t)u'(t))' + p(t)f(u[g(t)}) = 0, t>t0. (I) 

We suppose throughout the paper that the following conditions hold. 

(i) pec([t0,cx>)), P(t)>o, 
(ii) r e C ( [ * 0 , o o ) ) , r(t)>0, 

(iii) g € C([to,oo)), g(t) —> oo as t —> oo, 

(iv) / £ C( ( -oo , oo)), xf(x) > 0 for x ^ 0. 

In the sequel we will restrict our attention to those solutions of the equations 
considered which are non-trivial in any neighbourhood of infinity. Such a solution 
is called oscillatory if it has arbitrarily large zeros and nonoscillatory otherwise. 
An equation is said to be oscillatory if all its solutions are oscillatory. 

Equation (1) is said to be in canonical form if 

/ * > — v 
and to be in canonical form if 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34C10. 
K e y w o r d s : Oscillation, Deviating argument. 
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oo 

/ r(s) 

For the sake of brevity we use the following notation 

< o o . (3) 

Л W = f ZПл> < > i o , 
da 

г ( a ) ' 

t>t0, 

for canonical equations, 

oo 

f ds 

t 

for noncanonical equations and 

Sf = max < lim sup -——r , lim sup -—- > , 
I j,--oo f(y) y-oo f{y) J 

for all equations and further we assume that 5/ < oo. Second order equations 
are most important in applications. Thus there is much literature regarding this 
kind of equations, mostly for canonical form (see e.g. [3], [4] and [6]). In the 
paper we deal with both canonical and noncanonical equations. 

Consider the linear case of equation (1), namely, the equation 

(r(t)u'(t))'+p(i)(u{g(t)])=0. (4) 

The following theorem is a simple consequence of [1, Theorem 11]. 

THEOREM 1. Assume that (2) hold. Let 

Q€Cl([t0,oo)), Q'(t)>0, Q(t)< min {g(t),t} , Q(t) - • oo as t -> oo . 

(5) 

(i) Equation (4) is oscillatory if 

00 

liminf Л[Q(t)] íp(s)ds > ì . 
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(ii) If 

liminf R[Q(t)] I p(s)ás > 0, 
ť—oo J 

then every nonosdilatory solution u(t) of (4) satisfies 

lim \u(t)\ = oo , 

limr(t)u'(t) = 0. V V 

t—KX> 

The following theorem is intended for extending the previous result to equa
tion (1) 

THEOREM 2. Assume that (2) and (5) hold, 

(i) The condition 

oo 

liminf R[Q(t)} fp(s)ds > ^Sf (6) 

t 

is sufficient for equation (1) to be oscillatory, 
(ii) U 

OO 

lim inf i rm] [p(s)ds>0, (7) 
t—oo J 

t 

then every nonos dilatory solution u(t) of (1) satisfies (P i ) . 
P r o o f . 
(i): Let u(t) be a nonoscillatory solution of (1) on [to,oo). Without loss of 

generality we may assume that u(t) is positive. Then by a well-known lemma 
of K i g u r a d z e [2, Lemma 3] we obtain that u'(t) > 0 for all t > t\ (> to ). 
Let us assume that u(t) is bounded. Then there exist some positive constants 
c\ and C2 such that for all t > t\ 

C\ > u(t) > c2 , 

c\ > u[g(t)} > c2 . 

An integration of (1) yields 

t oo 

u(t)> j ^—jp{s2)f(u{g(s2)})&S2&sx, t>U. (8) 
<i « i 
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Denote /o = min / ( w ) , then from (8) one gets 
[c i ,c 2 ] 

c\ > u(t) > /o / p(s2) / ——- ds\ ds2 , t > t\ 
J J r(s\) 

Hence, for all t > t\ 

ci>folp(s2)(R(s2)-R(ti))ds2. (9) 

Since (6) implies Jp(s)R(s)ds = oo , from (9) we have a contradict ion for 
t —> oo . 

Now, let us suppose tha t u(t) is unbounded as £ —> oo . Let t2 ( > t\ ) be 
chosen so tha t g(t) > to for t >t2 . Then arguing exactly as in the proof of [5, 
Theorem 1], it is easy to see tha t u(t) is a solution of the linear equat ion 

(r(t)г'(t))' + þ(t)u[g(t)} = 0, t > t0 , (10) 

where 

m = { 
P ( 0 г ,,чi , for í > Г2 

Чgrø] 
w jîfø). foг * Є [t0,t2]. 

a n d moreover 

oo oo 

fp(s)ds<{ sup - f - 1 /p( , )ds (11) 
J U>«[y(01 M^JJ J 

and 

oo 

liminf #[£?(*)] [ p(s)ds< - ^ , 
<—*oo y 4 

t 

which contradicts (6). 

(ii): Let us suppose tha t u( t ) be a positive solution of (1) on [ro, oo) . Since (7) 
oo 

implies J p(s)R(s) ds = oo, then exactly as in the par t (i) it can be shown tha t 
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u(t) cannot be bounded. Hence, we may suppose that u(t) is unbounded as 
t —» oo. Similarly as above we can verify that u(t) is a solution of (10). Let us 
suppose that u(t) does not satisfy (P i ) . Then by Theorem 1 there must be 

oo 

liminfR[Q(t)] fp(s)ds = 0. 

t 

Taking (11) into account and proceeding as above we obtain 

oo 

lim inf R[Q(t)] I p(s) ds < 0 , Sf = 0 , 
t—>oo J 

t 

which contradicts (7). The proof is complete. 

Theorem 2 provides for the superlinear case of equation (1), namely, for the 
equation 

(r(t)u'(t))' + p(t)\u[g(t))\asgn u[g(t)) = 0, a > 1, (12) 

the following result: 

COROLLARY 1. Assume that (2) and (5) hold. The condition 

oo 

liminf R[Q(t)) íp(s)ds > 0 

is sufficient for equation (12) to be oscillatory. 

Note that Theorem 1 is an extension of [3, Corollary 4.5.2] and generalizes the 
result o f J . - O h r i s k a [4, Theorem 2.3] concerning the equation (r(t)u'(t)) + 
p(t)(u(t)) = 0. On the other hand, Theorem 2 extends the result of C h . G . 
P h i 1 o s and Y . G . S f i c a s [5, Theorem 1']. For another result similar to 
Corollary 1 the reader is referred to [3, Corollary 4.5.1], where a G (0,1). 

Now we are prepared to extend the previous result to noncanonical equations. 

THEOREM 3 . Assume that (3) and (5) hold. 

(i) Equation (4) is oscillatory if 

oo 

^^•^m)Ie[9isMs)p{s)ds>\- (13) 

321 



JOZEF D2URINA 

(ii) If 
OO 

liminf - - - - j J g[g(s)]g(s)p(s) ds > 0 , (14) 

t 

then every nonosdilatory solution u(t) of (1) satisfies lim u(t) = 0. 
t—>oo 

P r o o f . 

(i): According to the general theory of W . F . T r e n c h [7, Lemma 1], 
equation (4) can be rewritten in canonical form as 

92 (t) (qi (t) (q0 (t)u(t))')' +p(t)u [g(t)j = 0, (4C) 

where functions q%(t) £ C([t0, oo)) and are defined as follows: 

OO 

_ _ _ - _ _ _ - /___ 
9o(<) ~ 92(0 ~ J r(s) ' 

t 

"M-H/̂ )' 
The transformation q0u = y reduces equation (4C ) to 

M')my+^m'm]=0- <15) 

and furthermore equation (4C) (as well as (4)) is oscillatory if and only if equa
tion (15) is oscillatory. On the other hand, by Theorem 1 we know that equa
tion (15) is oscillatory if 

C
Q(t) v / CO v 

/ 4 - ) ( / *'],v*A>\- (16) 
J ii(s)J\J &(s)qo\g(s)] J 4 

A simple computation shows that (16) is equivalent to (13). 
(ii): From the first part of the proof we know that y(t) is a solution of (15) 

if and only if u(t) = y(t)/qo(t) is a solution of (4). Theorem 1 implies that if 

, Q(*) V / oo 

WЃ(/Ш)(/-

QW 
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(which is equivalent to (14)), then every eventually positive solution of (15) 
satisfies 

lim qi(t)y\t) = 0. 
t—^oo 

Therefore every eventually positive solution u(t) of (4) satisfies 

lim r(t)g(t): 

ť—>oo 
(Щ' = o. 

Hence, for every sufficiently small e > 0, there exists a ti such that for all 
t>tx 

ґuЩ' < є 

\e(t)J - r(t)e*(t) • 

Integrating this inequality from t\ to t ( >' t\ ), we have 

<H-^hl<J2 L.\ 
e(t) e(t,)- eU*) eih))' 

that is 
0<u(t)<kg(t)+e, t > *i , (17) 

where A: is a positive constant. Letting t —» oo in (17) we obtain lim u(t) = 0. 
t—+oo 

The proof is complete. 

Proceeding similarly as above and taking Corollary 1 into account we obtain 
the following result, which is related to [3, Corollary 4.7.3], 

THEOREM 4. Assume that (3) and (5) hold. Then the condition 

oo 

Kmmf - ^ ^ j J Qa[g(s)]g(s)p(s) ds > 0 

t 

is sufficient for equation (12) to be oscillatory. 

In literature we can find many sufficient conditions for canonical equation (1) 
to be oscillatory. Applying the above-mentioned technique to such results we can 
obtain sufficient conditions for noncanonical equation (1) to be oscillatory. 

We would like to point out that Theorems 1-4 work no matter if equations (1) 
and (4) are delay equations or advanced or even a mixed type. 

E x a m p l e 1. Consider the noncanonical differential equation 

(t2y,(t)), + ay(t/3) = 0, t>l. (18) 
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Put g(t) = Q(t) = t /3 and g(t) = 1/t. By Theorem 3 this equation is oscillatory 
if a > 1/4 and every nonoscillatory solution y(t) of (18) satisfies lim y(t) = 0 if 

t—>oo 

a > 0. For example for a = l /(4\/3) equation (18) has a solution y(t) = £~1/2 , 
which vanishes in infinity. 
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