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M a t h . Slovaca 4 1 , 1991, No. 2, 167—177 

LOGICS WITH SEPARATING SETS OF MEASURES 

ZDLNKA RIECANOVA SYLVIA PULMANNOVA 

ABSTRACT. A totally bounded uniformity induced by a set of measures M on a logic 
(orthomodular lattice) L is studied. Some relations between the properties of the 
uniformity, resp. the compatible topology and the structure of L and M are shown. 

1. Introduction 

In [12], a uniform topology rm induced by a measure m on a logic (= ortho-
modular lattice) L has been introduced. If m is a valuation, the topology Tm 

coincides with the topology induced by the pseudometric gm, where gm(a, b) = 
= m(aAb), and A is the symmetric difference in L. 

The uniform topology induced by gm, where m is a valuation or an outer 
valuation on a logic L, has been thoroughly studied (see e.g. [13]). Another kind 
of a uniform topology induced by a measure (not necessarily a valuation or an 
outer valuation) has been introduced and studied in [10]. 

A generalization of the topology rm introduced in [12] is the topology TM 

induced by a set M of measures on a logic L. In [11], the topology TM has been 
compared with the order topology r(l on L. 

Topologies on partially ordered sets and lattices have been studied in [2], [4], 
[5], [6], [7], 

In the present paper, we study two kinds of totally bounded uniformities 
induced by states on a logic L. We find conditions under which L is a uniform 
logic (in the sense of [13]). 

A M S S u b j e c t C l a s s i f i c a t i o n (1985): Primary 06B30, 06C15, 81B10, 03G12. 
Key w o r d s : Orthomodular lattice, Quantum logic, Uniform topology generated by a 

measure. 
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2. Definitions and preliminary results 

Let (L, 0, 1, ', v , A ) be a logic, i.e. an orthomodular lattice (see [1], [8], 
[13], [14] for detail). Two elements a, beL are orthogonal (written a Lb) if 
a ^ b'. If a ^ b we shall write b — a instead of b A a'. The symbol a Ab will 
denote the symmetric difference, i.e. a Ab = (a — a A b) v (b — a A b) = 
= (a v b) — (a A b). 

A (finite) measure on L is a map m: L-> [0, oo) such that m(a v b) — 
= w(a) + m(b) for any a, beL such that a _L b. A measure m on L is a valua­
tion \f m(a v b) + ra(a A b) = m(a) + m(b) for any a, b£L, or equivalently, if 
it is subadditive, i.e. if m(a v b) ^ m(a) + m(b) for any a, beL. A measure m 
on L is faithful if /// (a) = 0 implies a = 0, ae L. 

Definition 2.1. Le-t M be a set of measures on a logic L. We say that M is 
(i) weakly separating (for L) if a, beL, a ^ b => 3meM 3xeL such that 

either m (a v x) # m (b v x) or m (a A X) ^ m (b A x), 
(ii) separating (for L) if aeL, a ^ 0 =>3me M such that /77(a) ^ 0 . If 

M = {m}, we say that m is (weakly) separating if {m} has this property. 
It is clear that m is separating iff m is faithful. 

Lemma 2.2. Let M be a set of measures on L. 
(i) / / M is separating, then M is weakly separating. 
(ii) If all the measures in M are valuations, then M is separating iff' M is u eakly 

separating. 

Proof, (i) Let a, beL, a ^ b. Then either (a v b) — b ^ 0 or b — (a A b) ^ 
^ 0. Hence there is meM such that either m(a v b) 7- ///(b) = m(b v b) or 
m(a A b) = m(b) = m(b A b), i.e. M is weakly separating. 

(ii) Let aeL, a / 0. Let M be a weakly separating set of valuations, and 
suppose that m(a) = 0 for all meM. Then m(a v x) + m(a A X) = m(a) + m(x) 
implies that m (a v x) = m (x) = m (0 v x), and /// (a A X) = 0 = /// (0 A A*) for 
any xeL and any meM. This implies that a = 0, a contradiction. 

The following example shows that the notions "separating" and "weakly 
separating" are in general not equal. 

E x a m p l e 2.3. Let us consider the logic L, which is a horizontal sum of 
the Boolean algebra 23 and the Boolean algebra 22 (see fig. 1). Define a measure 
on L as folows: 

m (a) = m(b) = m (c) = 1/3, 
m (a) = m (b') = m (c') = 2/3, 
m(0) = m(d) = 0, 
m(\) = m(d')= 1. 

168 



It can be checked that {m} is weakly separating but not faithful. 

3. Measures and topologies on a logic 

Let L be a logic and let m be a (nontrivial) measure on L. For every xeL 
define 

Qm. v v (a> b) = \m(a v x) — m(b v x)|, a, beL 

Qm. vA (ai b) = \m(a A x) — m(b A x)|, a, beL. 

Let D (m) = {Q„, V V | xe L} u {£>„, v A | x e L}. Denote by UD(m) the uniformity on L 
induced by the family of pseudo-metrics D(m) and let Tm denote the topology on 
L compatible with UD(„7) (see [3], [9]). 

If m is a valuation, put Qm (a, b) = m (a A b) and denote by VL the uniformity 

induced by the pseudo-metric Qm, and let TQ denote the topology compatible 

with 1L . 

The following theorem shows us the interrelations between UD(m) and VLQ , 

resp. Tm and rp for a valuation m (see also [12]). 

Theorem 3.1. Let m be a measure on a logic L. 
(i) The map Qm: L x L -> [0, oo) defined by Qm (a, b) = m (a A b) is a pseudome-

tric iff m is a valuation (or, equivalently, iff m is subadditive). 
(ii) If m is a valuation, then UD(w) cz VLQ and Tm = TQ . 

Proof , (i) If m is subadditive, then aAb^aAc v bAcfor any a, b, ceL 
implies that Qm(a, b) ^ Qm(a, c) + Qm(b, c). Now it is easy to see that Qm is a 
pseudometric On the other hand, if Qm is a pseudometric, then for all a, beL 

Qm (a, b) ^ Qm (a, a A b) + Qm (a A b, b) 
and 

Qm(a, b) ^ Qm(a, a v b) + Qm(a v b, b). 
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From these two inequalities we easily obtain that m (a) + m (b) = m (a v b) + 
+ m(a A b), i.e. m is a valuation. 

(ii) For every measure m on L it holds that 

Qm v v (a, b) = \m (a v x) - m (b v x)\ ^ m ((a v .Y) A (b v x)), 

Qm x A (a, /?) = |/?7 (c/ A x) — m (b A .Y)| ^ m ((a A .Y) A (b A .Y)). 

In addition, if m is a valuation, then 

m((a v x) A(b v x)) + m((a A A) A(b A A)) ^ m(aAb) ([2], p. 301). 

Therefore 
QnK v v (a, b) + a„, x A (a, b) ^ a„ to b) 

for all #, b, . V G L This entails that for every s > 0, 

W(£>„, s) c W(^ x v , s) n W(Lv v A , *)-
where 

W(Q, E) = {(a, b)eLxL\Q(a, b) < s] for any Qe{Q„n Q„L X V , Q)K X A } . 

Hence every element of the base of H^(IH) belongs to WQ , and hence WD m) a 

c= U This implies that rw c: TQ NOW let {a j a be a net in L such that aa > a. 

This means that m(<:/a v .Y) -• m(a v .Y) and m(aa A X) -> /??(<:/ A .Y) for every 
xeL. In particular, m(aa v a) -> m(a), m(aa A a) -+ m(a), i.e. £>,,.(£/„, «)— 
= m (aaAa) -> 0. Thus r.„ — r̂ , . 

The following example shows that for a valuation /// on L in general 
WD(m) ¥•'• WQm. 

E x a m p l e 3.2. Let H be a finite-dimensional Hilbert space (real or com­
plex) and let L = L(H) be the Hilbert space logic, i.e., the lattice of all closed 
linear subspaces of//. It is known that there exists a faithful valuation m on L, 
and the metric Qm induces the discrete topology on L ([13], p. 62). Then 
WD(m) i--- WQ , since HD(m) is totally bounded (see Th. 3.4 below), and if it were 
metrizable, it would be separable ([3], p. 153), i.e. L would contain a countable 
dense subset with respect to the topology Tm = TQ . As TQ is discrete, the latter 
conditic n would imply that L itself should be countable. 

From the above example we see that WD(m) need not be metrizable (or 
pseudometrizable) even if m is a valuation. 

Let M be a set of measures on L. Denote by HD(W) the uniformity induced by 
the family of pseudo-metrics D(M), where D(M) = ^J D(m), and let r u be the 

me M 

topology compatible with HD(V/). Clearly, TM => r„, for every me M. 
We recall that the interval topology r, on L is a topology with the subbase 
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consisting of the set-theoretical complements of all intervals {a, b> cz L, where 
a ^ b (in particular {a} = <a, a}). 

In the next theorem we collect some basic properties of VLD{M) and rM-

Theorem 3.3. Let L be a logic and let M be a set of measures on L. Then 
(i) (L, UD{M)) is totally bounded and hence the completion of (L, UD{M)) is 

compact. 
(ii) The topology TM is T2 iff M is weakly separating. 
(iii) If M is separating, then TM => r,. 
(iv) If M is separating and (L, VLD{M)) is a complete uniform space, then L is 

a complete logic (i.e. L is a complete lattice). 

Proof , (i) For every xeL and meM define 

/,., v v (a) = rn (a v x), fnu v A (a) = m (a A X), aeL. 

Let O (M) = {fnh , v | m e M , i e L } u {fm XA\meM, xeL}. Then the uniformity 
MD(At) is generated by the family @(M) of bounded functions on L, and hence 
U/)(A/) is totally bounded (see [3], 4.2.13, p. 168). 

(ii) Observe that a net {aa}a c= L r^-converges to a iff m (aa v x) -* m(a v x) 
and m (aa A X) -> m (a A X) for every xeL and every meM. Hence every net has 
at most one limit iff M is weakly separating. 

(iii) Let M be separating. Let {aa}a cz <b, c>, where b ^ c (b, ceL), and let 
r\t 

aa • a. Then m(a) = limm(aa A C) = m(a A C), m(b) = limm(aa A b) = 

= m(a A b) for every meM. As M is separating, this implies that a = a A C, 
b = a A b, i.e. ae(b, c}. Thus intervals are closed sets in TM, hence r,- CZ TM. 

(iv) If (L, UD(A/)) is complete, it is compact. If M is separating, rM => r,. This 
implies that r, is also compact and by [6], L is a complete lattice. 

For the convenience of readers we recall some necesary definitions. 

A net {aa}a cz L (o)-converges to a (aa—• a) if there are nets {ba}a, {ca}a such 
that ba^aa^ ca and ba | a, ca [ a. 

The order topology r0 on L is the strongest (= finest) topology such that 
(O)-convergence implies the topological convergence. The symbol aa[a means 
that the net {aa}a is nonincreasing and A aa = a. The symbol aa ] a is defined 
dually. 

A logic L is (o)-continuous if aa\a implies aa A x\a A X for every xeL 
(dually, aa{a implies aa v x[a v x for every xeL). 

A logic L is atomic if every element in L contains an atom. If L is atomic, then 
every element in L is the supremum of all atoms it contains. 

A logic L is separable if any set of mutually orthogonal nonzero elements is 
at most countable. 
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A measure m on L is (oycontinuous if aa \ a implies that m(au) -• m(a). We 
note that (o)-continuity coincides with the complete additivity of m. 

We shall need the following statement that is of interest itself. 

Lemma 3.4. Let m be a measure on a logic L. If a is an atom in L such that 
m(a) j - 0, then the intervals <0, a'} and <a, 1> are clopen sets in Tm. 

Proof . Let a be an atom in L and let m(a) ^ 0. Let {ca}u cz <<:/, 1> and let 
r 

ca—• c. Then m(ca A a) -» m(c A a) implies that m(c A a) ^ 0, i.e. c ^ a. Thus 
<a, 1> is closed. By duality, <0, a'} is closed. Hence A = <0, a'} u <<:/, 1 > is a 

r 

closed set. Let {ca}a be a net in L such that c a — • c, r e A and {ca}un A = 0. 
Then 0 = m (ca A a) -> m (c A a), 0 = m (c^ A a) -* m (c' A C/), which con­
tradicts ceA. Hence A is a clopen set and since <0, a') n (a, 1> = 0, <<:/, 1> and 
<0, a'} are also clopen sets. 

We note that in any (O)-continuous logic L, <<:/, 1>, <0, a'} 'ire clopen sets in 
the order topology T() for any atom aeL. 

Corollary 3.5. If M is a separating set of measures on L, then for every atom 
aeL the intervals <a, 1>, <0, a1) are clopen sets in TM. 

Proof . As M is separating for L, to every atom aeL there is meM such 
that m(a) ^ 0 and rm cz TM. 

Theorem 3.6. Let L be an (o)-continuous atomic logic. Let M be a separating 
set of (o)-continuous measures on L. Then 

(i) For every xeL, the filter XI (x) of the neighbourhoods of \ in r has a bast 
consisting of intervals which are clopen sets in TM. 

(ii) TM = T0. 

Proof , (i) We note that if A cz L, A = 0, then vA = 0, A A = 1. Let 
xeL. As L is atomic, there are sets of atoms {au\aeA}, {bx\aeB} such that 
x = \J aa, x' = \J ba. Put C = { 7 c z A u B | 7 i s finite} C i a directed set with 

aeA aeB 

respect to the set inclusion. For every yeC put xy= \J ak, yy= J\ b[. 
key 4 key B 

T h e n x / t x , y r | x / . By Lemma 3.4, < x r 1> = / \J ak,\\ p | (ak, l > a n d 
/ \ \keyo i I ke \ 

<0, yy) = / o , P) b'k\ = Pi <0, b'k) are clopen sets in TM. Let O(x) be any 
\ keynB / keynB 

open neighbourhood of x in TG. Suppose that for every ye C there is zye (xy, yy} 

such that zr£0(x). As xy ^ zy ^ yr xy
J\ x, yy[x, we obtain zy—• .v and since 

L\0(x) is closed in r0, we obtain xe L\0(x), a contradiction. Therefore 
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« x r yr}}y is a base of U (x). Hence U (x) has a base consisting of clopen intervals 
in TM for every xeL. 

(ii) Suppose that aa—• a. Then by the (o)-continuity of L and m, aff—• a 
for every meM. We obtain TM CZ r0. Let GET0. In view of (i) there exists to any 
xEG a neighbourhood if (x) which is clopen in TM such that x e f (x) cz G. 
Thus r0 cz rM. We conclude that rM = r0. 

A complete logic L with a T2-uniformity U on L is called a uniform logic if 
(i) the map a - • a is uniformly continuous, 
(ii) the map (a, b) -» a v b w uniformly continuous, 

Tu 
(iii) « a ja--->a a—• a, where ru w l/ze topology compatible with U. 
We note that there can be at most one uniformity U on L such that (L, U) 

is a uniform logic (see [13], p. 56). 

Theorem 3.7. Let L be a complete (o)-continuous logic such that the interval 
topology r, on L is T2. Let M be a separating set of (o)-continuous measures on L. 
Then 

(i) T0 = TM = r, is a compact completely regular T2-topology. In addition, 
T{-convergence coincides with (o)-converge nee. 

(ii) L is a uniform logic with the uniformity UD(A/). 
(iii) L is separable iff r0 is metrizable and in this case L contains a T0-dense 

countable subset. 

Proof , (i) The facts that L is complete and r, is T2 imply that (a) L is 
atomic ([13], p. 75), (b) r, is compact ([6]) (c) r, = r0 ([5], Cor. 2.6). From Th. 3.6 
we obtain r0 = TM = r,. (o)-convergence is topological by Th. 3.6 and [5], 
Th. 4.14. 

(ii) By (i) the lattice operations in L are continuous in TM. As TM = r, is 
compact, and UD(M) is totally bounded, (L, UD(A/)) is a complete uniform space 
which is compact. Hence the lattice operations in L are uniformly continuous. 

TM 

Also the map a\->a' is uniformly continuous and aa[a^>aa • a. Hence 
(L, UD(M)) is a uniform logic 

(iii) Since (L, r0) is a compact completely regular T2 space, there is one and 
only one uniformity on L compatible with r0 ([9], p. 290). Therefore r0 is 
metrizable iff UD(A/) is metrizable. By [13], Th . 2, p . 55 VLD(M) is metrizable iff L 
is a separable logic. In this case (L, TM) = (L, r0) is a totally bounded metric 
space, hence it contains a countable dense subset ([3], 3.2.68, p. 103). 

R e m a r k 3.8. By [13], if (L, U) is a uniform logic, then U is induced by a 
separating set of (o)-continuous outer ^-valuations on L. If L is separable, 
then U is induced by a faithful (o)-continuous outer /^-valuation on L (see [13], 
Th. 4, p. 59 and Cor. 3, p. 61 for definitions and proofs). 

173 



4. Coarser (weaker) topology induced by measures 

Let a, b be elements of a logic L. We say that a is compatible with b (written 
a+->b) \fa = (a A b) v (a A b'). Owing to the orthomodularity, the compatibil­
ity relation is symmetric in L. The centre of a logic L is the set C(L) = {beL\ 
a<-^>b for every aeL}. 

Suppose that L is a logic and m: L -> <0, oo) is a (nontrivial) measure on L. 

Denote by X\D*(m) the uniformity induced by the family of pseudo-metrics 

£ * (m) = {Qnu, v | xeC(L)} u {&,., A\xe C(L)}, 

where Qm x v , Qm VA are defined as in sec. 3. Let r* denote the topology on L 

compatible with X\D*(m). Clear ly aa > a iffm (aa v x) -> /// (# v x), m (aa A X) —• 
->m(a A x) for every xeC(L) and hence the topology r* is coarser (weaker) 
than T,V. 

Lemma 4.1. Let L be a logic and let m: L -> [0, oo) be c/ measure Then 
(0 ilD*(/;;) ^ totally bounded. 
(ii) r* zs F #/<?>* ever)' a, beL, a ^ b there exists xeC(L) such that either 

m(a v x) ^ m(b v x) or m(a A X) ^ m(b A X). In this case T* is Tychonoff'. 
(iii) If T* is T, then m is faithful. 
(iv) If C(L) is countable, then X\D*(m) is pseudo-metrizable and the compatible 

pseudo-metric topology is separable. 

Proof , (i) X\D*(m) and r* are induced by the family T = {///xv | x e C ( L ) ] u 
u {//?VA | xeC(L)} of bounded functions, where mxv (a) = m (x v a), mXA (a) = 
= m(x A a) (aeL). 

(ii) It is evident from the definition of r*. 
(iii) Suppose that r* is T and aeL, a / 0. If there exists xeC(L) such that 

m(a A x) T-: m(0 A X) = 0, then m(a) ?- 0. If there exists yeC(L) such that 
m (a v v) ^ m (0 v v) = /// (v), then from m (a v y) + m (a A V) = m (a) + m (y) 
we have /// (a) — m (a A y) > 0 and hence m (a) > 0. 

(iv) Let C(L) be countable. Then the family of pseudometrics D* (m) is 
countable, which implies the pseudo-metrizability of X\D*(m). But a totally boun­
ded pseudo-metric space is separable (see [3], (3.2.68), (3.2.69), p. 153). 

Lemma 4.2. Let L be a logic and m be a measure on L. 
r* T* 
m m 

(l) aa >a=>a'a • a . 
r* r* T* 
m m m 

(n) aa > a => V.Y6 C ( L ) : aa v x • a v x, au A X • a A X. 

(iii) au • a, ba • b, aa± ba, a ± b => au v ba • a v b. 
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r* r* r* 
m m m 

(iv) m(aaAa) -^ 0 iff aa • a, aa v a > a, aa A a • a. 
Proof , (i) Follows from m(a') = m(\) — m(a). 

(ii) Let x, yeC(L) and aa • a, then m((aa v x) v y)) = m(aa v x v y) -> 
-> m (a v x v y), m ((aa v x) A y)) = m (aa A y) v (x A y)) = m (aa A y) + 
+ m (x A y) — m (aa A (X A y)) -> m (a A y) + m (x A y) — m (a A X A y) = 

T* T* 

= m ((a v x) A y), hence aa v x—• a v x. By (i) we get also aa A X — • a A x. 
T* T* 

(iii) Let aa—• a, ba—• b, aa_Lba, a_Lb. For any xeC(L) we have 
m (aa v ba) A x) = m(aa A x) + m(ba A x) - • m (a A X) + m (b A x) = 
= m ((a v b) A x), m ((aa v ba) v x) = m (aa v ba) + m (x) — m ((aa v ba) A 

A x) -• m (a) + m (b) — m ((a v b) A X) = m (a v b v x). 
(iv) Suppose that m(aaAa) -> 0. Then (m(aa v a) — m(a)) + (m(a) — 

— m(aa A a)) -> 0, and hence m(aa v a) -> m(a), m(aa A a) -> m(a). Let xe 
e C ( L ) , then from m(avx) ^ m(aa v a v x) = m(aav a) + m(x) — 
— m ((aa v a) A x) ^ m(aa v a) + m (x) — m(a A x) -> m(a) + m (x) — 
— m(a A x) = m(a v x) we obtain that m(aa v a v x) -+ m(a v x). Further, 
from m (a A x) ^ m ((aa v a) A x) = m (aa v a) + m (x) — m(aav a v x) -> 
-> m(a) -\- m(x) — m(a v x) = m(a A x) we obtain that m((aa v a) A X) -> 

->m(a A x). This proves that aa v a • a. By duality, using (i), we prove 

that aa A a • a. Now since aa A a ^ aa ^ aa v a for every a, it follows that 
r* 

AH 

a r* r* r* 
m m m --nl 

Conversely, let aa—• a, aa v a • a, aa A a—• a. Then m(aaAa) = 
= m(aa v a) — m(aa A a) -> m(a) — m(a) = 0. 

Lemma 4.3. Lei L be a logic and m be a measure on L. Then 

(i) If m is subadditive, then r* cz TQ = Tm. 

(ii) If L is a Boolean algebra, then r* = TQ = Tm. 

(iii) If m is (o)-continuous, then r* cz T(). 

Proof , (i) It is evident from the facts that r* cz r,„ and r„, = TQI for a 

subadditive measure. 
(ii) If L is a Boolean algebra, then C(L) = L, and hence r* = rw. As m is 

subadditive, we also have TQ = rm. 

(iii) aa—>a implies aaAa—>0, and since m is (o)-continuous, we get 
m(aaAa) -> 0. Thus r* cz r0 by (iv) of Lemma 4.2. 

Let M be a set of measures on a logic L. We denote by UD*(M) the uniformity 
induced by the family of pseudo-metrics 

175 



D*(M) = {Q„K,v \meM, xeC(L)}u{Q^,A \meM, xeC(L)}. 

T\f 
Let TM denote the topology on L compatible with VLD*(M). Clearly, aa • a iff 
VmGMVxe C(L): m(aa v x) -> m(a v x), m(aa A x) - • m(a A x). 

A set M of measures on a logic L is said to be ordering (for L) if m (a) ^ 
^ m(b) for all meM implies a ^ b (a, beL). It is clear that an ordering set is 
separating. Indeed, x^O implies that there is meM such that m(x)> 
>m(0) = 0. 

Theorem 4.4. Let L be a logic and let M be a set of measures on L. Then 
(0 UD*(M) is totally bounded. 
(ii) r* c TM. 

(iii) TM is Hausdorjf (and hence also Tychonoff) iff for every a, bs L, a ?- b 
there exist xeC (L), meM such that either m (a A x) ?- m (b A x) or m (a v x) ^ 
?- m(b v x). 

(iv) If M is ordering, then r, cz rM and TM is T. 
(v) If all the measures in M are (o)-continuous, then r*, cz r(). 

Proof , (i)—(iii) is obvious. 

(iv) If cae(a, b} and ca • c, then for every meM, m(ca)e(m(a), m(b)) 

and hence also m(c)e(m(a), m(b)}. Since M is ordering, we obtain ce(a, b}. 
Thus every <a, b} cz L is closed in TM and hence r, cz r*X. 

(v) Follows from (iii) of Lemma 4.3. 

Theorem 4.5. Let L be a complete logic in which Tt is T2. Let M be an ordering 
set of (o)-continuous measures on L. Then 

(i) T() = r, = r* is a compact Tychonoff topology. 
(ii) (L, UD*iM)) is a complete uniform space. 

T() T() 

(iii) aa—>a^>a'a—• a . 
T() T() T() 

(iv) aa—• a, ba—• b, aa J_ ba, a J_ b=> aa v ba—• a v b. 
To To To 

(v) aa—• a --> VxeC(L) : aa v x—• a v x, aa A x—• a A x. 

Proof , (i) The facts that L is complete and r, is T imply that r, is com­
pact and r, = T() (see [5], Cor. 2.6). (iv) and (v) of Theorem 4.4 imply that 
r, = r* = T(). 

(ii) T*f compact implies that (L, UD*(V/)) is a complete uniform space. 
(iii)—(v) follow from Lemma 4.2 and from (i) of this theorem. 

Theorem 4.6. Let L be a complete (o)-continuous logic in which r, is T. Let M 
be an ordering set of (o)-continuous measures for L. Then 

176 



(0 T0 = T{ = TM= TM. 
(ii) (L , VLD*(M)) is a uniform logic. 

To 

(iii) aa—>aiffVmeM:m(aa)^>m(a). 

(IV) aa—>a iff aa—>a. 

Proof . It follows from Theorems 4.5 and 3.7 and the compactness of T0. 

E x a m p l e s 4.7. (1) Let X be any uncountable set and let L = 2X. We 
define for any A, BeL: A < B if A c B and Af = X\A. Then L is a complete 
Boolean algebra, which is (o)-continuous and r, is T2. Putting for every xeX: 
cox(A) = 1 if xeA and cox(A) = 0 if x<£A, we obtain that M = {cox\xeX} is an 
ordering set of (o)-continuous measures for L. Note that TG is not discrete and 
L is not separable. 

(2) It is not difficult to construct a nonboolean logic with finitely many 
elements which has an ordering set of measures. Such a logic also satisfies the 
conditions of Th. 4.6. 
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