Mathematic Slovaca

Ján Mináč

Some counterexamples in p-adic analysis

Mathematica Slovaca, Vol. 30 (1980), No. 3, 305--311

Persistent URL: http://dml.cz/dmlcz/132119

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SOME COUNTEREXAMPLES IN \boldsymbol{p}-ADIC ANALYSIS

JÁN MINÁČ

The class of differentiable functions on the p-adic integer numbers Z_{p} to the p-adic numbers Q_{p} is "rich". (One of the reasons is the total discontinuity of the topological space Z_{p}.) In this paper we shall show that this class is not contained in some classes defined later.

Throughout the paper, a similar notation as in [1] (especially chapter 2, §2) will be used. Evidently in some theorems of [1], chapt. 2, § 2 some additional assumptions are missing (e.g. strict differentiability, see the end of the present paper), because in the cited version the theorems are false.

The theorems of [1], chapt. $2, \S 2$ are based on the following lemma.
Let f be a differentiable function on the set of p-adic integers Z_{p} with values in the set of p-adic numbers Q_{p} and let $x_{n}, y_{n} \in Z_{p}, x_{n} \neq y_{n}(n=1,2,3, \ldots)$, $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$. Then there exists such an element x_{0} from Z_{p} and such a monotone increasing sequence of natural numbers n_{k}, that

$$
\lim _{k \rightarrow \infty} \frac{f\left(y_{n_{k}}\right)-f\left(x_{n_{k}}\right)}{y_{n_{k}}-x_{n_{k}}}=f^{\prime}\left(x_{0}\right) .
$$

The mistake in the proof of this lemma lies in the fact that some denominator $\left(\lim _{k \rightarrow \infty}\left(1+u_{n_{k}}^{-1}\right)\right)$ in this computation may be equal to zero.

First we give a counterexample to the lemma.
Example 1. Let f be a function defined as follows:
$f(x)=\left\{\begin{array}{l}p^{2 j}+p^{2 j+1} \text { if } x=p^{i}+p^{2 j+1}+\ldots \\ \text { (the first two non-zero coefficients are fixed and the others can be } \\ \text { arbitrary), } \\ p^{2 j} \text { if } x=p^{i}+p^{2 j+2}+\ldots, \\ 0 \text { otherwise, }\end{array}\right.$
where we assume that every $x \in Z_{p}$ is written in the usual p-adic form $x=a_{0}+a_{1} p$ $+\ldots+a_{n} p^{n}+\ldots$, where $0 \leqq a_{i} \leqq p-1$.
This function f is locally constant on $Z_{p}-\{0\}$. Indeed, if we take the usual p-adic
norm $|\cdot|\left(|p|=\frac{1}{p}\right)$, then for every $x_{0} \neq 0$ the value $f(x)$ in the neighborhood $\left\{x \| x-x_{0} \left\lvert\,<\frac{1}{p^{2 k+2}}\right.\right\}$, where the first non-zero coefficient of x_{0} is a_{k}, is equal to $f\left(x_{0}\right)$. This holds since then sufficiently many coefficients of such x and x_{0} are equal. Thus the derivative of f on Z_{p} exists and is equal to zero. Indeed, it is clear, because if x is sufficiently small, then the quotient

$$
\frac{f(x)-f(0)}{x}=\left\{\begin{aligned}
p^{j} \text { multiplied by a unit in } Z_{p}, \text { if } \begin{array}{l}
x=p^{i}+p^{2 i+1}+\ldots \\
x
\end{array} p^{i}+p^{2 i+2}+\ldots \\
0 \text { ortherwise }(x \neq 0)
\end{aligned}\right.
$$

(by a unit in Z_{p} we understand an element of Z_{p} which has an inverse element in Z_{p}) is arbitrarily small. (In the sense of p-adic topology.) Now we take the following sequences

$$
x_{n}=p^{n}+p^{2 n+2}, \quad y_{n}=p^{n}+p^{2 n+1}, \text { then } \lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0, \quad x_{n} \neq y_{n}
$$

but

$$
\frac{f\left(x_{n}\right)-f\left(y_{n}\right)}{x_{n}-y_{n}}=\frac{p^{2 n}-p^{2 n}-p^{2 n+1}}{p^{2 n+2}-p^{2 n+1}}=(1-p)^{-1} .
$$

Thus we cannot find such a sequence n_{k} of natural numbers as desired.
This example is also a counterexample to theorem 2.8 of [1], which asserts:
If f is a differentiable function on Z_{p} with values in Q_{p} and if $f^{\prime}(x) \equiv 0$, then for every $\varepsilon>0$ there exists such a $\delta(f, \varepsilon)>0$ that

$$
|f(x)-f(y)| \leqq \varepsilon|x-y| \quad \text { if } \quad|x-y|<\delta(f, \varepsilon) .
$$

Really, the function of example 1 has the derivative equal to zero on whole Z_{p} and

$$
\left|f\left(p^{n}+p^{2 n+1}\right)-f\left(p^{n}+p^{2 n+2}\right)\right|=\left|p^{2 n+1}\right|=\frac{1}{p^{2 n+1}}
$$

but

$$
\left|p^{n}+p^{2 n+1}-\left(p^{n}+p^{2 n+2}\right)\right|=\frac{1}{p^{2 n+1}},
$$

hence, e.g. for $\varepsilon=\frac{1}{2}$ it does not hold that

$$
\left|f\left(p^{n}+p^{2 n+1}\right)-f\left(p^{n}+p^{2 n+2}\right)\right| \leqq \frac{1}{2}\left|p^{n}+p^{2 n+1}-\left(p^{n}+p^{2 n+2}\right)\right|,
$$

although

$$
\lim _{n \rightarrow \infty}\left(p^{n}+p^{2 n+1}-\left(p^{n}+p^{2 n+2}\right)\right)=0
$$

This example is also an counterexample to theorem 2.10 of [1] (more precisely, to one half of this theorem) which asserts:

The derivative $f^{\prime}(x) \equiv 0$ on Z_{p} if and only if

$$
\lim _{n \rightarrow \infty} \frac{\delta_{n}}{\left|p^{n}\right|}=0, \quad \text { where } \quad \delta_{n}=\sup \left\{|f(x)-f(y)|| | x-y \left\lvert\, \leqq \frac{1}{p^{n}}\right.\right\}
$$

It is clear that for the function f of Example 1 we have

$$
\overline{\lim } \frac{\delta n}{\left|p^{n}\right|} \geqslant 1 .
$$

But it is clear that if a function f satisfies the above condition, then f has indeed the derivative identically equal to zero on Z_{p}.

Theorem 2.6 of [1] asserts that if f is differentiable on Z_{p} with values in Q_{p}, then f^{\prime} is bounded on Z_{p}. A counterexample can be constructed by a little change of the preceding example.

Example 2. Let

$$
f(x)=\left\{\begin{array}{l}
p^{2 n_{1}}+a_{2} p^{n_{2}-n_{1}}+a_{3} p^{n_{3}-n_{1}}+\ldots \\
\text { if } x=p^{n_{1}}+a_{2} p^{n_{2}}+\ldots+a_{k} p^{n_{k}}+ \\
\text { (this form respects only nonzero coefficients of } x, \text { i.e. } a_{2}, a_{3}, \ldots \neq 0 \text {) } \\
n_{1}<3 n_{1}<n_{2}<n_{3}<\ldots<n_{k}<\ldots \\
\text { (it is possible also } \left.x=p^{n_{1}}\right) \\
0 \text { otherwise. }
\end{array}\right.
$$

Since the function f on the set

$$
\begin{gathered}
Z_{p}-\left\{x=p^{n_{1}}+a_{2} p^{n_{2}}+\right. \\
\left.+\ldots+a_{k} p^{n_{k}}+\ldots n_{1}<3 n_{1}<n_{2}<n_{3}<\ldots, 0 \leqq a_{i} \leqq p-1, i \geqq 2\right\} \cup\{0\}
\end{gathered}
$$

is locally constant, the derivative f^{\prime} is equal to zero on this set. Now compute the derivative in zero. Suppose $n_{2}>3 n_{1}$. Since

$$
\begin{aligned}
\frac{f\left(p^{n_{1}}+a_{2} p^{n_{2}}+\ldots\right)}{p^{n_{1}}+a_{2} p^{n_{2}}+\ldots}= & \frac{p^{n_{1}}\left(1+a_{2} p^{n_{2}-3 n_{1}}+\ldots\right)}{1+a_{2} p^{n_{2}-n_{1}}+\ldots} \\
& =p^{n_{1}}\left(\text { a unit in } Z_{p}\right)
\end{aligned}
$$

is arbitrarily small if n_{1} is sufficiently large, we have that $f^{\prime}(0)=0$. Now compute the following quotient for $n_{2}>3 n_{1}$ and a fixed natural number $k_{0} \geqq 2, x \neq y$. (The denotation we use here means that the first k_{0} coefficients of the following terms x, y are equal.)

$$
\frac{f(x)-f(y)}{x-y}=\frac{f\left(p^{n_{1}}+a_{2} p^{n_{2}}+\ldots+a_{k_{0}} p^{n_{k_{0}}}+a_{k_{0}+1} p^{n_{k_{0}}+1}+\ldots\right)}{\left(p^{n_{1}}+\ldots+a_{k_{0}} p^{n_{0}}+\ldots\right)-\left(p^{n_{1}}+\ldots+a_{k_{0}} p^{n k_{0}}+b_{k_{0}+1} p^{n_{k_{0}+1}}+\ldots\right)}-
$$

$$
\begin{gathered}
-\frac{f\left(p^{n_{1}}+a_{2} p^{n_{2}}+\ldots+a_{k_{0}} p^{n_{k_{0}}}+b_{k_{0}+1} p^{n_{k_{0}+1}}+\ldots\right)}{\left(p^{n_{1}}+\ldots a_{k_{0}} p^{n_{k_{0}}}+\ldots\right)-\left(p^{n}+\ldots+a_{k_{0}} p^{n_{0}}+b_{k_{0}+1} p^{n_{k_{0}+1}}+\ldots\right)}= \\
=\frac{\left(x-p^{n_{1}}\right)}{p^{r}}-\frac{\left(y-p^{n_{1}}\right)}{p^{n_{1}}} \\
x-y
\end{gathered}=\frac{1}{p^{n_{1}}} .
$$

Thus the derivative in any $x=p^{n_{1}}+a_{2} p^{n_{2}}+\ldots$ (with $n_{2}>3 n_{1}$) is equal to $\frac{1}{p^{n_{1}}}$. Since the norm $\left|\frac{1}{p^{n_{2}}}\right|$ is equal to p^{n}, the deri ative is unbounded.

Example 2 is clearly also a counterexample to theorem 2.9 of [1], which asserts that if f is differentiable on Z_{p}, then $f \in L_{1}$. (L_{1} is the furst Lipschitz class, i.e.

$$
|f(x)-f(y)| \leqq A|x-y|,
$$

for every function $f \in L_{1}$, for each pair $x, y \in Z_{p}$ and a suitable constant A.)
Indeed, e.g. for the sequences

$$
x_{n}=p^{n}+p^{4 n}, \quad y_{n}=p^{n}+p^{4 n}+p^{5 n}
$$

we have

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|p^{2 n}+p^{3 n}-\left(p^{2 n}+p^{3 n}+p^{4 n}\right)\right|=\left|p^{4 n}\right|=\frac{1}{p^{4 n}}
$$

and

$$
\left|x_{n}-y_{n}\right|=\frac{1}{p^{5 n}} .
$$

Thus the sequence

$$
\left\{\frac{\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|}{\left|x_{n}-y_{n}\right|}=p^{n}\right\}_{1}^{\infty}
$$

tends to infinity and we canrot find such a constant A as desired.
Now we give the counterexamp'e to theorem 2.7, of [1], which asserts:
Let f be a differentiable function

$$
Z_{p} \rightarrow Q_{p}, \quad f^{\prime}(x) \not \equiv 0, \quad A=\sup _{x \in Z_{p}} f^{\prime}(x), \quad a=\inf _{x \in Z_{p}} f^{\prime}(x) .
$$

Then there exists such a positive constant $\delta(f)$ that

$$
\begin{equation*}
a|x-y| \leqq|f(x)-f(y)| \leqq A|x-y| \tag{1}
\end{equation*}
$$

if $|x-y|<\delta(f)$.
Example 3. Ver the counterexample we can take the function

$$
f(x)=\left\{\begin{array}{l}
p^{n}+p^{2 n}+p^{4 n}+a_{1} p^{4 n+1}-: . \quad \text { if } x=p^{n}+p^{4 n}+a_{1} p^{4 n+1}+\tilde{n} \geqq 1 \\
x \text { ctherwise }
\end{array}\right.
$$

It is clear that $f^{\prime}(x)=1$ for all $x \in Z_{p}$. Indeed, if x has the form $p^{n}+p^{4 n}+a_{1} p^{4 n+1}+$ $\ldots, n \geqq 1$, then $f(x)-f(y)=x-y$ for every y such that $|x-y|<\frac{1}{p^{4 n}}$. Now compute the derivative in zero. If $x=p^{n}+p^{4 n}+a_{1} p^{4 n+1}+\ldots, n \geqq 1$, then

$$
\frac{f(x)}{x}=\frac{x+p^{2 n}}{x}=1+p^{n} .\left(\text { an element of the ring } Z_{p}\right) .
$$

Thus it is clear that $f^{\prime}(0)=1$, because the other possibility for x is trivial. It is clear that the derivative in nonzero x, which has not the form $p^{n}+p^{4 n}+a_{1} p^{4 n+1}+$ \ldots is equal to 1 , because on the neighborhood

$$
\left\{y\left||y-x|<\frac{1}{p^{4 n}}\right\}\right.
$$

is $f(x)$ equal x. But for $x_{n}=p^{n}+p^{2 n}+p^{4 n}, y_{n}=p^{n}+p^{4 n}$ we have

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=0, \quad\left|x_{n}-y_{n}\right|=\frac{1}{p^{2 n}}
$$

hence it is clear that the left side inequality (1) does not hold for any $\delta(f)>0$. That the function f does not satisfy the right side inequality of (1) we can see from the following: For $x_{n}=p^{n}, y_{n}=p^{n}+p^{4 n}$ we have

$$
\begin{aligned}
& \left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|p^{n}-p^{n}-p^{2 n}-p^{4 n}\right|= \\
& =\left|p^{2 n}\right|\left|1+p^{2 n}\right|=\frac{1}{p^{2 n}}, \quad\left|x_{n}-y_{n}\right|=\frac{1}{p^{4 n}}
\end{aligned}
$$

hence

$$
\frac{\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|}{\left|x_{n}-y_{n}\right|}=p^{2 n}
$$

is unbounded. This proves that f does not satisfy the right inequality of (1) for any x, y such that $|x-y|<\delta(f)$, whichever $\delta(f)$ was taken.

Example 3 is also a counterexample to the theorem 2.7a of [1]: If $f^{\prime}\left(x_{0}\right) \neq 0$ and f^{\prime} is a continuous function in a point x_{0}, then there exists such a neighbournood of x_{0}, that there holds

$$
|f(x)-f(y)|=\left|f^{\prime}\left(x_{0}\right)\right||x-y|
$$

(Indeed, we can take $x_{0}=0$ and then because in every neighborhood of 0 there lie almost all the elements x_{n} and $y_{n}, n=1,2, \ldots$, we get a contradiction, since

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=p^{2 n}\left|x_{n}-y_{n}\right|,
$$

but not

$$
\left.\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|x_{n}-y_{n}\right| .\right)
$$

Example 3 is also a counterexample to theorem 2.11 of [1], which asserts: If f has the continuous derivative f^{\prime} and if $f^{\prime}\left(x_{0}\right) \neq 0$, then there exists such a neighborhood of x_{0}, that there exists the inverse (continuous) function f^{-1}, ($x=f^{-1}(y)$), to the function f restricted on this neighborhood, for which

$$
\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1}{f^{\prime}(x)}
$$

This theorem is false, since for the function f of Example 3 we have

$$
f\left(p^{n}+p^{4 n}\right)=f\left(p^{n}+p^{2 n}+p^{4 n}\right)=p^{n}+p^{2 n}+p^{4 n}
$$

and because almost all of these elements lie in every neighborhood of zero, we have that the function f restricted to an arbitrary small neighbourhood of zero is not one-to-one.

Why is it so easy to construct differentiable functions on Z_{p} without the above prescribed properties? The reason is based on the fact that for constructing of differentiable functions on Z_{p} it is sufficient to construct systems of differentiable functions on open subsets of Z_{p}, which form a disjoint cover of Z_{p} and that these functions are independent of each other. (We need not consider the situation on the borders of the sets.) On the other hand we can take such a cover that the points of some different open sets of this cover can lie arbitrarily near.

It is easy to see that the sufficient condition for the validity of the assertions of these theorems is that f is strictly differentiable, i.e. the function f is such that the function

$$
g(x, y)=\frac{f(x)-f(y)}{x-y}
$$

from $Z_{p} \times Z_{p}-\left\{(x, x) \mid x \in Z_{p}\right\}$ to Q_{p} has a continuous extension on the whole $Z_{p} \times Z_{p}$ (see, e.g. [2]).

Remark. The cited theorems from [1] are not exactly in original version (for reason of simplicity) in the sense that in [1] the function f is not assumed to be from Z_{p} to Q_{p}, but a more general situation is considered: The function f is $V \rightarrow k$, where k is a complete non-archimedean fieid with respect to the absolute value $|\cdot|$ and V is the set $\{x \| x \leqq 1\}$. In some theorems of [1] there is neither explicitly writien that constants $(\delta(f), \delta(f, \varepsilon))$ are positive, but the theorems have something to tell us only in this case (theorems 2.7, 2.8).

REFERENCES

[1] ЛЕНСКОЙ, Д. К.: Функции в неархимедовски нормированных полях, Издательство Саратовского университета, Саратов 1962.
[2] WEISMAN, C. S.: On p-adic differentiability, J. Number Theory 9 (1977), 79—86.
Received September 1978
Matematický ústav SAV ul. Obrancov mieru 49

88625 Bratislava

НЕКОТОРЫЕ КОНТРПРИМЕРЫ В р-АДИЧЕСКОМ АНАЛИЗЕ
Ян Минач

Резюме

В этой работе даются некоторые контепримеры для утверждений к некоторым теоремам из p-адического анализа, касающихся дифференцируемых функций.

