Mathematica Slovaca

Jarosław Morchało
 Asymptotic properties of solutions of discrete Volterra equation

Mathematica Slovaca, Vol. 52 (2002), No. 1, 47--56
Persistent URL: http://dml.cz/dmlcz/132141

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ASYMPTOTIC PROPERTIES OF SOLUTIONS OF DISCRETE VOLTERRA EQUATION

Jarostaw Morchalo

(Communicated by Milan Medved')

ABSTRACT. The purpose of this paper is to prove asymptotic properties (for $n \rightarrow \infty$) of some discrete Volterra equations.

1. Introduction

Difference equations occur in many branches of applied mathematics: numerical analysis, physics, control theory and optimization.

In recent years, considerable attention has been paid to the development of the qualitative theory for difference equations.

Difference equation of Volterra type have been introduced in [3], [7, as the discrete analogue of Volterra integrodifferential equations. The discrete Volterra equations have been intensively investigated in recent years and new and interesting results for these equations have been proved [1], [2], [4], [5], [8].

The paper [2] is devoted to studying the linear discrete Volterra equation with control in a finite dimensional Hilbert space.

In paper [4], Kolmanovski, Myshkis and Richard investigated some Volterra discrete equations and obtained comparison theorems for resolvent and solutions.

Kolmanovski and Myshkis [5] investigated conditions under which stability (asymptotic stability) of the linear Volterra discrete equation implies stability (asymptotic stability) of the zero solution of nonlinear Volterra equation.

The purpose of this paper is to investigate asymptotic properties (as $n \rightarrow \infty$) of solutions of some discrete Volterra equations. Here, however, we shall use

[^0]technique based on the resolvent matrix associated with the kernel in (1). Convolution equations and nonlinear equations will be presented by the author in a future papers.

We adopt the following notation in this paper:
Z is the set of all non-negative integers,
$N\left(n_{0}\right)=\left\{n_{0}, n_{0}+1, \ldots\right\}, n_{0} \in Z$,
\mathbb{R}^{k} - the k-dimensional real Euclidean space with norm $|x|=\sum_{i=1}^{k}\left|r_{i}\right|$, $x=\left(x_{1}, \ldots, x_{k}\right)$,
M^{k} - the space of all $k \times k$ matrices $A=\left(a_{i j}\right)$ with norm $|\cdot|$ given by $|A|=\sum_{i=1}^{k} \sum_{j=1}^{k}\left|a_{i j}\right|$.
The identity matrix is denoted by E.
Let us now consider the difference equation

$$
\begin{equation*}
y(n)=f(n)+\sum_{s=0}^{n-1} K(n, s) y(s) \tag{1}
\end{equation*}
$$

where $K(n, s)$ is from M^{k} and $y, f \in \mathbb{R}^{k}$. Let us assume that a unique solution y of system (1) does exist for all finite $n \in Z$.

Let us find the solution y as a function f and auxiliary $k \times k$ matrix R, referred as a resolvent [4]. Let $K^{(1)}(n, s)=K(n, s)$,

$$
K^{(q)}(n, s)=\sum_{r=s+1}^{n-1} K^{(q-1)}(n, r) K^{(1)}(r, s)=\sum_{r=s+1}^{n-1} K^{(1)}(n, r) K^{(q-1)}(r, s)
$$

and

$$
\begin{equation*}
R(n, s)=\sum_{q=1}^{\infty} K^{(q)}(n, s) \tag{2}
\end{equation*}
$$

The $k \times k$ matrix $R(n, s)$ is called the resolvent kernel associated with the kernel $K(n, s)$. It is casy to see that

$$
\begin{equation*}
R(n, s)=K(n, s)+\sum_{q=s+1}^{n-1} K(n, q) R(q, s) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
R(n, s)=K(n, s)+\sum_{q=s+1}^{n-1} R(n, q) K(q, s) \tag{3'}
\end{equation*}
$$

In terms of resolvent matrix $R(n, s)$ of (2) the solution of (1) can be written as

$$
\begin{equation*}
y(n)=f(n)+\sum_{s=0}^{n-1} R(n, s) f(s) \tag{4}
\end{equation*}
$$

Multiplying both sides of the equation

$$
y(j)=f(j)+\sum_{s=0}^{j-1} K(j, s) y(s)
$$

by $R(n, j)$ from the left and summing with respect to j from $j=0$ to $n-1$, we obtain

$$
\sum_{j=0}^{n-1} R(n, j)(y(j)-f(j))=\sum_{j=0}^{n-1}\left(\sum_{s=j+1}^{n-1} R(n, s) K(s, j)\right) y(j)
$$

Then, by virtue (3') we have (4).
We now prove that

$$
\begin{equation*}
\sum_{s=j+1}^{n-1} K(n, j) R(j, s)=\sum_{s=j+1}^{n-1} R(n, j) K(j, s) \tag{*}
\end{equation*}
$$

Substituting $y(n)$ from (4) into (1), we have

$$
\sum_{l=0}^{n-1}[R(n, l)-K(n, l)] f(l)=\sum_{l=0}^{n-1} \sum_{s=l+1}^{n-1} K(n, s) R(s, l) f(l)
$$

From here and arbitrariness of f we obtain that the resolvent satisfies also the equation (3). Comparing (3) and (3'), one verifies (*).

II. Asymptotic properties

Lemma. Suppose that

1) the functions $f(n)$ and $K(n, s)$ are defined for $n, s \in Z$,
2) $\varlimsup_{n \rightarrow \infty}|f(n)|=M<\infty$,
3) $\varlimsup_{n \rightarrow \infty} \sum_{s=0}^{n-1}|K(n, s)|=\mu<1 ; \lim _{n \rightarrow \infty} \sum_{s=0}^{n_{0}}|K(n, s)|=0$ for each $n_{0} \geq 0$,
4) the equation (1) has a solution $\bar{y}(n)$ such that $|\bar{y}(n)| \leq L$ for $n \in Z$.

Then the following inequality holds:

$$
\varlimsup_{n \rightarrow \infty}|\bar{y}(n)| \leq \frac{M}{1-\mu}
$$

Proof. For given $\varepsilon \in(0,1-\mu)$ we choose $n_{0} \geq 0$ and then $n_{1} \geq n_{0}$, so that $\sum_{s=0}^{n_{0}}|K(n, s)| \leq \varepsilon, \sum_{s=n_{0}}^{n-1}|K(n, s)| \leq \mu+\varepsilon,|f(n)| \leq M+\varepsilon$ and $|\bar{y}(n)| \leq L_{1}+\varepsilon$
($n \geq n_{1}$) where $L_{1}=\varlimsup_{n \rightarrow \infty}|\bar{y}(n)|$. We obtain from (1)

$$
\begin{aligned}
|\bar{y}(n)| & \leq M+\varepsilon+L \sum_{s=0}^{n_{0}}|K(n, s)|+\left(L_{1}+\varepsilon\right) \sum_{s=n_{0}+1}^{n-1}|K(n, s)| \\
& \leq M+\varepsilon+L \varepsilon+\left(L_{1}+\varepsilon\right)(\mu+\varepsilon) .
\end{aligned}
$$

Hence

$$
\varlimsup_{n \rightarrow \infty}|\bar{y}(n)| \leq \frac{M I}{1-\mu}
$$

Theorem 1. Let $f(n), F(n), \psi(n)$ be defined and bounded for $n \in N\left(n_{0}\right)$ and let $N(n, s)$ be defined for $n \geq s \geq n_{0}$. Suppose that

$$
\begin{aligned}
& 1^{\circ} \quad \sum_{l=s}^{n-1}|N(n, l)||N(l, s)|^{\alpha} \leq \lambda|N(n, s)|^{\alpha} \\
& \quad \text { with some } \alpha \in\langle 0,1\rangle \text { and some } \lambda<1 \text { for } n \geq s \geq n_{0}, \\
& 2^{\circ} \quad|N(n, s)| \leq F(s) \text { for } n \geq s \geq n_{0}, \\
& 3^{\circ} \varlimsup_{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1}(F(s))^{1-\alpha}|N(n, s)|^{\alpha}<\infty, \\
& \quad \varlimsup_{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1}|N(n, s)|+\sum_{n=n_{0}}^{\infty}|\psi(n)|=\mu<1, \\
& 4_{\mathrm{a}}^{\circ} \quad \varlimsup_{n \rightarrow \infty}|f(n)|=M<\infty, \\
& 4_{\mathrm{b}}^{\circ} \quad \varlimsup_{n \rightarrow \infty} f(n)=s(|s|<\infty), \\
& \quad \lim _{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1} N(n, s)=\sigma,(E-\sigma)^{-1} \text { exists and } \\
& \quad \varlimsup_{n \rightarrow \infty} \sum_{s=n_{0}}^{n_{1}}|N(n, s)|=0 \text { for fixed } n_{1} \geq n_{0} .
\end{aligned}
$$

or

Then the unique solution $\bar{y}(n)$ of the equation

$$
\begin{equation*}
y(n)=f(n)+\sum_{s=n_{0}}^{n-1} K^{(1)}(n, s) y(s) \tag{5}
\end{equation*}
$$

where $K^{(1)}(n, s)=N(n, s)+\psi(s)$ remains bounded for $n \rightarrow \infty$. In case 4_{b}° it is convergent for $n \rightarrow \infty$.

Proof. We define the functions

$$
R(n, s)=\sum_{q=1}^{\infty} K^{(q)}(n, s), \quad I(n)=\sum_{s=n_{0}}^{n-1} R(n, s) f(s)
$$

and

$$
\bar{y}(n)=f(n)+I(n) \quad \text { for } \quad n \geq s \geq n_{0}
$$

and state that $\bar{y}(n)$ satisfies (5).
Next, we choose a number a satisfying the inequality $\max (\lambda, \mu)<a<1$. Then for some $n_{1} \geq n_{0}$ we have

$$
\sum_{s=n_{0}}^{n-1}\left|K^{(1)}(n, s)\right| \leq \sum_{s=n_{0}}^{n-1}(|N(n, s)|+|\psi(s)|) \leq a \quad \text { for } \quad n \geq n_{1}
$$

We shall prove by induction the inequality

$$
\begin{equation*}
\left|K^{(q)}(n, s)\right| \leq a^{q-1} F^{1-\alpha}(s)|N(n, s)|^{\alpha}+(q-1) a^{q-2} \psi_{1}(n, s)+a^{q-1}|\psi(s)| \tag{6}
\end{equation*}
$$

for $n \geq n_{1}, n \geq s \geq n_{0}, q=1,2, \ldots$, where

$$
\psi_{1}(n, s)=F^{1-\alpha}(s) \sum_{i=s}^{n-1}|N(i, s)|^{\alpha}|\psi(i)|
$$

We immediately verify that (6) is true for $q=1$.
Suppose now that it is true for the index $q-1(q \geq 2)$. Then observing that $\psi_{1}(n, s)$ is increasing function of the variable $n \geq n_{1}$ for $n \geq s \geq n_{1}$, we have

$$
\left.\begin{array}{rl}
& \left|K^{(q)}(n, s)\right| \\
\leq & \sum_{i=s+1}^{n-1}|N(n, i)+\psi(i)|\left\{a^{q-2} F^{1-\alpha}(s)|N(i, s)|^{\alpha}\right. \\
& \left.\quad+(q-2) a^{q-3} \psi_{1}(i, s)+a^{q-2}|\psi(s)|\right\}
\end{array}\right]=a^{q-1}|\psi(s)|+(q-2) a^{q-2} \psi_{1}(n, s)+a^{q-2} F^{1-\alpha}(s) \sum_{i=s+1}^{n-1}|N(n, i)||N(i, s)|^{\alpha}, l^{\alpha} .
$$

Hence (6) follows. Therefore the series $\sum_{q=1}^{\infty} K^{(q)}(n, s)$ is uniformly convergent for $n \geq s \geq n_{0}$. Taking $\sum_{q=1}^{\infty} K^{(q)}(n, s)=R(n, s)$ we obtain from (6) for $n \geq s \geq n_{1}$

$$
\begin{aligned}
|R(n, s)| & \leq \sum_{q=1}^{\infty}\left\{a^{q-1}|\psi(s)|+(q-1) a^{q-2} \psi_{1}(n, s)+a^{q-1} F^{1-\alpha}(s)|N(n, s)|^{\alpha}\right\} \\
& \leq \frac{1}{1-a}|\psi(s)|+\frac{1}{(1-a)^{2}} \psi_{1}(n, s)+\frac{1}{1-a} F^{1-\alpha}(s)|N(n, s)|^{\alpha}
\end{aligned}
$$

JAROSLAW MORCHALO

We have

$$
\begin{aligned}
\sum_{s=n_{0}}^{n-1} \psi_{1}(n, s) & =\sum_{s=n_{0}}^{n-1} F^{1-\alpha}(s) \sum_{i=s}^{n-1}|N(i, s)|^{\alpha}|\psi(i)| \\
& =\sum_{s=n_{0}}^{n-1} \sum_{i=n_{0}}^{s-1} F^{1-\alpha}(i)|N(s, i)|^{\alpha}|\psi(s)|
\end{aligned}
$$

From this and from assumptions $2^{\circ}-4_{a}^{\circ}$ it follows that $\varlimsup_{n \rightarrow \infty}|\bar{y}(n)|<\infty$. In the case 4_{b}° it is easy to verify that the function

$$
y_{1}(n)=\bar{y}(n)-(E-\sigma)^{-1} s_{1}
$$

where $s_{1}=s+\sum_{n=n_{0}}^{\infty} \psi(n) \bar{y}(n)$ satisfies the equation

$$
\begin{equation*}
y_{1}(n)=f_{1}(n)+\sum_{s=n_{0}}^{n-1} N(n, s) y_{1}(s) \quad\left(n \geq n_{0}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}(n)=f(n)+\sum_{s=n_{0}}^{n-1} \psi(s) \bar{y}(s)+\left(\sum_{s=n_{0}}^{n-1} N(n, s)-E\right)(E-\sigma)^{-1} s_{1} \tag{8}
\end{equation*}
$$

From this and from the assumptions we have

$$
\lim _{n \rightarrow \infty} f_{1}(n)=0
$$

We demonstrate that $\lim _{n \rightarrow \infty} y_{1}(n)=0$. Assume that the last condition does not hold. Let $M=\varlimsup_{n \rightarrow \infty}\left|y_{1}(n)\right|>0$, then there exists $n_{1} \geq n_{0}$ such that $\left|y_{1}(n)\right|<M$ for $n \geq n_{1}$. From (7) and assumption 4_{b}° we infer that

$$
\begin{aligned}
M & =\varlimsup_{n \rightarrow \infty}\left|y_{1}(n)\right| \\
& \leq \varlimsup_{n \rightarrow \infty}\left|f_{1}(n)\right|+\varlimsup_{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1}|N(n, s)|\left|y_{1}(s)\right| \\
& \leq \varlimsup_{n \rightarrow \infty}\left|f_{1}(n)\right|+\lim _{n \rightarrow \infty} \sum_{s=n_{0}}^{n_{1}}|N(n, s)|\left|y_{1}(s)\right|+\lim _{n \rightarrow \infty} \sum_{s=n_{1}+1}^{n-1}\left|N(n, s) \| y_{1}(s)\right| \\
& \leq M \mu
\end{aligned}
$$

what contradicts 3°.
Therefore $\lim _{n \rightarrow \infty} y_{1}(n)=0$ and $\lim _{n \rightarrow \infty} y(n)=(E-\sigma)^{-1} s_{1}$.

Theorem 2. Let the assumptions $1^{\circ}-3^{\circ}$ of Theorem 1 hold.
Suppose in addition that

$$
\begin{array}{cc}
\lim _{n \rightarrow \infty} f(n)=s & (|s|<\infty), \\
\lim _{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1} N(n, s)=0 ; & \lim _{n \rightarrow \infty} \sum_{s=n_{0}}^{n_{1}}|N(n, s)|=0
\end{array}
$$

for fixed $n_{1} \geq n_{0}$. We set $K^{(1)}(n, s)=N(n, s)+\psi(s)$ for $n \geq s \geq n_{0}$. Then for $\varepsilon>0$ there exists an $n^{*} \geq n_{0}$ such that the unique solution $\bar{y}(n)$ of the equation

$$
\begin{equation*}
y(n)=f(n)+\sum_{s=n^{*}}^{n-1} K^{(1)}(n, s) y(s) \tag{9}
\end{equation*}
$$

satisfies the relation $\lim _{n \rightarrow \infty} \bar{y}(n)=s_{1}$, where $\left|s-s_{1}\right| \leq \varepsilon$.
Proof. Under our hypotheses we have for $n \geq n_{1}$ (with some $n_{1} \geq n_{0}$)

$$
\begin{aligned}
& |f(n)| \leq c_{1}=1+|s| \\
& \sum_{s=n_{1}}^{n-1} F^{1-\alpha}(s)|N(n, s)|^{\alpha} \leq c_{2} \\
& \sum_{s=n_{1}}^{n-1} \psi_{1}(n, s)=\sum_{s=n_{1}}^{n-1}|\psi(s)| \sum_{l=n_{1}}^{s-1} F^{1-\alpha}(l)|N(s, l)|^{\alpha} \leq c_{2} \mu \\
& \sum_{s=n_{1}}^{n-1}\left|K^{(1)}(n, s)\right| \leq a
\end{aligned}
$$

where $\psi_{1}(n, s)=F^{1-\alpha}(s) \sum_{i=s}^{n-1}|N(i, s)|^{\alpha}|\psi(i)|$ and a satisfies the inequality $\max (\lambda, \mu)<a<1$.

We choose an arbitrary $n_{2} \geq n_{1}$. The above inequalities remain true for $n \geq n_{2}$ if we replace n_{1} by n_{2} (since $F(n) \geq 0$). As in Theorem 1 we obtain

$$
\sum_{s=n_{2}}^{n-1}|R(n, s)| \leq \frac{1}{1-a} \mu+\frac{1}{(1-a)^{2}} c_{2} \mu+\frac{1}{1-a} c_{2}=c_{3}
$$

for $n \geq n_{2}$. We denote by $\bar{y}(n)$ the unique solution of the equation (9). With n_{2} instead of n^{*} we have

$$
\bar{y}(n)=f(n)+\sum_{s=n_{2}}^{n-1} R(n, s) f(s)
$$

and

$$
|\bar{y}(n)| \leq c_{1}+c_{1} c_{3}=c \quad \text { for } \quad n \geq n_{2} .
$$

Let us observe that c is independent of n_{2} (if $n_{2} \geq n_{1}$).
For a given $\varepsilon>0$ we choose a fixed $n^{*} \geq n_{1}$ such that

$$
\sum_{n=n^{*}}^{\infty}|\psi(n)| \leq \frac{\varepsilon}{c}
$$

Obviously $|\bar{y}(n)| \leq c$ for $n_{1} \geq n^{*}$. As in the proof of Theorem 1 we find that $\lim _{n \rightarrow \infty} \bar{y}(n)=s_{1}$ (we replace σ by 0), where

$$
\left|s-s_{1}\right| \leq \sum_{s=n^{*}}^{\infty}|\psi(s) \bar{y}(s)| \leq \varepsilon .
$$

Now we consider the scalar situation.
Theorem 3. Suppose that
1° the function $g(n)$ has property: $g(n) \neq 0,|g(n)|$ is monotone for $n \geq n_{0}$,
$2^{\circ} h(n), \varphi(n), f(n)$ and $\psi(n)$ are defined on \mathbb{N},

$$
2_{\mathrm{a}}^{\circ} \varlimsup_{n \rightarrow \infty}|f(n)|=M<\infty
$$

or
$2_{\mathrm{b}}^{\circ} \varlimsup_{n \rightarrow \infty} f(n)=s(|s|<\infty)$,
$3^{\circ} \sum_{n=n_{0}}^{\infty}|\psi(n)|<\infty$,
$4^{\circ} \lim _{n \rightarrow \infty} \varphi(n)=0$,
$5^{\circ} \sum_{n=n_{0}}^{\infty}|h(n)| \leq h_{0}<\infty$.
Let $K^{(1)}(n, s)=\frac{h(s)}{g(n)} \varphi(s)+\psi(s)$ where $N(n, s)=\frac{h(n)}{g(n)} \varphi(s)$ for $n \geq n_{0}, s \geq n_{0}$.
Then in the case of $\lim _{n \rightarrow \infty} g(n)=\infty$ the unique solution $\bar{y}(n)$ of the equatio

$$
\begin{equation*}
y(n)=f(n)+\sum_{s}^{n-1} K_{n_{1}}^{(1)}(n, s) y(s) \quad\left(n \geq n_{1}\right) \tag{10}
\end{equation*}
$$

($n_{1} \geq n_{0}$ is chosen so large that $\sum_{n=n_{1}}^{\infty}|\psi(n)|<1$) remains bounded for $n \rightarrow \infty$.
In case $2_{\mathrm{b}}^{\circ}, \bar{y}(n)$ is convergent as $n \rightarrow \infty$.
Proof. $\lim _{n \rightarrow \infty}|g(n)|=\infty$. We chosen a fixed $\alpha \in(0,1)$ and small enonoh $\delta>0$. Next, we choose $n_{2} \geq n_{0}$ such that $|\varphi(n)| \leq \delta$ holds for $n>n_{2}$. We
prove the inequality in hypothesis 1°, hypothesis 2° and the first hypothesis in 3° of Theorem 1 . We obtain by $1^{\circ}, 4^{\circ}$ and 5° for $n \geq s \geq n_{2}$

$$
\begin{aligned}
\sum_{l-s}^{n-1}|N(n, l)||N(l, s)|^{\alpha} & =\sum_{l=s}^{n-1}\left|\frac{h(l)}{g(n)} \varphi(l)\right|\left|\frac{h(s)}{g(l)} \varphi(s)\right|^{\alpha} \\
& =\left|\frac{h(s) \varphi(s)}{g(n)}\right|^{\alpha}|g(n)|^{\alpha-1} \sum_{l=s}^{n-1} \frac{|h(l)||\varphi(l)|}{|g(l)|^{\alpha}} \leq K \delta|N(n, s)|^{\alpha}, \\
0 & <K=\frac{h_{0}}{\left|g\left(n_{0}\right)\right|} .
\end{aligned}
$$

Then the inequality in hypothesis 1° of Theorem 1 is satisfied with $\lambda=K \delta<1$.
Next, we state that hypothesis 2° of Theorem 1 is satisfied for

$$
F(s)=\left|\frac{h(s) \varphi(s)}{g(s)}\right| \quad \text { for } \quad s \geq n_{2}
$$

We shall show that the first hypothesis in 3° of Theorem 1 is also satisfied. We have

$$
\begin{aligned}
& \sum_{s n_{2}}^{n-1} F^{1-\alpha}(s)|N(n, s)|^{\alpha}=\sum_{s=n_{2}}^{n-1}\left|\frac{h(s) \varphi(s)}{g(s)}\right|^{1-\alpha}\left|\frac{h(s) \varphi(s)}{g(n)}\right|^{\alpha} \\
&=\frac{1}{|g(n)|^{\alpha}} \sum_{s=n_{2}}^{n-1} \frac{|h(s) \varphi(l)|}{|g(s)|^{1-\alpha}} \leq \frac{\delta}{|g(o)|} \sum_{s=n_{2}}^{n-1} h(s)<\infty \\
& \text { for } n \geq n_{\cdot 2} .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
\varlimsup_{n \rightarrow \infty} \sum_{s-n_{1}}^{n-1}\left|K^{(1)}(n, s)\right| & \leq \varlimsup_{n \rightarrow \infty} \sum_{s=n_{1}}^{n-1}(|N(n, s)|+|\psi(s)|) \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{|g(n)|} \sum_{s=n_{1}}^{n-1}|h(s) \varphi(s)|+\sum_{n=n_{1}}^{\infty}|\psi(n)|=A
\end{aligned}
$$

where $A=\sum_{n=n_{1}}^{\infty}|\psi(n)|$.
The second hypothesis in 3° and 4_{b}° of Theorem 1 are then satisfied for $n_{0}=n_{1}, \mu=A$ and $\sigma=A_{1}$ where $A_{1}=\sum_{n-n_{1}}^{\infty} \psi(n)$.

JAROStAW MORCHALO

REFERENCES

[1] CRISCI, M.-JACKIEWICZ, Z.-RUSSO, E.-VECCHIO, A. : Stability analysis of discrete recurrence equations of Volterra type with degenerate kernels, J. Math. Anal. Appl. 162 (1991), 49-62.
[2] DYMKOV, M. P.--GAISHUN, J. V.: Linear-quadratic Optimal Control Problem for a Discrete Volterra Equation, Bull. Polish Acad. Technical Sci. 45 (1997), 251-261.
[3] KELLY, W.--PETERSON, A.: Difference Equations. An Introduction with Applications, Academic Press, Boston, 1990.
[4] KOLMANOWSKI, V. B.-MYSHKIS, A. D.-RICHARD, J. P. : Estimate of solutions for some Volterra difference equations, Nonlinear Anal. 40 (2000), 345-363.
[5] KOLMANOWSKI, V. B.-MYSHKIS, A. D. : Stability in the first approximation of some Volterra difference equations, J. Differ. Equations Appl. 3 (1998), 563-569.
[6] KWAPICZ, M. : On l_{p} solutions of discrete Volterra equations, Aequationes Math. Univ. of Waterloo 43 (1992), 191-197.
[7] LAKSHMIKANTHAN, V.-TRIGIANTE, D.: Theory of Difference Equations with Applications to Numerial Analysis, Academic Press, Boston, 1988.
[8] MEDINA, R.: Solvability of discrete Volterra equations in weighted spaces, Dynam. Systems Appl. 5 (1996), 407-422.

Received July 10, 2000
Revised January 17, 2001

Poznań University of Technology
Institute of Mathematics
Piotrowo 3a
PL-60-965 Poznań
POLAND
E-mail: jmorchal@math.put.poznan.pl

[^0]: 2000 Mathematics Subject Classification: Primary 39A12, 45E99.
 Keywords: Volterra difference equation, resolvent, asymptotic properties.

