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ABSTRACT. Endowing a lower-bounded partially ordered set with a tota l addi
tion or with a tota l difference operation leads to the basic notion of a NAM, tha t 
is, a naturally ordered abelian monoid, or a BCK-algebra, respectively 

BL-algebras may be alternatively viewed as certain NAMs or certain BCK-al-
gebras. We characterize the appropriate subclasses by making use of those prop
erties which have been so far considered in an apparently ra ther different context, 
namely for certain quantum structures. 

The three most impor tant subclasses of BL-algebras, MV-, product , and Godel 
algebras, are also taken into account. 

1. Introduction 

Basic Logic ([Hajl], [Got]), introduced by Haj ek several years ago, aims at 
formalizing in a quite general manner statements of fuzzy nature. It is a calculus 
of propositions which are true principally only to a certain degree, that is, to 
which in general no sharp yes or no is assigned. 

The Lindenbaum algebras of the theories of Basic Logic are the BL-algebras. 
BL-algebras are a certain type of residuated lattices, and they have been exam
ined in several papers; see e.g. [Haj2], [Tur], [Hoh], 

On the other hand, algebras of various kinds have been examined in the last 
decades in connection with foundational questions about the formalism of quan
tum mechanics ([DvPu]). Among these algebras, which are in general referred to 
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as quantum structures, we find for instance effect algebras ([FoBe]), MV-algebras 
([CiOtMu]) and BCK-algebras ([MeJu]). We find that BL-algebras are relatively 
closely related to the quantum structures: BL-algebras generalize MV-algebras, 
which in turn are special cases of effect algebras; furthermore, BL-algebras form 
a subclass of the BCK-algebras. 

Now, since the structure theory of most quantum structures is a rather diffi
cult matter, several of their subclasses have been considered, which are somewhat 
more convenient to handle. For example, the Riesz decomposition property was 
introduced for effect algebras ([Rav]), the relative cancellation property was de
fined for BCK-algebras ([DvGr]), and based on these notions, it was in both 
cases possible to prove po-group representation theorems. 

Whereas the mentioned special properties play basically no role in connection 
with the original motivation to study quantum structures, we see that they now 
naturally appear in a different context — in the context of fuzzy logic. To see that 
some of them are actually the characteristic properties of BL-algebras among 
certain very basic types of algebras, this is the aim of the present paper. 

We proceed as follows. BL-algebras have a conjunction-like and an impli
cation-like operation, and each of these two basic operations is definable from 
the other one. We give axiomatizations with respect to the conjunction only 
(Section 3) as well as with respect to the implication only (Section 4). In both 
cases, we start from an appropriate general type of algebra — one with a total 
addition, one with a total difference. 

So first, we shall view BL-algebras as special bounded NAMs, where a NAM 
is just meant to be an abelian monoid ordered in the natural manner; compare 
also [Klin]. Second, we consider BL-algebras as special bounded BCK-algebras; 
compare also [lor]. Now, the properties which single out BL-algebras among both 
types of structures, are those of the mentioned kind: the Riesz decomposition 
property, the property of being mutually compatible, the relative cancellation 
property. 

We moreover see to which subclasses of NAMs and of BCK-algebras MV-, 
PL-, and G-algebras correspond, which are the Lindenbaum algebras of the 
Lukasiewicz, the product, and the Godel logic, respectively. 

Finally, we briefly discuss (in Section 5) the categorical-theoretic question 
connected with the transition from BL-algebras to algebras which are based on 
one basic operation instead of two. 
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2. BL-algebras reviewed 

BL-algebras are the Lindenbaum algebras of Hajek's Basic logic Their axioms 
have been chosen in accordance to the nature of this logic — usually more or 
less in the following manner. 

DEFINITION 2 . 1 . A residuated lattice is a structure (L; <, ©,-=>,0,1) such 
that the following holds. 

(RL1) (L; <) is a lattice with a smallest element 0 and a largest element 1. 

(RL2) (L; 0 ,1 ) is a commutative monoid, that is, 0 is a associative and com
mutative binary operation, and 1 is a neutral element with respect to 0 . 

(RL3) 0 is isotone, that is, for any a,b,c G L, a < b implies a © c < b © c. 

(RL4) For any a,b £ L, a=> b is the maximal element x such that a © x <b. 

Furthermore, a residuated lattice is called a BL-algebra under the following 
conditions. 

(BL1) a A b = a 0 (a => b) for a,b e L. 

(BL2) (a=>b)V (b=>a) = 1 for a , b G L . 

We note that also the supremum of pairs of elements of a BL-algebra L is 
definable from © and =>, 

aVb= ((a => b) => b) A ((b => a) => a) for a, b G L , 

and that the lattice (L; A, V) is a distributive one. 

The following proposition is meant to show that BL-algebras, when not con
sidered in connection with fuzzy logic, are not as unnatural objects as they seem 
to be at first sight. 

DEFINITION 2.2. Let (L; <, ©, =>, 0,1) be a residuated lattice. We say that 

(a) © is compatible with the lattice operations if for any a G L the mapping 
L -» L, x h - > a © . x , i s a lattice homomorphism. 

(b) => is compatible with the lattice operations if for any a G L 
(a) the mapping L —> L, re H-» a ---> .r, is a lattice homomorphism 

and 
(/?) the mapping L —> L, x \-^> x=>a,is & homomorphism of the lattice 

L to its dual. 

(c) L is divisible if for any a,b £ L, a <b holds if and only if a = b © x for 
some x G L. 
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PROPOSITION 2.3 . A residuatedposet (L; <, ©, =->, 0,1) is a BL-algebra if and 
only if 0 and =-> are compatible with the lattice operations and L is divisible. 

P r o o f . By (BL2), the conditions concerning the lattice compatibilities hold 
e.g. according to [Hoh; Propositions 2.1, 2.3]. By [Hoh; Lemma 2.5], the divisi
bility is equivalent to (BL1). And from the compatibility of => with A, (BL2) 
follows. • 

Note that Proposition 2.3 in particular implies that the operations 0 and => 
are, with respect to any one of its arguments, isotone or antitone, respectively. 

The importance of BL has apparently much to do with the fact that it pos
sesses three extensions well-known from fuzzy logics: the Lukasiewicz, product, 
and Godel logic. The algebraic counterparts of these logics are the MV-, PL-, 
and G-algebras, respectively. 

For the original definitions of these algebras and for further details, we refer 
to [CiOtMu], [Hajl], and [God], respectively. Here we will, following the lines of 
[Hajl], consider MV-, PL-, and G-algebras as subclasses of the BL-algebras. 

DEFINITION 2.4. Let I be a BL-algebra. Let 

a* = a => 0 for a G L 

be the complement of a. 

(i) L is called an MV-algebra if we have: 
(MV) The complement operation is involutive, that is, a** = a for all 

a G L. 
(ii) L is called a PL-algebra if we have: 

(PL1) a** < (a 0 b => a 0 c) => (6 =-> c) for any a,b,ce L. 
(PL2) a A a* = 0 for a eL. 

(iii) L is called a G-algebra if we have: 
(G) aQb = a Ab for any a,b G L. 

Now, BL-algebras are lattices endowed with operations which are modelled 
upon a logical conjunction and implication. In what follows, we prefer to 
work with algebras possessing an addition-like and a difference-like operation; 
namely, what we will consider throughout the text are the duals of BL-algebras 
rather than BL-algebras themselves. This makes it more convenient to compare 
BL-algebras with algebras known from other fields like e.g. quantum structures . 

DEFINITION 2.5. Let (L; < B L , 0 , =->, 0B L , 1BL) be a BL-algebra. Then 
(L; < , © , © , 0,1) is called the dual of L, where for a, b G L 

a <b <£=> b < B L a , 
,— 7 def 7 _ , def _ 7 

a © 6 = a=->a, a © 6 = a © o , 

o = i B L , i = f o B L . 
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We see that the transition from a BL-algebra to its dual may be considered 
just as a change of notation. In particular, all statements about BL-algebras 
are easily reformulated for duals of BL-algebras. This is to be kept in mind in 
the sequel, where some results are formulated for duals of BL-algebras, but are 
actually to be understood as statements about BL-algebras. 

Remark 2.6. The duals of BL-algebras are exactly the bounded DRl-monoids 
with the property (a 0 b) A (b 0 a) = 0 for any pair a, b; see e.g. [Kiih]. 
DRl-monoids have been introduced by S w a m y ; their basic properties may 
be found in [Swa]. 

3. BL-algebras as naturally ordered abelian monoids 

Since the two operations 0 and -=> of a BL-algebra (L; <,0,==>,0,1) are 
definable from each other, one may wonder if it is not possible to axiomatize in a 
reasonable manner the reducts (L; <, 0 ,0 ,1 ) and (L; <, =>, 0,1) such that there 
is a unique expansion to a BL-algebra. We propose here such an axiomatization, 
using mainly those properties which are known from related types of algebras 
and in particular from quantum structures. 

We consider in this section the conjunction-like operation 0 . So with respect 
to the dual algebra (L; <, 0 , 0 , 0 , 1 ) , given according to Definition 2.5, we have 
to characterize the structure (L; <, 0 , 0 , 1 ) . 

We are given an abelian monoid which is endowed in the natural way with 
a partial order. Since this type of algebra arises frequently, we shall use an own 
term for it. The abbreviation "NAM" was chosen in analogy to the term "PAM", 
wrhich stands for "partial ordered monoid" ([GuPu]). 

DEFINITION 3.1. A naturally ordered abelian monoid, or NAM for short, is a 
structure (L; <, 0 ,0 ) with the following properties: 

(NAM1) (L; <, 0) is a poset with a smallest element 0. 

(NAM2) 0 is a binary operation such that for any a,b,c G L 
(a) (a 0 b) 0 c = a 0 (b 0 c); 
(b) o © 0 = a; 
(c) a®b = b®a. 

(NAM3) We have a < b for a, b G L if and only if a 0 x = b for some x G L. 

Furthermore, a structure (L; <, 0 ,0 ,1 ) is called a bounded NAM if 
(L; <, 0 ,0 ) is a NAM with a largest element 1. 

Now, duals of BL-algebras will prove to be special bounded NAMs; for their 
exact characterization the following properties are needed. 
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DEFINITION 3.2. Let (L; <, ©,0,1) be a bounded NAM. 

(i) We say that L has the difference property if for any a, b G L such that 
a < b there is a smallest element x £ L such that a © x = b. 

(ii) We say that L has the Riesz Decomposition Property, or (RDP) for 
short, if for any a,b,c G L such that c < a (B b there are ax < a and 
bx < b such that 

(a) c = ax © b1 

and 
(/3) ax = a in case c > a. 

(iii) We say that L is mutually compatible if for any a,b £ L there are 
a1,b1,c £ L such that a = a 1 © c , b = b10c, and a1 A b: = 0. 

Moreover, we say that a bounded NAM is of type BL if it has the difference 
property, if it fulfils (RDP), and if it is mutually compatible. 

Let us briefly comment these definitions. Roughly speaking, condition (i) 
states that there is the shortest distance between any pair of comparable 
elements. Note that the difference property alone does not imply a residuation 
property analogous to (RL4). Furthermore, (RDP) corresponds to the equally 
denoted property of effect algebras ([Rav], [DvVe]), although in the case of 
the latter algebras, the requirement (/3) is superfluous. Finally, two compatible 
elements of an effect algebra formally fulfil the requirements of (iii). 

THEOREM 3.3. Let ( £ ; < , © , 0 ,0 ,1 ) be the dual of a BL-algebra. Then 
(L; <, ©, 0,1) is a bounded NAM of type BL. 

Conversely, let (L ;< ,© ,0 ,1 ) be a bounded NAM of type BL. Then L may 
be expanded uniquely to the dual of a BL-algebra (L; < ,© ,©, 0,1). 

P r o o f . Let (L; < ,© , 0 ,0 ,1 ) be the dual of a BL-algebra. By (RL1), 
(NAM1) holds and 1 is the largest element. By (RL2), (NAM2) holds. By 
(RL3), we have a = a © 0 < a © a ; f o r any a,x G F, which is one half of (NAM3). 
If a < b for some a,b £ L, then by (RL4) b 0 a is the smallest element x such 
that a © x > b, and by (BL1), we have a(B(bQa) = aVb = b; so also the second 
half of (NAM3) as well as the difference property follows. 

Assume now c < a © b for some a,b,c G L. Set ax = a A c and b1 = c 0 a1. 
Then a1 < a and, in view of Proposition 2.3 and (RL4), bx = c 0 (a A c) — 
cQa < (a©b ) 0 a < b; moreover, a1 © b1 = (cQa1)^a1 = c by (BL1). In case 
c > a, we have ax = a. So (RDP) is proved. 

To see that E is mutually compatible, let a,b G L, and set ax = a 0 b, 
b! = b 0 a and c = a A b. We see by (BL1) and Proposition 2.3 that a = 
(a 0 (a A b)) © (a A b) = (a 0 b) © (a A b) = a1 © c, and similarly b = bx © c. 
Furthermore, a1 A bx = 0 holds by (BL2). So the proof that L is a bounded 
NAM of type BL is complete. 
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Conversely, let (L; <, 0 ,0 ,1 ) be a bounded NAM of type BL. By (NAM1) and 
the boundedness of L, (L; <, 0,1) is a bounded poset. To see that L is a lattice, 
let a,b € L, and let, according the mutual compatibility of F, al,bl,c G L be 
such that a = al © c, b = bx © c and a1 A bx = 0. We claim that c = a A b and 
d = ax 0 b 2 0 c = a Vb . 

By (NAM3), c < a,b. Let x < a, b; we shall show x < c; then it will be 
clear that c = a A b. From x < a = ax 0 c we conclude by (RDP) and the 
difference property that x = xa 0 xc such that xa < ax , xc < c and xa 

is the minimal element summing up with xc to x. Choose r E L such that 
c = xc 0 r ; then x c < x < b = xc 0 bx 0 r implies by (RDP) that x = xc 0 x^ 
for some x^ < bx 0 r . By the minimality of xa we have xa < x'a , and from 
xo < ox 0 r we conclude by (RDP) and ax /\bx = 0 that xa < r. Thus 
x = x 0 xc < r 0 xc = c. 

Furthermore, we have d > a,b. To see that d is actually the supremum of 
a and b, let y > a, b; we will show y > d. We have c < b < H = a x 0 c 0 5 
for some s. From (RDP), we again conclude b = c © b[ for some b'x < ax © 5, 
and since we may assume that bx was chosen as the minimal element summing 
up with c to b, we have bx < b[, and we conclude by (RDP) bx < s. It follows 
that y > d. 

This completes the proof of (RL1). (RL2) holds by (NAM2). (NAM3) implies 
that 0 is isotone; so also (RL3) holds. 

Now, we see from (RL4) that there is maximally one function 0 with the 
property that (L; <, 0 , 0 , 0 , 1 ) is the dual of a BCK-algebra. In view of the 
difference property, we may for any a, b E L define b © a to be the smallest 
element x such that a © x = a V b. 

By our definition of 0 , we get a ® (b Q a) = a V b for a, b G L, which 
gives (BL1). 

To see (RL4), we have to show that for any a,b £ L, b Q a = min{x : 
a 0 x > b]. We have a © (b © a) = a V b > b. Let now x be such that a © x > b; 
then we have a < a V b < a © x, whence, by (RDP), a V 6 -- a © x' for some 
x1 < X. So by the definition o f © , bQa^x'^x. 

It remains to show (BL2), according to which for a, b G L we have (a © b) A 
(b © a) = 0. So let again a = ax © c, b = bx © c for some a1,b1,c E L such that 
a2 A bx = 0 . We have seen above that then aV b = ax 0 b, so aj > a 0 b , and 
similarly, bx > b © a. The claim follows. • 

So given some bounded NAM of type BL L, it is the function © defined by 

b © a = min{x : a@x = a\/b} for any a,b G L , (1) 

which makes L the dual of a BL-algebra. We will as usual refer to © as the 
residuum of L. Note that in particular 

(bQa)^a = aVb for any a,b E L. (2) 
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Let us now turn to those well-known algebras which are frequently discussed 
in connection with BL-algebras. the MV-, PL-, and G-algebras. According to 
Definition 2.4, these three types of algebras form subclasses of the BL-algebras. 
Now, because, by Theorem 3.3, BL-algebras are in a one-to-one correspondence 
with bounded NAMs of type BL, we see that MV-, PL-, and G-algebras might 
be equivalently viewed as subclasses of the bounded NAMs. The respective char
acteristic properties of bounded NAMs are given in Proposition 3.4. 

In what follows, we will denote the complement function on the dual of a 
BL-algebra L by ® , that is, 

a® d= 1 0 a for aeL. 

PROPOSITION 3.4. Let (L]<BL,Q,=>,0BL,1BL) be a BL-algebra, and let 
(£;<, 0,0,1) be the corresponding bounded NAM according to Definition 2.5 
and Theorem 3.3. 

(i) L as a BL-algebra is an MV-algebra if and only if L as a bounded NAM 
has the following property: 

(MV0) If a@b = c for some a,b,c G L such that a is the smallest 
element x fulfilling x@b = c, then also b is the smallest element 
y fulfilling a@y = c. 

(ii) L as a BL-algebra is a PL-algebra if and only if for L as a bounded 
NAM the following holds: 

(PL01) Let a G L be such that a @ x = 1 holds only for x = 1. Then, 
for any b,c G L, a@b = a@ c implies b = c. 

(PL02) If a@a@b = l for some a,be L, then a@b=l. 

(iii) L as a BL-algebra is a G-algebra if and only if for L as a bounded NAM 
we have: 
(Ge) a@b = aVb for a,beL. 

P r o o f . Let us treat L as a bounded NAM throughout the proof. Let 0 
be the residuum of L. 

(i) Let condition (MV) hold, that is, assume a®® = a for all a G L. To 
prove (MV0), assume a@b = c for a,b,ce L, where a is chosen minimal, that 
is, a = c@b. We have to show that b = c 0 a. Clearly, b > c© a. Prom (RL4) 
we see that c@a > ( c 0 c®) 0 (a 0 c®) = 1 0 (a 0 c®); and since b < c < 1, 
we have a @ c® = (1 © c) 0 (c 0 b) = 1 0 b = b® by [Swa; Lemma 15]. So 
c© a > 1 © b® = b®® = 6, and it follows that b = cQa. 

Conversely, let (MV0) hold, and let aeL. Then a 0 (1 © a) = 1 implies 
that a is minimal, that is, a = 1 © (1 © a) = a®® , which is (MV). 

(ii) Assume that (PL1) and (PL2) hold. To prove (PL01), let a,b,c G L be 
such that a © x = 1 for some x G L implies x = 1, and such that a@b = a@c. 
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Then 1 = min{.z; : a ® x = 1} = a® . According to (PL1) we have 

(cGb)e ((a ® c) 0 (a ® b)) < a®® . (3) 

It follows that c ® b = 0, whence, by (1), c < b. Similarly, we conclude b < c. 
Thus b = c, and (PL 0 1) is proved. 

Furthermore, by (PL2), (2) and [Swa; Lemma 6], 1 = ay a® = [ ( l©a)©a]®a 
= [ l©(a©a) ] ©a = ( a ® a)® ©a for any a G L. Consequently, a® < (a® a)® 
and, since ® is antitone, even a® = (a® a)® . Now, if a © a © b = 1 for some 
6 G L , then b> (a ©a)® = a® , so a © b= 1. This proves ( P L 0 2 ) . 

Assume now (PL 0 1) and (PL 0 2) to hold. For any a G L, we conclude from 
a © a © (a © a)® = 1 by (PL 0 2) that already a © (a © a)® = 1. According to 
the previous paragraph, a® (a® a)® = a V a® ; so (PL2) holds. 

Let now a, b, c G I . We have to show (3). By (PL2) and the distributivity 
of the lattice order of L, we have a = a0 V ax , where a0 = a A a® and ax = 
aA a®® = a®® . Then, according to Proposition 2.3, we may write the expression 
on the left side of (3) as 

V A (ce 6)0 [(a,. ©0)0(0,0 6)]. (4) 
2=0,1.7=0,1 

From (PL2) and [Tur; (12)] we get a0® = (a A a®)® = a® V a®® = 1; so by 
(PL 0 1) , a 0 © ( ( a 0 © c ) © a 0 ) = a0®c implies (a0®c)Qa0 = c. We conclude, by 
[Swa; Lemma 6], (c © 6) © [(a0 © c) © (a0 © b)] = (c © 6) © ([(a0 © c) © a0] © 6) = 0. 
Thus, in (4), the term i = 0 may be deleted. 

Furthermore, we have (c © b) © [(ax © c) © (a-, © 6)] < ax , because [(a-_ © c) 
0 ( a 1 © 6 ) ] ©a x = [((ax ffic) 0 6) © a j ©a 2 > (ax ffic) ©b > cQb. Thus, in (4), 
the term i = 1 is smaller than ar. 

All in all, the term (4) is below a1, and ax = a®® , so (PL1) is proved. 
(iii) This is evident. • 

4. BL-algebras as BCK-algebras 

We now consider the implication-like operation -=>: We will axiomatize 
BL-algebras on the base of this operation only. We will further work with 
the duals of BL-algebras (L; < , ©, ©, 0,1); so we shall characterize their reduct 
(L; <, ©, 0,1). Again, we will concentrate on those properties which have already 
been denned in other contexts. 

In the previous case, when we restricted ourselves to the © operation, we 
had to do with a bounded poset endowed with a total addition determining the 
order. Now here, we are given a poset which is endowed with a total difference 
operation being connected to the order in a natural way. 
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A genuine difference operation — on some lower-bounded poset (L ;< ,0 ) 
should be defined for comparable elements only. If we do so, we are led to the 
notion of a poset with a difference ([KoCh]), the basic properties of which are 
a — (a — b) = b for b < a, (a — b) — (a — c) = c — b for b < c < a, and 
a — 0 = a. Now, the analogous notion for the case of a total difference are the 
BCK-algebras, as might be nicely seen from the axioms below. 

BCK-algebras have been originally defined by Imai and I s e k i ; the basic 
reference is [MeJu]. The connection between BL- and BCK-algebras has been 
already pointed out in [lor]; our characterization of the relevant subclass is, 
however, an alternative one. 

In accordance to the nature of this article, the basic BCK-operation is de
noted by © rather than the usual *; and our operation 0 replaces the o used 
elsewhere. Furthermore, the BCK-ordering < is added as an own relation. 

DEFINITION 4 . 1 . A BCK-algebra is a structure (L ;< ,0 ,O) such that 

(BCK1) (L; <,0) is a poset with a smallest element 0. 

(BCK2) 0 is a binary operation such that for any a,b,c € L 
(a) aQ(aQb) < b\ 
(b) (aeb)e(aQc) < c 0 b ; 
(c) a 0 O = a. 

(BCK3) For any a, b G L, a < b if and only if a 0 b = 0. 

Furthermore, a structure (L; <, 0 ,0 ,1 ) is called a bounded BCK-algebra if 
(L; <, 0 ,0 ) is a BCK-algebra with a largest element 1. 

BL-algebras may be understood as special BCK-algebras; for an exact char
acterization, we chose the following properties. 

DEFINITION 4.2. Let (L; <, 0 ,0 ,1 ) be a bounded BCK-algebra. 

(i) L is said to have the addition property if for any a,b £ L there is a 
c e L such that for all d G L we have (d 0 a) Qb = d 0 c. 

(ii) L is said to be strongly cancellative if for any a^b^c G L such that 
c < a, b we have 

a < b <=> aQc< bQc. 

(iii) L is said to be mutually compatible if for any a,b € L 

(a 0 b) A (b 0 a) = 0 . 

Moreover, we say that a bounded BCK-algebra is of type BL if it has the addition 
property, if it is strongly cancellative, and if it is mutually compatible. 
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Here, the addition property is meant to ensure that an addition may be 
defined in a natural manner, in analogy to the difference property for NAMs. 
As outlined in [Ise], it is actually equivalent to the condition (S), which was 
introduced by I s e k i: 

(S) for any a and b there is a largest element y fulfilling y © a < b. 

Furthermore, the strong cancellativity is a strengthened version of the relative 
cancellation property, which has been defined in [DvGr]; according to the latter, 
elements a and b such that aQc — bQc for some c < a,b, are equal. Finally, the 
mutual compatibility is analogous to the equally denoted property for NAMs. 

THEOREM 4 .3 . Let ( £ ; < , 0 , 0 , 0 , 1 ) be the dual of a BL-algebra. Then 
(L; <, 0 ,0 ,1 ) is a bounded BCK-algebra of type BL. 

Conversely, let (L; <, ©, 0,1) be a bounded BCK-algebra of type BL. Then L 
may be expanded uniquely to the dual of a BL-algebra (L; <, ©, 0 , 0 , 1 ) . 

P r o o f . Let (L\ <, 0 , 0 , 0 , 1 ) be the dual of a BL-algebra. Then 
(L; <, 0 ,0 ,1 ) is a bounded BCK-algebra. This may be verified directly with 
the help of (RL4); or see [lor]. 

Furthermore, given a, b G L, we have, by [Swa; Lemma 6], (d 0 a) 0 b = 
dQ (a(Bb) for any d G L, which proves the addition property. 

Let now a,b,c G L such that c < a, b. By the isotonicity properties of 0 and 
0 and (2), a < b implies aQ c <bQ c, which in turn implies a = ( a 0 c) 0 c < 
(b 0 c) 0 c = b. So L is strongly cancellative. 

Finally, we have by (BL2) that E is mutually compatible. So L is a bounded 
BCK-algebra of type BL. 

Conversely, let (L; <, 0 ,0 ,1 ) be a bounded BCK-algebra of type BL. It fol
lows from (RL4) that there is maximally one function 0 making L the dual 
of a BL-algebra. Given some a,b G L, let us, in accordance with the addition 
property, define a 0 b to be the element c such that (dQa)Qb = dQc for all d; 
there is, by (BCK3), for every pair maximally one such element. Then, for any 
a, b G L, a 0 b is the largest element y such that y © a < b. Indeed, we have 
0 = ( a 0 b ) 0 ( a © b ) = ( ( a©b )©a) ©b , whence ( a © b ) © a < b; and if yQa < b 
for some y G L, then 0 = (y © a) © b = y © (a © b), whence y < a © b. 

(RL2), (RL3), and (RL4) hold by [MeJu; Theorems 1.7.7, 1.7.10]. 

We next show that I is a lattice; then (RL1) follows. Let a, b G L\ we 
claim that a V b = a Q (b Q a), which is also the content of (BL1). We have 
a © (b © a) = max{y : y © a < b © a} > a, b. If z > a, b for some z G L 
and furthermore yQa < b © a for some y, then zQa>bQa>yQa; 
under the assumption y > a we conclude by the strong cancellativity z > y; so 
z > a © (bQ a). 
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Furthermore, we claim that c = (b © (b © a)) V (a © (a © 6)) = a A b. 
By (BCK2)(a), c is a lower bound of a and b. Assume x < a, b. It follows 
x < a = a V (a 0 b) = (a 0 (a 0 6)) 0 (a G 6) < c 0 (a 0 6), which means 
xQc < aGb. Similarly, we see x0c < 6 0 a , and since L is mutually compatible, 
we get x 0 c = 0, that is, x < c by (BCK3). 

(BL2) follows from the fact that L is mutually compatible. This completes 
the proof that L is the dual of a BL-algebra. • 

So given some bounded BCK-algebra of type BL L, the function © is defin
able by 

a © b = max{H : y © b < a} for any a,b £ L , (5) 

which makes L the dual of a BL-algebra. We will refer to © as the S-function 
of L, its existence being the subject of condition (S). 

Remark 4.4. We may also characterize the bounded BCK-algebras of type BL 
in the following way, which makes use (practically) only of known terms. Namely, 
BL-algebras are in a one-to-one correspondence to BCK-algebras which are 

(i) bounded, 
(ii) lattice-ordered, 

(iii) such that (a A b) 0 c = (a © c) A (b 0 c), 
(iv) with condition (S), 
(v) which fulfil the relative cancellation property. 

In analogy to Proposition 3.4 in Section 3, we shall now see how MV-, PL-, 
and G-algebras may be understood as subclasses of BCK-algebras. 

MV-, PL-, and G-algebras are, by Definition 2.4, special BL-algebras; so these 
three algebras may also be viewed, by Theorem 4.3, as special BCK-algebras. 
In the case of MV-algebras, this is a well-known fact ([Mun]). We further note 
that, in order to characterize MV- or G-algebras among the BCK-algebras, we 
may refer to standard terminology, recalled in the following definition ([MeJu]). 
This is apparently not the case for PL-algebras. 

D E F I N I T I O N 4.5. Let (L ;< ,©,0 ) be a BCK-algebra. 

(i) L is called commutative if aG(aQb) = b©(b©a) holds for any a, b G L. 

(ii) L is called positive implicative if (aQc)Q(bQc) = (aGb)Q c holds for 
any a,b,c G L. 

We will again set a® 4|f 1 © a for an element a of a bounded BCK-algebra. 
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PROPOSITION 4.6. Let (F; <BL,Q,^,0BL,lBL) be a BL-algebra, and let 
(F ;< , 0 ,0 ,1 ) be the corresponding bounded BCK-algebra according to The
orem 4.3. 

(i) L as a BL-algebra is an MV-algebra if and only if L as a bounded 
BCK-algebra is commutative if and only if for L as a bounded BCK-al
gebra we have: 

(MV e ) For any a,b G L, a <b if and only if a = bQx for some x G L. 

(ii) L as a BL-algebra is a PL-algebra if and only if for L as a bounded 
BCK-algebra the following conditions hold: 

(PL 0 1) Let a,b,c G L such that a® = 1 and such that, for all x G L, 
x Q a <b if and only if x Q a < c. Then b = c. 

(PL@2) ay a® = 1 for a e L. 

(iii) L as a BL-algebra is a G-algebra if and only if L as a bounded BCK-al
gebra is positive implicative. 

P r o o f . Throughout this proof, we will treat L as a bounded BCK-algebra. 
Let 0 be the S-function of L. 

(i) Assume (MV), that is, let the complement ® be involutive. Then, for 
a,b,c € L, a,b < c and cQb < cQa imply a < b. Indeed, from [MeJu; 
Theorem 1.3.4] and ®® = id we have b® Q c® = cQb < cQa = a® Q c® . Prom 
c® < a®, b® and the strong cancellativity, we conclude b® < a® and thus 
a <b. Now, by [MeJu; Theorem 1.5.6], this property implies the commutativity 
of B. 

If the BCK-algebra L is commutative, then again by [MeJu; Theorem 1.5.6], 
we have a = b Q (b © a) whenever a < b, which proves ( M V 0 ) . 

Assume now ( M V 0 ) . We know that ® is order-reversing and that, for a G L, 

a®® < a; thus a®®® = a®. Now, (MV e ) implies that ® is surjective; so 

a = b® for some b. It follows a®® = b®®® = b® = a, that is, (MV) holds. 

(ii) (PL2) evidently coincides with (PL 0 2) . Moreover, note that (PL 0 1) is 
equivalent to saying that for a, b, c G L, a® = 1 and a 0 b = aQc imply b = c, 
which is ( P L 0 1 ) . From Proposition 3.4(ii) and its proof it follows that, when 
assuming (PL2), (PL 0 1) is equivalent to (PL1). 

(iii) The BL-algebra L is a G-algebra if and only if a 0 b = a V b for any 
a, b G L. By [MeJu; Theorem 1.7.12], this condition holds if and only if L is 
positive implicative. • 
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5. Categorical-theoretical aspects 

As seen in this paper, BL-algebras, respectively duals of BL-algebras, still pos
sess reasonable axiomatizations when we restrict to one of their two binary op
erations. Namely, we proved that BL-algebras and, for instance, bounded NAMs 
of type BL, are in a one-to-one correspondence, the latter being a reduct of the 
dual of the former structure. 

What we certainly cannot expect is the equivalence of the appropriate cat
egories; the respective congruences do not correspond to each other. Let us 
conclude this paper with a simple example illustrating that homomorphisms of 
bounded NAMs of type BL do not necessarily preserve the residuum. 

EXAMPLE 5.1. Let ( {0 , | , l } ;< ,0 ,0 ,1 ) and ({0,1}; <,0,O, l) be the three-
and two-element MV-chain, respectively, understood as bounded NAMs of 
type BL. Define (p: {0, §, 1} -> {0,1}, 0 H> 0, \ H-> 1, 1 i-> 1. Then ip 
preserves the order, 0 , and the constants. But we have, with respect to the 
three-element algebra, 1 0 \ = \ , whereas cp(l) 0 tp(\) = 0 ^ 1 = (p(\). So ip 
is homomorphism of bounded NAMs of type BL, but not of the corresponding 
duals of BL-algebras. 
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