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ABSTRACT. We prove tha t there exists a metrizable group topology on the 
real numbers preserving the bounded part of the usual convergence and adding 
convergent sequences to the unbounded part so tha t the n t h power of 2 converges 
to zero. No such topology is compatible with the multiplication by constants. 

Studying the relationships between algebraic operations and sequential con­
vergence, R. F r i c in [4] proved that the usual sequential convergence on the 
real numbers R can be enlarged to an £Q -group convergence such that, for each 
a G R, the sequence {a2n : n = 1,2, . . .} converges to 0. He formulated (oral 
communication) the following question: Is there a topology T on R such the 
following four conditions 

(1) (R, T ) is a metrizable topological group with respect to the usual addi­
tion; 

(2) If a sequence {xn : n = 1,2, . . .} in R converges to x G R with respect 
to the usual topology, then {xn : n = 1,2, . . .} converges to x with 
respect to T , too; 

(3) The sequence {2n : n = 1,2, . . .} converges to 0 with respect to T ; 
(4) For each a G R and each sequence {xn : n = 1,2, . . .} which converges 

to x with respect to T , the sequence {axn : n = 1, 2 , . . . } converges to 
ax with respect to T , too; 

are satisfied? 
In the present note, we show that there is a topology T on R satisfying 

conditions (1), (2) and (3), and prove that no topology can satisfy all four 
conditions. 

Independently, J. D o b o s in [2] explicitly constructed a metric on R such 
that the induced topology satisfies conditions (1), (2) and (3). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 22A05, 54A20, 54H11; Secondary 54E35. 
K e y w o r d s : metrizability, topological group, real line, convergence. 
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THEOREM 1. There is a topology T on R satisfying conditions (1). (2) 
and (3). 

P r o o f . Let N and 7L denote the sets of natural numbers and integers, 
respectively. For each n G N, put 

Un= U(m2»- l .m2» + i ) . 

Furthermore, for each x G R, put 

Un(x) = x + Un ( = ( J ( x + m 2 " - I , x + m2" + i ) ) . 
mez 

Let U(x) = {Un(x) : n G N} . Then it is easy to see that {U(x) : x G R} 
satisfies the axioms of a basic neighborhood system. Hence there is a topology 
T generated by {ZY(x) : x G R} (see [1; Proposition 1.2.3]). 

Then (R, T ) is a T0-space. Indeed, for each two distinct points x and y 
in R there is n G N such that \x - y\ < 2n. Clearly y £ Un(x). We shall 
show that (R, T ) is a topological group. First, we shall show that the mapping 
(x,y) i-> x + y is T-continuous. Let (x,y) G R x R and n G N. For each (u,v) G 
U2n(x)xU2n(y) there are £,meZ such that u G (x + ^ 2 2 n - ^ , x + £22n + ±{) 
and v G (y + m22n - ^ - , y + m2 2 n + ^ - ) . Then we have 

\x + y + (£ + m)22n-(u + v)\ < \x + £22n-u\ + \y + m22n-v\ < ^ - + ^ = ^ -

Therefore, u + u G (x + y+ (£ + m)22n- £ , x + ?/ + (£ + m)2 2 n + £) C E/Jx + y) . 
Hence, the mapping (x,y) H+ x + y is T-continuous. It is easy to see that 
Un(—x) = —Un(x) for each x G R and n G N. Thus the mapping x H-> — x is 
T-continuous. Hence (R, T ) is a topological group. 

Since (R, T ) is first countable, it follows that (R, T ) is metrizable (see [1], 
[4] and [3; Theorem 8.3]). By the definition of U(x), it is also clear that the 
conditions (2) and (3) are satisfied. Thus the proof is complete. • 

THEOREM 2. There is no topology T on R which satisfies conditions (1). (2). 
(3) and (A). 

P r o o f . Let CI A and C l r A denote the closures of a subset A of R taken 
by the usual topology and T , respectively. Suppose that there is a topology T 
of R which satisfies the conditions (1), (2), (3) and (4). Let {Uk : k = 1, 2 , . . . } 
be a countable T-neighborhood base at 0 such that C\rUk^_1 C Uk. For each 
natural number m we put 

Am = {a G [0,1] : {a2n : n > m} C U2) . 
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Since for each a G [0,1] the sequence {a2n : n = 1,2,... } converges to 0 with 
oo 

respect to T, it follows that |J Am = [0,1]. By the Baire's category theorem 
7 7 1 = 1 

([3]), there are an m1 and a non-degenerate closed interval [a.!,/^] C [0,1] 
such that [a-p/3-J C C\Am . For each a G [«!,/?-_] and each natural number 
n > mx we have a2n G C1U2- Hence, it follows from the condition (2) that 
a2n G C l r U2 C Ux and hence {a2n : n>m1}cU1. 

By continuing this process, for each natural number k we have a non-
degenerate closed interval [ak,/3k] and a natural number mk such that for 
each k 

(a) [<*k,Pk]D[(*k+1,Pk+1], 
(b) mk < mk+1, and 
(c) for each a G [ak,Pk], {«2n : n > mk} C Uk. 

oo 

Let a0 G H [akJ/3k]. We shall see that the sequence {a02n + 1 : n = 
k=i 

1,2,...} converges to 0 with respect to T . Let A; be a natural number. Since 
a0 G [ak,/3k], there is a natural number n(k) > mk such that [a0 — ^kj > ao] C 
[ak,fik] or [a0, a0 -f 5^7] C [afc, Pk]. Without loss of generality, we can assume 
that [a0, a0 + ^Tfcj] c [ak>Pk] for each fc. Then for each k and n > n(k) it 
follows that a0 + ± e [a0, a0 + ^ y ] C [ak,0k]. Hence a02n + 1 = (a0 + ^-)2 n 

G Ufc. Therefore, the sequence {a02n + l : n = l ,2 , . . . } converges to 0 with 
respect to T. On the other hand, since (HJ,T) is a topological group, the se­
quence {a02n + 1 : n = 1, 2 , . . . } converges to lim an2n + 1 = 0 + 1 = 1 with 

n->oo 

respect to T . This is a contradiction. • 
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