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SOLUTIONS AND KERNELS 
OF A DIRECTED GRAPH 

MATUS HARMINC 

In this note the solutions and the kernels of directed graphs are dealt with. The 
following theorem will be proved: The number of solutions (kernels) of a directed 
graph is equal to the number of solutions (kernels) of its line graph. It will be shown 
how to construct the solutions of a line graph by means of the solutions of the 
original graph, and conversely. 

Preliminaries 

A directed graph G = (V, A) with the set of points V and the set of lines 
A c V x V without loops and multiple lines is shortly called a graph. Concepts as 
a path, initial and terminal points of a line and others are used as in [3]. A point 
which is not an initial point of any line of G is called a receiver of G. We denote by 
8P(M) the system of all subsets of a set M and the cardinality of M by card M. Now 
we define basic concepts: The line graph of G = (V, A) is a graph L(G) = (A, B), 
the point set of which is the set of lines of G, and for any h, keA there is hk e B if 
and only if the corresponding lines h, k induce a path in G, i.e., the terminal point 
of h is the initial point of k. In what follows we denote the line h = uv in G and the 
point h in L(G) by the same symbol. If H is a set of lines of G, it is also a set of 
points of L(G). If we want to emphasize our interest in H as the set of points of 
L(G) we use the symbol HL instead of H. 

A subset R of V is a solution of G = ( V, A) if R is independent in G (i.e. if u, 
veG implies uv^ A) and if R is dominant in G (i.e. if for each ve V— R there 
exists ueR such that uv eA). (See [1, 6, 7, 8].) In the literature this concept is 
known also as a 1-basis [3]. 

A subset J of V is a kernel of G = (V, A) if J is independent in G and if J is 
absorbent in G (for each ve V—J there exists n e J such that vueA). (See [2].) 
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Results 

Let Ji be the system of all solutions of a graph G~(V, A) and let . / be the 
system of all solutions of L(G). 

Theorem 1. Card Jl = card J. 
Before proving this theorem, we present some lemmas. Let us define a mapping 

/ : J(V)^SP(A) as follows: If Z c V, then f(Z) is the set of all such lines, the 
initial point of which is in Z. 

Lemma 1. If Re <3l, then f(R)Le J. 
Proof. f(R)i is independent: if hke B, then {h, k] <^f(R), since in the other 

case he Rx R, but this contradicts the independence of R. Now, let A: be a point of 
L(G), ke AL f(R)L. By the definition of f(R)L the initial point of k in G is not 
in R. From the dominance of R in G it is clear that there exists a line h in G with 
the initial point in R, the terminal point of which is identical with the initial point of 
k. Therefore hef(R)L and hkeB so that lemma is proved. 

Lemma 2. The mapping f: 9? —J is injective. 
Proof. Let R, Pe 5? and R± P. Let us suppose, e.g., that R-P£0,veR P. 

Because P is a solution of G there is a point ueP such that uveA. Clearly 
uv ef(P)L. The independence of R in G implies u^R. Hence uv ^f(R)L and the 
lemma is proved. 

Define a mapping g: JJ(A)^>J>(V) as follows: If H e A, then g(H) = 
X ( H ) u Y(H), where X(H) is a set of all initial points of lines of H and Y(H) is 
a set of all receivers r of G such that r is adjacent with no point of X(H). 

Lemma 3. / / HL e J, then g(H) e 31. 
Proof. In proving the independence of g(H) let us assume that u, v e g(H), u, 

i e V. We shall distinguish three cases: 
(1) u, veX(H), 
(2) ueX(H), veY(H), 
(3) ueY(H). 
In the case (1) u is the initial point of some line h and v is the initial point of some 
line k; h, keHL. If h = uv, there is a line hk in G which is a contradiction with the 
independence of HL. If h = uw4=uv = d, then the independence of HL implies 
d ^ HL and from the dominance of HL it follows that there is b e HL such that 
bdeB. The terminal point of b and the initial point of h are identical with u; it 
follows that bheB and this is a contradiction with the independence of HL. In the 
cases (2) and (3) it follows immediately from the definitions of X(H) and Y(H) 
that uv^A. There will be proved the dominance of g(H): Let veV-g(H) 
= V— X(H) Y(H). For the point v we have one of the following two 
possibilities: 
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(a) v is an initial point of some line 
(b) v is an initial point of no line and it is adjacent with some points of X(H). 
In the case (a) there exists vteA. Since v^X(H), we obtain vt^HL. The 
dominance of HL in L(G) implies the existence uveHL; thus ueX(H). In the 
case (b) the proof of the dominance of g(H) follows from the definitions of X(H) 
and Y(H) immediately. 

Lemma 4 . The mapping g: £f—+ 5? is injective. 
Proof. Let SL=tTL; SL, TLe¥. We suppose for example that SL — TLi=0, 

heSL — TL. Let us denote by v the initial point of h. Thus v e g(S), since v is the 
initial point of a line of S. As h ^ TL and because TL is dominant in L(G), there 
exists a line k in G such that keTL and khe B. Let us denote by u the initial point 
of A:; the terminal point of k is v. The point k belongs to TL, hence ueg(T) and 
the independence of g(T) in G implies v ^ g(T). Thus the lemma is proved. 

Proof of T h e o r e m 1. According to Lemma 2 and Lemma 4 we obtain 

card® s£ cardtf^ card®., 
which implies 

card 91 = card.9. 

Corollary 1. The graph G has a solution iff its line graph L(G) has a solution. 

Corollary 2 . 2/ there is an isomorphism between L(G\) and L(G2), then G\ and 
G2 have the same number of solutions. 

R e m a r k 1. It is possible to verify that in the graph G each R e 0? satisfies the 
identity g(f(R)) = R. Analogously, f(g(S)) = S for each Se&. 

Let G be a graph, G = (V, A) and let con G be the graph with the point set V in 
which u v e c o n G if and only if vueA. It is easy to see that the following 
propositions are equivalent: 
(i) M is a solution of G. 

(ii) M is a kernel of con G. 
We shall denote the system of all kernels of G by the symbol 5T and the system of 
all kernels of L(G) by <£. 

Theorem 2 . Card%=card%. 
Proof. With respect to the equivalence of (i) to (ii) the system 9if consists of all 

solutions of con G and if is the system of all solutions of conL(G). The definitions 
of graphs L(G) and con G imply immediately con L(G) = L (con G). The systems 
of solutions of the graphs conG and L(conG) have the same cardinality (cf. 
Theorem 1), i.e. the systems of solutions of the graphs conG and conL(G) have 
the same cardinality, too. Thus card % = card if. 

Corollary 3 . G has a kernel iff L(G) has a kernel. 
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Corollary 4. If there is an isomorphism between L(G,) and L(G_), then G\ and 
G2 have the same numoer ot kernels. 

R e m a r k 2 If we define the line graph L(G) of a graph G in the sense of [5], 
then Theorem 1 and Theorem 2 are not valid. 

ғ«g 

According to [5] the I ne graph of G (V, A) is defined by L(G) = (A, B), 
where hk e B for h, k e A if and only if the initial or the terminal points of h and k 
coincide or if the terminal point of h is the initial point of k (since, from our point 
of view, the multiplicity of lines is irrelevant, the original definition is modified here 
to suit our purpose). 

L G) 

Ьg.2 F.g 3 

E x a m p l e s . Figure 1 shows a graph G with a solution and its line graph L(G) 
with no solution. The graph G of Figu e 2 has no solution, but its line graph L(G) 
has a solution 

R e m a r k 3 If we define the line graph L(G) of an undirected graph G in the 
usual way (see [4]), then Theorem 1 and Theorem 2 are not valid. 

L G 

F'g.4 

E x a m p l e s . Die graph G of Figure 3 has two solutions and its line graph L(G) 
has three solutions. On the other hand, Figure 4 shows a graph G with five 
solutions and its line graph L(G) with four solutions. 

266 



REFERENCES 

[1] BEHZAD, M — HARARY, F.: Which directed graphs have a solution?, Math. Slovaca, 27, 1977, 
3 7 ^ 4 2 . 

[2] BERGE, C : Graphes et hypergraphes, Dunod, Paris 1970. 
[3] HARARY, F.—NORMAN, R. Z—CARTWRIGHT, D.: Structural models, Wiley, New York 

1965. 
[4] HEMMINGER, R. L.: Line digraphs. Gгaph theory and applications, Springer Verlag, Berlin, 

1972, 149—163. 
[5] KLERLEIN, J. B.: Characterizing line dipseudographs, Proc. 6-th S-E conf. combinatorics, graph 

theory, and computing, Winnipeg, 1975, 429—442. 
[6] RICHARDSON, M.: On weakly ordered systems, Bull. Amer. Math. Soc, 52, 1946, 113—116 
[7] ROMANOWICZ, Z. : A new proof of Richaгdson theorem. Graphs, hypergraphs aпd Ыock 

systems, Proc. Symp. Comb. Anal., Zielona Gora, 1976, 227—230. 
[8] ШMAДИЧ, K.: Ocyщecтвoвaнии peшeний в фaфax, Becтник Лeнинф. Унив. 7, 1976,88 92. 

Received July 2, 1980 Dislokovane pгacovisko v Košiciach 
Kaгpatská 5 

040 01 Košice 

РЕШЕНИЯ И ЯДРА ОРГРАФА 

Матуш Г а р м и н ц 

Р е з ю м е 

В работе доказана теорема: Мощность множества решений (ядер) ф а ф а равна мощности 
множества решений (ядер) его реберного ф а ф а . Показана конструкция решений реберного 
ф а ф а 1~(С) с помощью решений ф а ф а С и наоборот. 
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