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ON A CHARACTERIZATION OF PROBABILITY 

MEASURES ON BOOLEAN ALGEBRAS 

AND SOME ORTHOMODULAR LATTICES 

HELMUT LANGER* — MACIEJ M^CZYNSKI** 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. Inequalities of Bell-type in Boolean algebras and in horizontal sums 
of such algebras are considered. Using combinatorial me thods, results concerning 
the number of valid Bell-type inequalities are derived. Finally, the problem of 
extending mappings from certain subsets of finite Boolean algebras B to (finitely 
additive) probability measures on B is discussed. 

1. Introduction 

Probability measures on Boolean algebras can be characterized by axioms 
of probability theory expressed in terms of Boolean operations on the domain 
of their definition. Another way of approaching to this problem is to consider 
probability measures as real-valued mappings on Boolean algebras which satisfy 
a set of inequalities. The characterization of probability measures by inequalities 
is of special importance for some physical applications related to experiments 
which intend to determine whether a system is classical or non-classical. In this 
way, we obtain the so-called Bell or Clauser-Horne inequalities, well-known in 
theoretical physics. (See [1], [3] or [4] for a full discussion of these inequalities. In 
[2], the physical applications of generalized Bell inequalities are discussed.) Such 
inequalities can be defined as inequalities of the form 0 < L < 1, where L is 
a linear combination, with real coefficients, of probabilities of individual events 
Pi = P(a^), i = 1, 2 , . . . , n , as well as of probabilities of some intersections of 
these events (e.g., pij — p(di A a?)), which are called correlation probabilities. 
In special cases, only inequalities with integer or even with ± 1 coefficients are 
considered. In order to have a physical application, such inequalities should be 
valid in every Boolean algebra, for every probability measure and every choice 
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of events ai. If there are statistical data coming from an experiment for which 
such an inequality is violated, then we draw the conclusion that the system is 
not classical, i.e., the events cannot form a Boolean algebra. A general method 
for proving linear inequalities involving probabilities has been developed in 1958 
by R e n y i [5], but no application of this method to Bell-type inequalities 
has been discussed. In this paper, we would like to apply the method of R e n y i 
to the inequalities of the form 0 < L < 1 . We present a very simple proof of the 
characterization theorem, independent of the proof of R e n y i . We also develop 
a method allowing us to estimate the number of such inequalities which are valid 
in a Boolean algebra. We extend our results to orthomodular lattices which 
are built up from Boolean algebras (the so-called horizontal sums of Boolean 
algebras). We shall show that there are Bell-type inequalities which are valid in 
all Boolean algebras, but which are not valid in some orthomodular lattices. In 
the last section of this paper, we prove theorems giving necessary and sufficient 
conditions for a real-valued mapping defined on the set of intersections over 
all subsets of some fixed generating set of a finite Boolean algebra in order to 
have an extension to a probability measure on the whole Boolean algebra. From 
this theorem, we obtain a theorem on extension to two-valued homomorphisms, 
related to S i k o r s k i 's theorem on extension to homomorphisms ([7]). 

The organization of this paper is as follows: In Section 2, we prove some 
combinatorial lemmas to be used in the following sections. In Section 3, we 
prove a theorem on verification of Bell-type probability inequalities (on Boolean 
algebras), and we give some estimates of the number of such inequalities. In 
Section 4, we extend our results to some orthomodular lattices. In Section 5, 
we prove theorems on the extension of mappings to probability measures and to 
homomorphisms. 

In the following, let n denote a positive integer and put N :-= { 1 , . . . , n}. 

2. Some combinatorial lemmas 

Here, we state some combinatorial lemmas. The results are not new. But for 
the sake of completeness of our paper, we state these lemmas together with some 
ideas of proof. 

LEMMA 1. Exactly half of the subsets of a finite non-empty set are of even 
cardinality. 

P r o o f . Induction on the cardinality of the base set. • 
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LEMMA 2. For a non-negative integer m and a real number a it holds 

f — l 

_(?)<-«'-«-. _ ( s y - ( 1 + ' r + ( 1 - r 

z=0 i=0 

and 
[ v V "» ^2i-i_(i + a)TO-(i-")m 

2 = 1 

(Here b° := 1 /or every b G R.) 

P r o o f . Binomial Theorem. • 

L E M M A 3. 

Ê(?)(ï+í)-(ï+ŕ). 
Ż = l 

Ê(")(n+1N2n+1)-
i=0 

n 

^u)(B+íH2"+1)-
P r o o f . The corresponding sum is the coefficient of xn in 

(x + l)n (x(x + l ) n + 1 ) , (x + l)n(x + l)n+i and (x + l)n ( * + l ^ " * , 

respectively. D 

L E M M A 4. 

/ H-> (V i- "T /(/)) and </ K_ (K K-> Yl (-1) |X|" | J |^( /)) 
^ ICK ' V /CX ' 

are mutually inverse bisections between R2 and R2 . 

/_•(__•_> "T /(/)) and p ^ ^ H - , "T (-l)1^*1^!)) 
^ KCICN ' V KCICN ' 

are mutually inverse bisections between R2^ and W^ . 

P r o o f . It suffices to show that the composition of two corresponding map­
pings always yields the identity mapping o n R

2" . This can be done by inter­
changing sum signs and applying Lemma 2. • 
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3. Inequalities for probabilities on Boolean algebras 

For the rest of the paper, by a probability measure on a Boolean algebra (or, 
more generally, on an ortholattice), we will always understand a finitely additive 
normed measure. 

LEMMA 5. Let I C N. Then there exist a finite Boolean algebra B, a i , . . . 
. . . , an e B \ {0,1} , and a probability measure p on B such that for all K C N 
it holds 

pl /\aiA f\a'A =6KI. 
\ ІЄK ІЄN\K / EN\K 

P r o o f . Put B := 22" and a{ := {K C N \ i e K} for all i G N, and 
define p: B -> {0,1} by 

( 1 i f / G x , 
p(x) :={ (xe B). 

{ 0 otherwise 

Then 

/\aiA /\af, = {K} 
ieK ieN\K 

for all K C N. The rest of the proof is clear. • 

THEOREM 6. Let f:2N-+R. Then the following are equivalent: 

(i) 

£/(->(Aa.)G[0'1] (i) 

for all Boolean algebras B, all a±,..., an e B, and all probability mea­
sures p on B. 

(ii) 

£/(I)e[o,i] 
ICK 

for all K CN. 
(iii) There exists a function g: 2N —> [0,1] such that for all I C N it holds 

/ (I)=E(-1) | / | _ m^)-
KCI 
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P r o o f . If F? is a Boolean algebra, a i , . . . , an G J5, and p is a probability 
measure on B, then 

£/(/)p(/Vi) = £/(I)p( V (Aa^A Aa'S) 
ICN ^ iel ' ICjV \ ICKCN ^ zGK ieN\K ' / 

= £ / ( I ) £ p(A^A
 A°S) 

ICjV ICKCN V iGK zGIV\K ' 

= £->(A^A A«0-^/(/)-
KC/V ^ i 6 K 2GIV\K ' ICK 

The rest of the proof now follows from Lemmas 5 and 4. • 

R e m a r k . From Lemma 4, it follows that, if (hi) holds, then g is uniquely 
determined, namely, 

g(I) = 53 f(K) 
KCI 

for all ICjY. 

THEOREM 7. There exist exactly 22 different inequalities of the form (1) 
with integer coefficients / ( I ) , I C IV, which are valid in all Boolean algebras, 
namely, 

ICN ^ KCI ' \ iel ' 

where g runs through {0, l } 2 . The maximal possible value of these coefficients 
is 2 n _ 1 . the minimum possible value is — 2 n _ 1 . 

P r o o f . We use Theorem 6. Observe that the bijections mentioned in 
Lemma 4 induce bijections between Z2 and Z2 and that [0,1] D Z = {0,1}. 
The last assertion of Theorem 7 follows by the fact that 

->l) l 'H*l 5 ( i 0 = (_!)!/!( £ g(K)_ £ g{K)\ 
KCI \KCI, \K\ even KCI, \K\ odd / 

for all I C jV and by Lemma 1. • 

We now want to obtain lower and upper bounds for the number of inequalities 
of the form (1) which are valid in all Boolean algebras and which have coefficients 
/ ( I ) e { -1 , 0 ,1}, I C N, with / (0) = 0. 
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THEOREM 8. The following sets are equipotent: 

j / : 2 N - > {-1,0,1} | / ( 0 ) = O . E / ( - " ) € {0,1} forallKCN}, (2) 
k ICK ' 

ig:2N-*{0,l}\ g(0) = O, E (-1)1^1-^1^(7) € {-1,0,1} for all K C N}, 
1 ICK J 

(3) 

{ ^ C 2 N | ®&A, \\{IeAD2K\ \I\ even}\-\{IeAD2K\ \I\ odd}\\ <1 

for all KCN}. 

(4) 

P r o o f . That (2) and (3) are equipotent follows from Lemma 4. Tha t (3) 
and (4) are equipotent follows by observing the well-known bijection between 
the indicator functions on a fixed set and the subsets of this set. • 

7n + 4n _ 4 . 3n + g . 2 n _ (_1)™ _L_ 4 
THEOREM 9. - is a lower bound for the 

o 
cardinality of (2). 

P r o o f . The case n = 1 is trivial. Now, let n > 1, and denote the set 
(4) by M . We use Lemma 1. M has exactly 1, 2 n - 1 and (2n-1 - l ) 2 n " 1 

members of cardinality 0, 1 and 2, respectively. The three-element members of 
M either contain (as elements) two distinct non-empty subsets .A, B of N of 
even cardinality and one subset of A U B of odd cardinality, or they contain (as 
elements) two distinct subsets C, D of N of odd cardinality and one non-empty 
subset of C U D of even cardinality. Thus the number of three-element members 
of M can be calculated as follows: 

' [f 1 i W 1 

jE(",)E(?)E("i!iK 
\ 2 = 1 j = 0 k=0 

+ E(2n0É(2/Íl)[^\2V-2022í+2fe"2-2-E(2n)22^ 
i=l j=l fe=l i=l 

+ E U n i ) E ( V ) E (^-í1)^2*-3-!) 
z = l j=0 fc=l 

+ E(2 i-i)Ě(i}ii) l*ř'("-I+1)P2"+2'-2-i) 
j = l k=0 
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-EUn-i)(22i-2-i)Y 
i=l 

Theorem 9 now follows by applying Lemma 2. 

3 • 2 n _ 1 + 1 / 2 n 

D 

T H E O R E M 10. 

of (2). 
2"+ 2 G"-1) is an upper bound for the cardinality 

P r o o f . The case n = 1 is trivial. Now, let n > 1. Using Lemma 1 we 
count the elements of the set 

{ . A C 2 A r | 0 0.A, \\{IeA\ |I | e v e n } | - | { I G A | |I | odd} | | < l } , 

which includes (4): 

2 n ~ - 1 
-yn—1 \ .«—« /on—1 

E ( 2 Г1)(Г-i)+ Z(2 ГЧГП 
i=l i=0 

+ 2 E'ГГ 1 )(Г + ~;) 
i=0 

Application of Lemma 3 completes the proof of the theorem. D 

T H E O R E M 11. 
3 • 2 7 1 " 1 + 1 / 2 n 

2 n + 2 G--1) 3 ъ2n-^ / 
1 2 for n —> oo. 2тг 

P r o o f . Stirling's formula. D 

R e m a r k . For n = 1 , . . . , 5 the lower and upper bounds mentioned in 

Theorems 9 and 10 read as follows: 

n lower bound upper bound 

1 2 2 

2 7 7 

3 44 91 

4 304 17875 

5 2132 866262915 
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4. Inequalities for probabilities on some orthomodular lattices 

In this section, we shall show that not all inequalities valid in Boolean algebras 
are valid in all orthomodular lattices. We shall formulate sufficient conditions 
in order that (1) be valid in some special class of orthomodular lattices called 
horizontal sums of Boolean algebras. Namely, we say that an ortholattice L is 
the horizontal sum of the Boolean algebras Bk, k G K, if the algebras Bk are 
subalgebras of L such that L is the set-theoretical union of all Bk, the sets 
Bk \ {0,1}, k G K, are pairwise disjoint and whenever two elements a, b of L 
do not lie in the same Bk , then a V b = 1 and a A b = 0. It is clear that L is then 
orthomodular (i.e., the distributivity laws hold in some special cases) and for 
k > 1, in general, not distributive. We give an example of an inequality which 
holds in all Boolean algebras but not in all orthomodular lattices. This shows 
that there exist inequalities which are characteristic for the class of Boolean 
algebras, but not for the class of orthomodular lattices. 

LEMMA 12. Let f:2N —» R. let L be the horizontal sum of the Boolean 
algebras Bk, k £ K (i\T ^ 0), assume 0,1 ^ K, let a i , . . . , a n G L, let p be 
a probability measure on L, and put Io := {i £ N \ ai = 0 } . I\ := {i G N \ 
ai = 1}, Ik := {i e N \ ai G Bk\ {0,1}} for all k G K, and M := {k G K \ 
4 ^ 0 } . Then 

£/(WA*) 
Icjv v iei ' 

= E/(*)+E E p(Aa^A Aa0 E E/(/u5) 
5CI i keM<fi^TCIk

 V ieT ieIk\T ' 0 ^ I C T 5CI i 

keMTCIk
 V ieT ieIk\T ' ICT SCI1 5CI i ke 

P r o o f . 

X,/(j)p(A°.)-- E /o(Aa0 
rcjv v iei ' ICN\I0

 v iei ' 

= E E/(/u5)^(A«0 
ICjY\(I0UIi) 5C I ! v iel ' 

= E/(S)+ E E/(/u5)p(Aa< 
5CI i 0^ IC/V\( I o U I i )5C I i V iel 
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= E/(S) + E E E/(JU5)p(Aa0 
5C/i fcGM0^/C/fc 5C/i ^ i£l ' 

= E/(*) + E E E/( / u s) E p(Aa^A Aa0 
5C/i fcGM0^/C/fc5C/i ICTC/fc V i£T ie!k\TJ 

= E/(*) + E E p(A^A A«S) E E / ( ' U 5 ) 
5 C / I fc6M0-^TC/fc V iGT zG/fc\T 7 07-ICT5C/i 

= E/(«) + E E p ( A^A A° i ) (E E / ( I u ^) - E m) 
. 5C/i fcGMTC/fc MGT ieIk\T ' ^ / C T 5 C / i 5C/i ' 

= E EP(A^A A^EE/^U^-O^I -OE/^) -
fcGMTC/fc ^ z<ET i£lk\T ' ICT SCIi SCIX 

D 

T H E O R E M 1 3 . Let / : 2 N -> R and m > 1 . and assume 

2_^ J\*) ^ L m - l ' 2m- l J 
ICK 

/ o r all K C N. Then (1) b,o/ds in a// horizontal sums L of at most m Boolean 

algebras. 

P r o o f . Using L e m m a 12 one ob ta ins (wi th the terminology used in 
L e m m a 12) 

£ M*{ A-) S 1 * % ^ - (|M| - l ) ^ L _ M±^Li < , 
/CAT x iGI 7 

and 

E /</)»( A«<) * i « i^ r - (i"i - »)*^T - 4 ^ a »• 
/CAT V iE/ ' 

D 

R e m a r k . Observe that the case m = 1 yields a par t of T h e o r e m 6 . F rom 
the proof of Theo rem 13, it follows that T h e o r e m 13 remains valid if one replaces 
m wi th n , and then omi ts "a t mos t n " . 
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THEOREM 14. Let f: 2N —• R, assume 

7 C K 

for all K C. N, and suppose there exist a positive integer m and pairwise disjoint 
subsets KQ, . . . , Km of N such that i ( i , . . . , Km ^ 0 and 

EIw+E E E^u^i0.1]-
/CKo »=1 0/KCKi ICKo 

Tben (1) holds in all Boolean algebras B. bui not in all horizontal sums of m 
finite Boolean algebras. 

P r o o f . The first part follows from Theorem 6. Now, by Lemma 5, for 
every i G { 1 , . . . , m} there exist a finite Boolean algebra B{, bj G B{ \ {0,1} for 
all j G Ki, and a probability measure qi on Bi such that for all T C IQ 

J/^bjA ДбЛ=<w 
JET jEKi\T 

Let L denote the horizontal sum of L?i,..., Bm; put bj := 1 for all j £ K0 and 
^ := 0 for all j G iV \ (lv~o U • • • U i f m ) , and let q: L —» [0,1] denote the common 
extension of Oi,..., qm. (Without loss of generality, we may assume that the 
algebras Bi have the same 0 and 1 and that the sets L^ \ {0,1} , i = l , . . . , m , 
are mutually disjoint.) According to Lemma 12, we have 

E/(7)^(A60= E / W + E E £ / ( * u n * [o, i]. 
TTM ^ iaT ' Trrs„ „ — i (h^-isr-zs. TTT<r~ ICiV x iel ' ICK0 i=l Q^KCKi ICK0 

П 

E x a m p l e . p(a\) + p(a2) — p(a\ A a2) G [0,1] holds in every Boolean 
algebra, but not in 2 2 + 2 2 . Let a\, a2, a^, a 2 denote the four non-trivial 
elements of 2 2 + 2 2 , and put p{a\) = p(a2) = p(l) := 1 and p(0) = p(a[) = 
p(af

2) := 0. We have /({l}) +/({2}) = 2 £ [0,1]. This corresponds to the case 
m = 2, iv~0 = 0, ifi = {1} and K2 = {2} of Theorem 14. 
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5. Extension of mappings to probability measures 
and to homomorphisms 

For the rest of the paper, let B denote a finite Boolean algebra with | S | > 1 
and A a generating set of B. 

THEOREM 15. Let p: {f\C | C C A} —• R. Then p can be extended to a 
probability measure on B if and only if p(l) = 1, 

£ (-ir^ch(/\D)>o 
CCDCA 

for all CCA, and 

£ (-I)^P(/\D)=O 
- r\r A ' CCDCA 

for all C C A with 

f\CA(\/(A\C))' = 0. 

If such an extension exists, then it is unique. 

P r o o f . First assume that such an extension p exists. Then p(l) = p(l) 
= 1. Now, for all C C A we have 

P(/\C)=P(/\C)= £ p(/\D*(y(A\D))'), 
CCDCA x ' 

and hence, because of Lemma 4, also 

p(/\c*(W\c))')= £ (-D|DHC|KA^)-
^ 7 CCDCA 

Conversely, assume that the three conditions are satisfied. Define 

p( V ( A C A ( V M \ C ) ) ' ) ) : = £ E (-D | D H C 1»(A^) 
^ CeM J CeM CCDCA 

for all M C2A. From the fact that /\C A ( \J(A \ C ) ) ' , C C A, are mutually 
disjoint and from the last condition, it follows that p is well-defined and finitely 
additive. Clearly, I?(0) = 0 . Using Lemma 4 and the first condition one obtains 

m=p( V (/\C*(W\C))')) 
^ CCA ' 

= £ £ (-irHclp(/\D)=P(f\<t>)=P(i)=i. 
CCACCDCA 

465 



HELMUT LANGER — MACIEJ MACZYNSKI 

Because of the second condition, p is non-negative. Using again Lemma 4 we 
obtain for arbitrary CCA 

p(/\c)=p( V (AMV(^))')) 

= E E (-i^-'MA^MA^)-
CCDCADCECA 

Therefore p is an extension of p. From the first part of the proof, it follows that 
in case p exists, it is unique. D 

THEOREM 16. Let p: {[\C \ CCA}-* {0,1} C R. Then p can be extended 
to a probability measure on B if and only if p(l) = 1, 

for all C Ç A, and 

for all C C A with 

^2 (-i)i^i-i^i > o 
CCDCA,p(f\D)=l 

E ( - D | D | = O 
CCDCA, p{/\D) = l 

f\CA(y(A\C))' = 0. 

If such an extension exists, then it is unique and two-valued. 

P r o o f . Theorem 16 follows from Theorem 15 and its proof. D 

THEOREM 17. Let f: {/\C \ C C A} -^ {0,1} C B. Then f can be extended 
to a homomorphism from B to {0,1} C B if and only if / ( l ) = 1. 

for all C Ç A, and 

for all C C A with 

J2 (-1)1̂ 1-1̂ 1 > o 
CCDCA, / (AO)=l 

E (-D | Í?I = O 
CCDCA,/(AD)=1 

/ \ C A ( \ / ( M C O ) =0. 

If such an extension exists, then it is unique. 

P r o o f . Theorem 17 follows from Theorem 16 and from the fact that the 
homomorphisms from a Boolean algebra B\ with |I?i| > 1 to {0,1} C I?i are 
exactly the two-valued probability measures on 5 i . D 
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THEOREM 18. (Sikorski's Theorem [6]). Every homomorphism from a subal-
gebra of a Boolean algebra B\ to a complete Boolean algebra B[ can be extended 
to a homomorphism from Bi to B[ . 

THEOREM 19. Let Bi be a Boolean algebra with \B\\ >1, D a finite subset 
of B\, and f: {/\C | C C L)} —> {0,1} C B\. Then f can be extended to a 
homomorphism from B± to {0,1} C Bi if and only if the three conditions of 
Theorem 17 are satisfied. 

P r o o f . Theorem 19 follows from Theorems 17 and 18. • 

R e m a r k . The last condition of Theorem 15 for a three-element subset 
A = {a, b, c} of B and for C := {a} reads as follows: p(a) — p(a A b) — p(a A c) 
+ p(a A b A c) = 0 if a A b' A c' = 0. It is easy to see that in every Boolean 
algebra, it holds p(a) —p(aAb) — p(a Ac) + p(a Ab Ac) = p(a Ab' Ac'). That this 
condition together with p > 0 and p(l) = 1 characterizes probability measures 
on Boolean algebras is the content of our concluding: 

THEOREM 20. Let Bi be a Boolean algebra, and p: Bi —-> [0, oo). Then p is 
a probability measure on B\ if and only if p(l) = 1 and p(a) + p(a A b A c) = 
p(a Ab) + p(a Ac) + p(a Ab' A c') for all a, 6, c G B\. 

P r o o f . Assume that the last two conditions are satisfied. If a, b G B\ 
and a A b = 0, then p(a V 6) = p(a V b) + p((a V b) A a A b) = p((a V 6) A a) 
+ p((a V b) A b) + p((a V 6) A a' A b') = p(a) + p(b). Finite additivity of p now 
follows by an induction argument. • 
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