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Math. Slovaca 35,1985, No. 4, 327—341 

ON FUNCTIONS WITH THE SET OF DISCONTINUITY 
POINTS BELONGING TO SOME a-IDEAL 

RYSZARD JERZY PAWLAK 

Preliminaries 

Various properties of classes of functions in connection with a-ideals were 
studied e.g. by K. K u r a t o w s k i [5], R. D. M a u l d i n [6, 7], Z. S e m a d e n i [13]. 
The results of this paper are also connected with the mentioned problem. 

Obviously, / ^ ( L O M n t / ' ^ U ) = 0 for any open Ua Y is a characterization of the 
continuity of / : X—> y . Consider a class of functions / for which f~l(U)\Intf~l(U) 
belongs to a fixed a-ideal J for any open UczY. Such a function will be called 
J-continuous. 

In the first part of the paper we give a characterization of J-continuous functions 
for a given a-ideal J. The second part deals with the relation of J-continuity and 
some other type of continuities. The third part gives some characterization of the 
Baire space. It is related to papers of J. C. Bradf o rd , C. Gof f man [2] and R. C. 
H a w o r t h , R. A. McCoy [4]. 

The symbol / : X—> Y denotes as usually a mapping of X to y . The undefined 
notions are used according to R. E n g e I k i n g [3]. 

Moreover, we use Q(Df) to denote the set of continuity (discontinuity) points of 
/ . R, Q, N denote the sets of reals, rationals and positive integers respectively, 
card A stands for the cardinality of A, (a, b) ([a, b]) denotes open (closed) 
intervals respectively. Throughout the paper, the nonempty open sets are excluded 
as the elements of the a-ideals in consideration. 

1. J-continuity 

Definition 1.1. Let X and Y be arbitrary topological spaces and let J be some 
o-ideal in X. We say that a function f: X—> y is J-continuous if for every open set 
Ucz Y we have f'^U^Intf-^tyeJ. 

Let us recall our standard hypothesis that considered a-ideals does not include 
nonempty open sets. 
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The definition is a generalization of the notion of the continuity. So, a natural 
problem is to characterize Df for a J-continuous function /. 

Lemma 1.2. Let X be an arbitrary topological space, Y- a second-countable 
space and let J be some o-ideal in X. Then f: X—• Y is a J-continuous function if 
and only if Df e J. 

Proof. Let {Un}n=i be a countable base in Y. Since 

/ -1(Un)\Int/-1(U I)eJ for n = l,2, ... 

the necessity follows from the inclusion 

Ac-Qtrmnintr^u)). 
n = l 

The sufficiency is implied by the fact that /"1(L7)\Int/"1(U)c=D/GJ. 

Definition 1.3. Let X be an arbitrary topological space. We say that 
a neighbourhood system { W(x)}xeX is regular if 

1° w(x) = {Vn(jc)}:=i for every xeX, and 
2° for every n = 1, 2, ... and for every two elements x, x' e X: if x' e Vn+i(jc), 

then Vn+i(x)czVn(x'). 

Remark. Observe, that every metric space (X, Q) possesses a regular neigh­
bourhood system (for any n = 1,2, ... and for any xeX, it is suffices to put 

Vn(x) = K(x,1/2n) 

Theorem 1.4. Let X be an arbitrary space, Y— a second-countable space and let 
Y possess a regular neighbourhood system. Then a function f: X—> Y is J— 
continuous with respect to some o-ideal J of subsets of the space X if and only if Df 

is a boundary set of the first category. 
Proof. Necessity. In fact, Df is boundary set according to Lemma 1.2 and by our 

supposition that a-ideal J does not include nonempty open sets. 
Now, we shall show that Df is of first category. 
Let {W(y)}y e Y, where W(y) = { Vn(y)}n=i for y e Y, be the regular neighbour­

hood system of the space Y. Moreover, for n = 1, 2, ... let D/n) denote the set of 
such x e X that for any neighbourhood Ux of x there exists x' e Ux such that 
f(x')$Vn(J(x)). 

Then 

Df = {jDj"\ (1) 
n = l 

It suffices to show that D}*0 is a nowhere dense set for n = 1, 2, .... 
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Let n0 be an arbitrary natural number and let V be an arbitrary open set in X. 
We infer that the collection { Vn0+i(y)}yeY covers Y i.e. 

Y= U V-^ifo). 
y e Y 

By Theorem of Lindelof, there exists a countable subcover {V„o+i(yfc)}"-i of 
{Vno+i(y)h*Y. We have that: 

V = r1(Y)nV=(yr1(V.0 + i(yO))nV. (2) 

Since / is a J-continuous function, then 

r1(Vw+,(yO) = Int/-1(VTO+l(yO)uT,, (3) 

where Tk e J for k = 1, 2, .... 
According to (2) and (3) we have 

V=(jJ (Intr^V^i^^uT.^nV = 

= [(y.fotr^^ 

On the other hand, we infer that \jTkeJ, and so V\ U Tk ± 0 and consequently 
k=l k=l 

for some k* we have 

(Inf/-1(Vno+i(ykO))nV^0. 

We put W= (Inf/_1( Vno+^yk.)))^ V. Hence W is a nonempty open set included 
in V. 

We shall show that 

WnD^ = 0. (4) 

First, we observe that / ( W ) c Vno+i(yk*). Let JC0eW, then f(x0)eVno+1(yk*). 
Since {W(y ) } y e Y is a regular neighbourhood system, then 

Vwo+1(yk .)cV I I0(/(jco)) f 

this means that for x0 there exists such a neighbourhood W of x0 that / ( W ) c 
Vno(/(.x0)) and consequently x0^D}no). This proves (4). 

From (4) we have that D}no) is nowhere dense. 
Sufficiency. Let us put J = 2D/. Thus J is the a-ideal, such that dfeJ and, 

according to Lemma 1.2, / is a J-continuous function. 
As a consequence of the above Theorem we obtain the following corollary. We 

omit the easy proof. 
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Corollary 1.5 (see [11, p. 61, Theorem 7.4]). Let X be a Baire space, 
Y— a second countable space and let Y possess a regular neighbourhood system. 
Let f: X - * y . Then the set Df is of the first category if and only if the set Q is dense 
in X. 

Note that the notion of the Baire space is defined as follows. 

Definition 1.6 [4]. A topological space X is called a Baire space if every 
nonempty open set in this space is of the second category. 

It is well known that the usual continuity of / may be defined by the condition: 

f~1(F)\f~1(F) = 0, where F is any closed set. One can show that the notion of 
J-continuity may be also formulated by means of closed sets. We state without 
proof the following theorem. 

Theorem 1.7. Let X, Y be arbitrary topological spaces and let J be some o-ideal 

in X. Then a function f: X—> Y is J-continuous if and only if f 1(F)\f !(F) e J for 
every closed set F in Y. 

2. Connections between J-continuity, quasi-continuity 
and Baire class 1 

Definition 2.1. We say that a function f: X—> Y, where X and Y are topological 
spaces, is in Baire class 1 if, for every nonempty closed set F c X , fF possesses 
a point of continuity. 

We put 
BX(X, Y) = {/: X-> y : / is in Baire class 1}, 

J(X, y ) = {f: X<—Y: f is J-continuous function, where J is a a-ideal in X} . 

Theorem 2.2. Let X be a complete metric space, let Y be a second countable 
T2-space which is not singleton and let J be a o-ideal in X. Then J(X, Y)cz 
Bi(X, Y) if and only if J does not include perfect sets. 

Proof. Assume that J includes some perfect subset P. We shall show that there 
exists such a function / e J(X, Y) that f^Bi(X, Y). 

Let <3l be an arbitrary base in X. Let 2/1* = { Ue 2JI: UnP± 0}. Let { L/a}a<s be 
a transfinite sequence consisting of all sets of the collection 2ft*. 

Let V0=Uo and let x0eV0nP. We suppose that we have defined xa for 

a < ß < H . We put Vß= Ц Л U {*«} аnd 
a < ß 

_(x0 for VPnO = 0, 
**' V for VenP^O, -I 

where y is an arbitrary element of V^nP. 
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Moreover we put 

A = (J{*a}crP. 
a<S 

We shall show that P c A. In fact, let JC0 e P and let Uy be an arbitrary element of 
the collection £%* that jc0e Uy (we may assume that Uy is an arbitrary neighbour­
hood of JC0). 

Let us consider the two possible cases: 

1° JC0^VY. Then j c 0 e l J { * « } c A . 
a<Y 

2° jcie VY. Thus VynP±0 (because x0e VynP). Then from the set VynP we 
may select JCY e A and so VynA40, consequently UynA =,-= 0, it means that JC0 e A. 

We put 
Pi = P\A. 

We shall show that 

(*) UanPi=^0, for every a < S . 

In fact, let a<H. Since P is a perfect set, then infinitely many points from P 
belong to Ua. We denote by yi an arbitrary point of the set UanP, different from jca 

and jc0. If yi £ A then the condition (*) is true. Otherwise yi = x6l e A. In this case 
we put Ki = K(yi, 6i), where ei is such a number that KiczUanV^ and Ei< 

- mm(Q(yu xa), Q(yu x0)). 

Now we suppose that we have defined the elements yi, ..., y„_i e P, y, =£ y; for any 
i + ], and the corresponding sequence of balls Kn-xczKn-2 c...cz K i d Ua, such 
that KtczKi-inV0i (where K0=Ua) for i = l, 2, ..., n — \. Thus if for some 
fce {1, 2, ..., n-X) yk^A then (*) is true. Otherwise yx, ..., y„-iGA. We remark 
that infinitely many elements from P belong to Kn-u We denote by y„ any one from 
them, different from yi, ..., y„-i (since Kn-i a K\ then y„ + JC0). If y„ ̂  A then (*) is 
true, otherwise y„ = JC6n e A. We put Kn = K(yn, e„), where e„ > 0 is such a number 

that Kn cz X„_in Vbn and e„ < - 6(y„, y„_i) (obviously V6nnP=?-= 0 because y„̂ = JC0). 

If there exists such / that yi^A, then the proof of (*) is finite. Otherwise we have 
an infinite, decreasing sequence of closed balls, with the centres belonging to P and 
diameters converging to zero. Let 

{yo}=r\Kn. 
„ = 1 

We shall show that 
yo$A. ( l ) 

We first remark that 
jc0±yo =9-= y„ =?-= jc0 for n = l , 2 , .... (2) 
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Observe that 
y 0 =l imy„. (3) 

n—»oo 

We assume, to the contrary, that y0e A, it means that y0 = xbo e V60nP. Accord­
ing to (2), we have two cases: 

1°° 80<or i0, for some n0. According to (2), we have yo = x6o e V6n0 = 

U6n0\ U {*«}> 1t means that JC60£ V6„0. On the other hand xbQ = y0eKnQciVbn09 
a<6„o 

which is impossible. 
2°° 60>6„ for n = l , 2 , .... Then according to (2), we have y0 = x&oe V6o = 

U60\ | J {x<*} - thus Vfio is the neighbourhood of y0 and V^ does not include every 
a<6 0 

point of {xbn} = {y„}, this contradicts (3). Thus we have proved (1). 
According to (3) and the fact, that for every n, yn e P, it is not difficult to observe 

that y0eP and since Kna Ua (for n = l, 2, ...) then y0e Ua, this completes the 
proof of (*). 

Now it is obvious that 
PczA and P c P i . 

Since y is a T2-space and it is not a singleton, there exist two different elements 
Zi, z2 and two open sets U\ and U2 such that z\e Uu z2e U2 and UinU 2 = 0. 

Now, we define the function / : X—> y in the following way: 

for jceA, 
[z2 for J C ^ A . «*Hl 

We shall show that / is a J-continuous function. 
We observe that 

D,eJ. (4) 

In fact, it is sufficient to show that Df c P. Let JC £ P. Then there exists such e > 0 
that K(x, e)nP = 0. Thus / (K(JC, e)) = {z2} = {/(*)} and consequently JC ̂  Df. 

According to (4) and Lemma 1.2 we may infer that feJ(X, Y). 
Of cource, / ^ Bi(X, y ) because f\P is a function discontinuous at every point. 
Sufficiency. Let fe J(X, y ) . Let F be an arbitrary closed set in X. Thus if F 

includes an isolated point, then f\F is continuous at this point. Otherwise F is 
a perfect set and consequently F^J. Hence (according to Lemma 1.2) F includes 
some point JC0 of continuity of / and so JC0 is a continuity point of f\F. 

We shall discuss some connections between J-continuous and some other types 
of functions. 

Definition 2.3. We say that a function f: [0, l]->[0, 1] possesses the property of 
Swi^tkowski if for every two points JC, y such that f(x) =£ /(y) , there exists a point z 
of continuity of f such that z e (JC, y) and f(z) e (f(x), / (y)) . ' 
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Definition 2.4. We say that a function f: X—> Y, where X, Y are topological 
spaces, is quasi-continuous at x0 if for every neighbourhood V of f(x0) and for 
every neighbourhood Uofx0 wehave Int(J~1(V)nU)±0. We say that a function f 
is quasi-continuous if it is quasi-continuous at every point of its domain. 

Theorem 2.5. Let f: [0, l]-->[0, 1]. Let us consider the following properties of 
the function f: 
(a) / is a Darboux function, 
(P) / possesses the property of Swi^tkowski, 
(y) There exists a o-ideal J such that f is a J-continuous function, 
(5) / is a quasi-continuous function, 
On) / is in Bake class 1. 

(y)A(6)A(ri):-$>(!3) 
(P)A(Y)A(5)A(r,)^(a) 
(«)4>(Y) 
(a)A(Y)A(r,)=J>(6) 
(!3)A(Y)A(r,)=J>(6) 
(a)A(P)A(Y)A(6)^(ri). 

Proof. 
(a) Proof of this implication can be found in the paper [12]. 
(b) Observe that if / possesses the property of Swî tkowski, then Df is a boundary 

set. Let us put J = 2Df. Hence DfeJ and, according to Lemma 1.2, / is 
a J-continuous function. 

(c) According to the proof of (b), it is sufficient to show that Q is dense in [0, 1]. 
But this is known from [9]. 

(d) The proof of this implication is a simple consequence of Theorem 1.4 and the 
well-known theorem saying that the set of discontinuity points of a real 
function in Baire class 1 is of the first category. 

(e) The proof of this fact can be found in the paper [12]. 
(f) T. Maiik and T. Swi^tkowski in [8, Theorem 3] have proved that (a)A(rj) 

=£> (P). Thus according to (d) we infer that condition (f) is satisfied. 
(g) For the proof of this condition we put 

Then the following true: 
(a) (a)л(ô)ф(ß) (g) 
(b) (ß)ф(ү) (h) 
(c) (ô)Ф(ү) (0 
(d) (r,)z>(ү) (j) 
(e) (a)л(ß)ф(ô) (k) 
(f) (a)л(ү)л(r,)ф(ß) (0 

«•)-{. 
for *є[0,å), 
foг X є [i, 1]. 

(h) For the proof of this condition we put 

for xe[0,§), 
for xerj.l]-«•>-{. 
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(/) If we take a Darboux function discontinuous at every point, then, 
according to Theorem 1.4, / cannot be J-continuous with respect to every 
a-ideal J. 

(j) T. Maiik and T. S w i a t k o w s k i in [8, Theorem 3] have shown that 
(a) A (r\) =^ ((3). Hence according to (a) and (d) we may infer that (j) is true, 

(k) For the proof of this condition we put 

f(x)=< 

for x e [»•!)• 
2

 t

 l 

Ъ f o r x = 2' 
1 ^ 1 * 

L 2 x 2 XЄ (И-
(1) Theorem 2 in paper [8] shows that (O:)A(|3) =£> (n). Thus according to (b) and 

(e) we have that (1) is true. 
We give now a necessary and sufficient condition for the quasi-continuity of 

a J-continuous function. 

Theorem 2.6. Let X, Y be two topological spaces and let J be a o-ideal in X. 
Then the J-continuous function f: X--> Yis quasi-continuous at x0 e Xif and only if, 
for every neighbourhood G of f(x0) and for every neighbourhood V of x0, 
Vnr(G)$J. 

Proof. Necessity. Since / is quasi-continuous at x0, then Int (Vnf l(G))^0 
and so V n / ' ^ G ) ^ . 

Sufficiency. We assume, to the contrary, that / is not quasi-continuous at x0. 
Then there exists some neighbourhood V of x0 and some neighbourhood G of f(x0) 
such that 

Int (f~1(G)nV) = 0. (1) 

We remark that 

(Vn/ - 1 (G)) \ In t / - 1 (G) = (Vn / - 1 (G) ) \ In t ( / - 1 (G)nV) . (2) 

Since / is J-continuous, then /~ 1 (G)\ In t / - 1 (G)e J, and therefore 
(Vn / - 1 (G) ) \ In t / - 1 (G)e J, then according to (2) 

( V n / - 1 ( G ) ) \ I n t ( / - 1 ( G ) n V ) e J . (3) 

In view of (1) and (3), Vnf~1(G)eJ, this contradicts our supposition. 

3. Baire spaces and cr-ideals 

H. B l u m b e r g i n the paper [1] has showed that for every real function / of real 
variable there exists a set B dense in R and such that f\B is a continuous function (in 
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this paper for the set B possessing above properties we assume the term Blumberg 
set). 

J. C. B r a d f o r d and C. Goffman in the paper [2] have shown that a metric 
space X is a Baire space if and only if every real function defined on X possesses 
a Blumberg set. 

In this part a certain characterization of topological Baire spaces will be given. 

Definition 3.1. We say that a function f: X-» y , where X and Y are arbitrary 
topological spaces, possesses the property (H), if there exists a o-ideal J in Xsuch 

that, for every aeY, / -1(a)\Int(/"1(a))G J. 
Note that J does not include nonempty open sets. 

Theorem 3.2. A topological space X is a Baire space if and only if every real 
function defined on X possesses the property (H). 

Proof . Necessity. Let / be an arbitrary real function. Let J denotes a-ideal of 
sets of first category (since X, in view of the supposition, is a Baire space, then J 
does not include nonempty open sets). 

We shall show that, for aeY, 

(*) / J (a) \ Int ( / J(a)) is nowhere dense. 

In fact. Let [/=£ 0 be an arbitrary open set. Then two cases can arise. 

1° Uczf-^a) and so Un( / - 1 ( a ) \ In t (T , ( a ) ) ) = 0. 

2° U^if-^a). Then V = l A / ' ^ a ) is a nonempty open set such that V c U and 
Vn/ _ 1 ( a ) = 0. Therefore 

Vn(/ - 1 (a) \ ln t ( /" 1 (a)) ) = 0. 

This completes the proof of (*) and the proof of the necessity. 
Sufficiency. We assume to the contrary, that X is not a Baire space. Then there 

CO 

exists such an open set W=0 that V = [J K„, where K„ is nowhere dense for 

n = l,2, .... We may assume that for n±m KnnKm=0. 
Let / : X—> R as follows: 

TKX) \m for xeKn. 

We shall show that / does not possess the property (H). In fact, we suppose, on 
the contrary, that / has the property (H), then there exists a a-ideal J such that 

r'(fc)\Int/-,(fc)€J, for /c = l,2, .... 
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We infer that 
f~\k) = Kk for fc = l , 2 , ..., 

and so / 1(k) = Kk and since Kk is nowhere dense, then Int Kk = 0 for fc = 1, 2, ...; 
this means that 

V= U K. = U (r 1 (k)\Int/" 1 (k)) e J 
fc=i fc=i 

which is impossible because J does not include nonempty open sets. Hence / does 
not possess the property (H). 

The following examples show that there such a continuous function (it possesses 
a Blumberg set), that / does not possess the property (H) and also there exists such 
a function /, that / has the property (H) and / does not possess a Blumberg set. The 
above functions are real functions defined on some metric spaces. 

Examp le 3.3. Let X = Qn[0, 1], g be the natural metric in X and let /: X—> R 
be the identical function (i.e. f(x) = JC). Then / is a continuous function. Moreover, 
/ does not possess the property (H). In fact, let J be an arbitrary a-ideal and let 
a e Q n [ 0 , l]czR. Then 

/-'(«) = Г*(a) = {a} 

so lnt/_ 1(a) = 0, this means that r ' ( a ) \ I n t r 1 ( a ) = /- ,(a). We have 

X = U /"'(a). 
aeOo[0, 1] 

If now / possesses the property (H), then f~l(a)eJ and so XeJ, which is 
impossible. 

Examp le 3.4. Let X = [0, 1] x (Qn[0, 1]), p be the natural metric in the plane 
restricted to X. Let h denote the 1—1 function mapping Q on N. Let /: X—> R be 
defined in the following way: 

f((x,q)) = h(q) + x. 

We first show that / possesses the property (H). Let J denote the a-ideal of all 
denumerable subsets of X. For every aeR, card/ _ 1 (a)^2, then f~l(a)eJ and 

therefore /"1(a)\Int/"1(a)e J. 
Now, we show that / does not possess a Bluberg set. Let B be an arbitrary set 

dense in X and let (bo, q0) e B. There exists a sequence {(bn, qn)}, (bn, qn) e B such 

that lim (bn, qn) = (b0, q0) and qn£q0 for n = 1, 2, .. . . 

This means that f((bn, qn))-hf((b0, q0)) and so f\B is a discontinuous function. 
This proves that B is not a Blumberg set of / . 
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We introduce a new class of functions which may be of interest in connection 
with Baire spaces. 

Definition 3.5. We say that a function f: X—> Y, where X and Y are arbitrary 
topological spaces, possesses the property (H*) if there exists a o-ideal J in X such 

thatf l(a)\Intf 1(Ua)e J for every aeY and for every neighbourhood Ua of a. 

Theorem 3.6. Let X and Y be arbitrary topological spaces. Then if a function f: 
X-* Y possesses a Blumberg set then f possesses the property (H*). 

Proof . Let B be a Blumberg set of / . Let, for A c=X, IntB(A) denote the set of 
all points xeB for which there exists a neighbourhood Ux of x such that 
L ^ n B c A . 

Of course 

IntB(A) c= Int A for every closed set A . (1) 

It is easy to see that 

IntB(A)c:IntB(A) for every A c X . (2) 

We put J = 2X~B. Since B is dense in X, then J does not include nonempty open 
sets. Let a e Y and Ua be an arbitrary neighbourhood of a. f\B is a continuous 
function, so 

IntB(frB
l(Ua))=rB1(Ua) = r1(Ua)nB, 

this means that 

f-l(a)\lntB(JrB
l(Ua)) = f-1(a)\(r1(Ua)uB) c - r W C f ' ( c O n B ) e J. 

According to (2) we have 

/-'(aJMntBÍ/rBdX^Gj. 

This means, according to (1), that / 1(a)\lntf\B(Ua) e J and consequently 

/ - 1 ( a ) \ In t / - 1 ( l / a )6 J , 

this ends the proof. 
Of course, if a function / possesses the property (H), then / possesses the 

property (H*). Theorem 3.6 shows that the function described in Example 3.3 
possesses the property (H*) but does not possess the property (H). On the other 
hand, Example 3.4 shows that the inverse theorem to Theorem 3.6 is false. 

Theorem 3.7. Topological space X is a Baire space if and only if every real 
function defined on X possesses the property (H*). 

Proof. Necessity is obvious. 
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Sufficiency. We shall show that the function described in the proof of the 
sufficient condition of Theorem 3.2 does not possess the property (H*). Suppose, 
on the contrary, that there exists a a-ideal J in X such that 

f-l(k)\Intf-l((k-i k + $)~J. 

We infer that 

f~\(k — \, k + i)) = Kk (see proof of Theorem 3.2). 

Similarly as in the proof of Theorem 3.2, we may show that 0 + Ve J, where V is 
some open set, which is impossible. 

Now we may ask: what connections are there between the class of functions 
possessing a Blumberg set and the class of functions / for which there exists such 
a dense set B that the restriction f\B is a continuous function with respect to some 
a-ideal (see Definition 1.1). 

Definition 3.8. Let f: X—> Y, where X and Y are arbitrary topological spaces. 
We say that a set B czX is a weak Blumberg set of f if B is dense in X and in B (we 
understand B as the subspace of X) there exists a o-ideal J(B) such that f\B is 
J (B)-continuous. 

Theorem 3.9. Let X be an arbitrary topological space, let Ybe a second-counta­
ble space. Then f: X—> Ypossesses a Blumberg set if and only if f possesses a weak 
Blumberg set. 

Proof. Necessary condition is obvious. 
Sufficiency. Let B be a weak Blumberg set of / and let J(B) denotes such a-ideal 

in B that f\B is J(B)-continuous. Thus according to Lemma 1.2 DfBeJ(B) and 
because J(B) does not include open sets (in B) then Q B is dense in B and so it is 
dense in X. Moreover, we infer that f\Q]B=f\B\Q\B, because Q B c=B, and conse­
quently Q,B is the Blumberg set of / . 

Corollary 3.10. A metric space X is a Baire space if and only if every real 
function defined on X possesses a weak Blumberg set. 

Corollary 3.11. A metric space X is a Baire space if and only if for every real 
function defined on X there exists a set Bf dense in X such that the set of 
discontinuity points of f^ is of the first category and a boundary set in Bf. 

Definition 3.12. We say that a function f: X—> y , where X and Y are arbitrary 
topological spaces, is strongly J-continuous (J — some o-ideal in X) if 

1° /-1(LI)\Int/-1(L7) G J and f~l(U) ^ J, for every open set Ucz Y, 
and 

2° f~l(A)eJ, for every nowhere dense set A c Y . 
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Theorem 3.13. Let X be a Baire space and let f be a strongly J-continuous 
function mapping X onto Y. Then Y is a Baire space. 

Proof. According to [4, Theorem 1.13] it is sufficient to show that for every 

sequence {V„} of open and dense sets in Y, f] V„ is dense in y. 
«=i 

Let W* be an arbitrary open set in y. It is sufficient to prove that 

(*) W*nf)Vn±0. 
rt=i 

First, we infer that 

/_1(V„) is dense in X, torn = 1,2, .... (1) 

In fact, assume, to the contrary, that there exists a nonempty open set WczX such 
that Wnf-l(Vn) = 0, for some n. Thus f(W)nVn = 0 and so f(W) is nowhere 
dense, but / is strongly J-continuous function, this means that 

W^f~\f(W))eJ 

which is impossible because J does not include nonempty open sets. 
Now we shall show that 

f-l(W*)nnr(V„)±0. (2) 
rt=l 

In fact, suppose, on the contrary, that f~1(W*)nf]f~1(Vn) = 0. Then 
rt=i 

Int/-,(W*)nn/-1(Vn) = 0 and so 
rt-1 

In./"'( W*) = U (lntf-\ W*)\f-\ Vn)). (3) 
rt = l 

Let n be an arbitrary positive integer and let V be an arbitrary nonempty open 
set. It is easy to see that 

VczVnf-^Vn). (4) 

Hence from (4) and Definition 3.12 we deduce that 

Vnlnt/"1(V„)^0. (5) 

In virtue of (5) we infer that Int/"1(W*)\/"1(V„) is nowhere dense, this 
according to (3) means that 

Int /"1 (W*) is of the first category. (6) 
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On the other hand 

Int/-1(W*)-^0. (7) 

In fact, suppose, on the contrary, that Int/_1(W*) = 0. Hence, according to 
Definition 3.12, 

/ - 1(W*)c/- 1(W*)c=/- 1(W*) \Int/- 1(W*)eJ 

which is impossible because / _ 1 (W* )^ J. 
Conditions (6) and (7) contradict the supposition that X is a Baire space. Hence 

(2) holds true. 
According to (2) we have 

r(w*nnv„)^0, 

this proves (*) and ends the proof of this theorem. 
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ОБ ФУНКЦИЯХ МНОЖЕСТВО ТОЧЕК РАЗРЫВА КОТОРЫХ 
ПРИНАДЛЕЖИТ К НЕКОТОРОМУ а-ИДЕАЛУ 

Кузгаго! ^ег2у Р а V/1 а к 

Резюме 

В этой статье мы рассматриваем класс функции, связаных с а-идеалами. В первой части мы 
говорим об необходимых и достаточных условиях для /-непрерывности функции /. Теоремы, 
доказанные во второй части, представляют связь между понятием /-непрерывности и другими 
понятиями, похожими на непрерывность. Последняя часть содержит, между прочем, 
необходимые и достаточные условия для того, чтобы топологическое пространство X было 
пространством Бера. 
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