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ON FUNCTIONS WITH THE SET OF DISCONTINUITY
POINTS BELONGING TO SOME o¢-IDEAL

RYSZARD JERZY PAWLAK

Preliminaries

Various properties of classes of functions in connection with o-ideals were
studied e.g. by K. Kuratowski [5], R. D. Mauldin [6, 7}, Z. Semadeni [13].
The results of this paper are also connected with the mentioned problem.

Obviously, f~'(U)\Int f~'(U) =0 for any open U c Y is a characterization of the
continuity of f: X— Y. Consider a class of functions f for which f~'(U)\Int f~*(U)
belongs to a fixed o-ideal J for any open U< Y. Such a function will be called
J-continuous.

In the first part of the paper we give a characterization of J-continuous functions
for a given o-ideal J. The second part deals with the relation of J-continuity and
some other type of continuities. The third part gives some characterization of the
Baire space. It is related to papers of J. C. Bradford, C. Goffman [2] and R. C.
Haworth, R. A. McCoy [4].

The symbol f: X— Y denotes as usually a mapping of X to Y. The undefined
notions are used according to R. Engelking [3].

Moreover, we use G;(Dy) to denote the set of continuity (discontinuity) points of
f- R, Q, N denote the sets of reals, rationals and positive integers respectively.
card A stands for the cardinality of A, (a, b) ([a, b]) denotes open (closed)
intervals respectively. Throughout the paper, the nonempty open sets are excluded
as the elements of the o-ideals in consideration.

1. J-continuity

Definition 1.1. Let X and Y be arbitrary topological spaces and let J be some
o-ideal in X. We say that a function f: X— Y is J-continuous if for every open set
Uc Y we have f'(U\Intf~'(U)eJ.

Let us recall our standard hypothesis that considered o-ideals does not include
nonempty open sets.
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The definition is a generalization of the notion of the continuity. So, a natural
problem is to characterize D; for a J-continuous function f.

Lemma 1.2. Let X be an arbitrary topological space, Y- a second-countable
space and let J be some o-ideal in X. Then f: X— Y is a J-continuous function if
and orllly if Dyel.

Proof. Let {U,}»-1 be a countable base in Y. Since

A UNIntf"(U)eJ for n=1,2,...

the necessity follows from the inclusion

D, cg (F(U\Intf1(U,)).

The sufficiency is implied by the fact that f~'(U)\Intf~'(U)< Ds e J.

Definition 1.3. Let X be an arbitrary topological space. We say that
a neighbourhood system {W(x)},ex is regular if

1° W(x)={Va.(x)}:-1 for every x € X, and

2° for every n=1,2, ... and for every two elements x, x' € X: if x' € V,.1(x),
then V,.i(x)c V.(x').

Remark. Obseryve, that every metric space (X, o) possesses a regular neigh-
bourhood system (for any n=1,2, ... and for any x€ X, it is suffices to put

V.(x)=K(x, /)

Theorem 1.4. Let X be an arbitrary space, Y — a second-countable space and Iet
Y possess a regular neighbourhood system. Then a function f: X— Y is J--
continuous with respect to some o-ideal J of subsets of the space X if and only if Dy
is a boundary set of the first category.

Proof. Necessity. In fact, D; is boundary set according to Lemma 1.2 and by our
supposition that g-ideal J does not include nonempty open sets.

Now, we shall show that D is of first category.

Let {W(y)},cv, where W(y) ={V.,(y)}--1 for y € Y, be the regular neighbour-
hood system of the space Y. Moreover, for n=1, 2, ... let D{” denote the set of
such x € X that for any neighbourhood U, of x there exists x'€ U, such that
f(x") & Vo (f(x)).

Then

D= DfP. (1
It suffices to show that D{” is a nowhere dense set for n=1, 2, ....
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Let no be an arbitrary natural number and let V be an arbitrary open set in X.
We infer that the collection { Vio+1(¥)}yey covers Y i.e.

Y= U Vno+l(y)~
yeY

By Theorem of Lindeldf, there exists a countable subcover { Vi+1(yi)}i-1 of
{ Vao+1(¥)}ye v. We have that:

V=f(Y)nV= (gf-’(vw(yk)))mv. @)

Since f is a J-continuous function, then

f_l(vm+l(yk))=Intf—1(vno+l(yk))UTk9 (3)

where Ty €J for k=1,2, ....
According to (2) and (3) we have

v=(k0 (Int f“(V,.o+1(yk))uTk))nV=

=1

= [(g Intf"(Vm,H(yk)))n V]u[(g Tk)n v] .

On the other hand, we infer that D Tv€J,and so V\ O T. # @ and consequently
k=1

k=1
for some k* we have

(Inff~"(Vppe1(yee))) N V.

We put W= (Inff~'(Vup+1(ye=)))n V. Hence W is a nonempty open set included
in V.
We shall show that
WnD{ =. 4)

First, we observe that f(W)c V, .1(yes). Let xoe W, then f(x0)€ Vogs1(Yis).
Since {W(y)},yv is a regular neighbourhood system, then

Voor1(Yie) © Vio(f(x0)),

this means that for x, there exists such a neighbourhood W of x, that f(W)c
V.(f(x0)) and consequently xo, ¢ D§*®. This proves (4).

From (4) we have that D{* is nowhere dense. :

Sufficiency. Let us put J=2%, Thus J is the o-ideal, such that d;eJ and,
according to Lemma 1.2, f is a J-continuous function.

As a consequence of the above Theorem we obtain the following corollary. We
omit the easy proof.
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Corollary 1.5 (see [11, p. 61, Theorem 7.4]). Let X be a Baire space,
Y — a second countable space and let Y possess a regular neighbourhood system.
Let f: X— Y. Then the set Dy is of the first category if and only if the set C; is dense
in X.

Note that the notion of the Baire space is defined as follows.

Definition 1.6 [4]. A topological space X is called a Baire space if every

nonempty open set in this space is of the second category.
It is well known that the usual continuity of f may be defined by the condition:

fU(F)\f'(F)=0, where F is any closed set. One can show that the notion of
J-continuity may be also formulated by means of closed sets. We state without
proof the following theorem.

Theorem 1.7. Let X, Y be arbitrary topological spaces and let J be some o-ideal

in X. Then a function f: X— Y is J-continuous if and only if f"'(F)\f"'(F) € J for
every closed set F in Y.

2. Connections between J-continuity, quasi-continuity
and Baire class 1

Definition 2.1. We say that a function f: X— Y, where X and Y are topological
spaces, is in Baire class 1 if, for every nonempty closed set F c X, fir possesses
a point of continuity.

We put

Bi(X, Y)={f: X—> Y: fisin Baire class 1},
J(X, Y)={f: X< Y: fis J-continuous function, where J is a o-ideal in X}.

Theorem 2.2. Let X be a complete metric space, let Y be a second countable
T,-space which is not singleton and let J be a o-ideal in X. Then J(X, Y)c
B:i(X, Y) if and only if J does not include perfect sets.

Proof. Assume that J includes some perfect subset P. We shall show that there
exists such a function fe J(X, Y) that f¢ Bi(X, Y).

Let R be an arbitrary base in X. Let #*={Ue€ R: UnP+#@}. Let {U,}.<= be
a transfinite sequence consisting of all sets of the collection #&*.

Let Vo=U, and let xoe VonP. We suppose that we have defined x. for
a<B<E. We put Vz=Us\J {x.} and

a<p

_{xo for Vsn0=9,
=1y for VinP#0,

where y is an arbitrary element of VpnP,
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Moreover we put
A= {x)cP.

a<Z=

We shall show that P < A. In fact, let x4 € P and let U, be an arbitrary element of
the collection R* that xoe U, (we may assume that U, is an arbitrary neighbour-
hood of xg).

Let us consider the two possible cases:

1° x4¢V,. Then xie | {x.} cA.

a<y
2° x4€V,. Thus V,nP+@ (because x;e Vy,nP). Then from the set V,nP we
may select x, € A and so V,n A # @, consequently U,n A #, it means that xo€ A.
We put
P1 =P\A.

We shall show that
() U.nP, #0, forevery o<Z.

In fact, let a<E. Since P is a perfect set, then infinitely many points from P
belong to U,. We denote by y; an arbitrary point of the set U, P, different from x,
and xo. If y1 ¢ A then the condition () is true. Otherwise y; = x5, € A. In this case
we put K;=K(y, 1), where €, is such a number that K;c U,n Vs, and g, <
2 min (e, %), 00y, x0)).

Now we suppose that we have defined the elements y,, ..., y.—1 € P, yi# y; for any
i#j, and the corresponding sequence of balls K,_;c K,-, =...c K;c U,, such
that KicKi-1nVs, (where Ko=U,) for i=1,2,..., n—1. Thus if for some
ke{1,2, ..., n—1} y ¢ A then (») is true. Otherwise y;, ..., y.—1€ A. We remark
that infinitely many elements from P belong to K._;. We denote by y, any one from
them, different from yx, ..., ya-1 (since K,-: = K; then y.# xo). If y. ¢ A then (%) is
true, otherwise y, = x5, € A. We put K, = K(y», €.), where €, >0 is such a number

that K, = K,-1n Vs, and €, <% 8(¥», Ya-1) (obviously Vs, NP+ @ because y,# xo).

If there exists such [ that y, ¢ A, then the proof of () is finite. Otherwise we have
an infinite, decreasing sequence of closed balls, with the centres belonging to P and
diameters converging to zero. Let

{yo} = Ol K..
We shall show that
Yo A. 1

XoF YoF YynFEXxo for n=1,2,.... )

We first remark that

331



Observe that
Yo= lin; Yn. 3)
We assume, to the contrary, that y,€ A, it means that yo = xs,€ Vson P. Accord-
ing to (2), we have two cases:
1° §,<d., for some no. According to (2), we have yo=xs€ V5,0 =

Us..\ U {xa}, it means that xs ¢ Vs,.. On the other hand xs, = yo€ Ku< Vi,

a<dno

which is impossible.

2°° $¢>8, for n=1,2,.... Then according to (2), we have yo= X5 € Vs, =

Uso\ U {x«}, thus V4, is the neighbourhood of y, and Vs, does not include every

a<dg

point of {xs,} ={y.}, this contradicts (3). Thus we have proved (1).
According to (3) and the fact, that for every n, y. € P, it is not difficult to observe

that yoe P and since K,c U, (for n=1, 2, ...) then y,€ U,, this completes the
proof of ().

Now it is obvious that

PcA and PcP,.

Since Y is a T;-space and it is not a singleton, there exist two different elements
21, Z2 and two open sets U; and U, such that z,€ Uy, z2e U, and U,nU,=0.
Now, we define the function f: X— Y in the following way:

_fz1 for xeA,
f(x)—{zz for x¢A.

We shall show that f is a J-continuous function.
We observe that

D]G]. (4)

In fact, it is sufficient to show that D; c P. Let x ¢ P. Then there exists such ¢ >0
that K(x, e)nP=0. Thus f(K(x, €))={z.} ={f(x)} and consequently x ¢ D;.

According to (4) and Lemma 1.2 we may infer that fe J(X, Y).

Of cource, f ¢ Bi(X, Y) because fip is a function discontinuous at every point.

Sufficiency. Let fe J(X, Y). Let F be an arbitrary closed set in X. Thus if F
includes an isolated point, then fir is continuous at this point. Otherwise F is
a perfect set and consequently F¢J. Hence (according to Lemma 1.2) F includes
some point xo of continuity of f and so xo is a continuity point of fir.

We shall discuss some connections between J-continuous and some other types
of functions.

Definition 2.3. We say that a function f: [0, 1]— [0, 1] possesses the property of
Swiatkowski if for every two points x, y such that f(x) # f(y), there exists a point z
of continuity of f such that z € (x, y) and f(z) € (f(x), f(¥))."
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Definition 2.4. We say that a function f: X— Y, where X, Y are topological
spaces, is quasi-continuous at x, if for every neighbourhood V of f(x,) and for
every neighbourhood U of xo we have Int(f~'(V)nU) # 0. We say that a function f
is quasi-continuous if it is quasi-continuous at every point of its domain.

Theorem 2.5. Let f: [0, 1]— [0, 1]. Let us consider the following properties of
the function f:

(o) fis a Darboux function,

(B) f possesses the property of Swiatkowski,

(Y) There exists a o-ideal J such that f is a J-continuous function,
(8) fis a quasi-continuous function,

(m) fis in Baire class 1.

Then the following true:

(@) (@W)A(®)=>(P) (& MAGAM) P B)

®) B)=> ) (h) BAWAB)AM) P (a)

© > @) (@)

@ m=>®) (G) @AAMm) P ()

(&) (@A (B)=>(®) (k) B)AMAm) P (d)

) (@ArWAM)PB) O @WABAXAG) P ().
Proof.

(a) Proof of this implication can be found in the paper [12].

(b) Observe that if f possesses the property of Swiatkowski, then Dy is a boundary
set. Let us put J=2%. Hence D;eJ and, according to Lemma 1.2, f is
a J-continuous function.

(c) According to the proof of (b), it is sufficient to show that  is dense in [0, 1].
But this is known from [9].

(d) The proof of this implication is a simple consequence of Theorem 1.4 and the
well-known theorem saying that the set of discontinuity points of a real
function in Baire class 1 is of the first category.

(e) The proof of this fact can be found in the paper [12].

(f) T. Marik and T. Swiatkowski in [8, Theorem 3] have proved that (o) A (1)
2 (B). Thus according to (d) we infer that condition (f) is satisfied.

(2) For the proof of this condition we put

0 for xe[0,%),

f(x)={1 for xel[3, 1]

(h) For the proof of this condition we put

_(x for xel0,3),
f(x)_{l for xe[3, 1].
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(i) If we take a Darboux function discontinuous at every point, then,
according to Theorem 1.4, f cannot be J-continuous with respect to every
o-ideal J.

() T. Maiik and T. Swiatkowski in [8, Theorem 3] have shown that
(a) A(m) D (B). Hence according to (a) and (d) we may infer that (j) is true.

(k) For the proof of this condition we put

X for xe[O, %) s

2 1
f(x)= 3 for xX=3,

1 1

Ex ‘2- for xe(z, 1]

(1) Theorem 2 in paper [8] shows that (o) A(B) 2 (n). Thus according to (b) and
(e) we have that (1) is true.
We give now a necessary and sufficient condition for the quasi-continuity of
a J-continuous function.

Theorem 2.6. Let X, Y be two topological spaces and let J be a o-ideal in X.
Then the J-continuous function f: X — Y is quasi-continuous at x, € X if and only if,
for every neighbourhood G of f(xo) and for every neighbourhood V of x,,
Vaf(G)¢1J.

Proof. Necessity. Since f is quasi-continuous at xo, then Int (VAf~'(G))#0
and so VNf'(G)&J.

Sufficiency. We assume, to the contrary, that f is not quasi-continuous at x,.
Then there exists some neighbourhood V of x, and some neighbourhood G of f(xo)
such that

Int(f }(G)n V) =4. (1)
We remark that
(VA (G)\Intf(G) =(Vnf ' (G))\Int(f ' (G)n V). ?)

Since f is J-continuous, then f '(G)\Intf"'(G)eJ, and therefore
(Vaf'(G))\Intf'(G) € J, then according to (2)

(VAaf ' (G)\Int(f '(G)n V) e J. 3)
In view of (1) and (3), Vnf'(G) e J, this contradicts our supposition.
3. Baire spaces and ¢-ideals

H. Blumberg in the paper [1] has showed that for every real function f of real
variable there exists a set B dense in R and such that fis is a continuous function (in
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this paper for the set B possessing above properties we assume the term Blumberg
set).

J. C. Bradford and C. Goffman in the paper [2] have shown that a metric
space X is a Baire space if and only if every real function defined on X possesses
a Blumberg set.

In this part a certain characterization of topological Baire spaces will be given.

Definition 3.1. We say that a function f: X— Y, where X and Y are arbitrary
topological spaces, possesses the property (H), if there exists a o-ideal J in X such

that, for every a€Y, f'(a)\Int(f'(a)) € J.
Note that J does not include nonempty open sets.

Theorem 3.2. A topological space X is a Baire space if and only if every real
function defined on X possesses the property (H).

Proof. Necessity. Let f be an arbitrary real function. Let J denotes o-ideal of
sets of first category (since X, in view of the supposition, is a Baire space, then J
does not include nonempty open sets).

We shall show that, for ae Y,

(») f'(o)\Int(f'(a)) is nowhere dense.
In fact. Let U#@ be an arbitrary open set. Then two cases can arise.
1° Ucf'(a) and so Un(f(a)\Int(f'(a))) =0.

2° Ud¢f(a). Then V= U\f'(a) is a nonempty open set such that V< U and
Vnf'(a)=0. Therefore

Va(f ' (e)\Int(f'(a))) =0.

This completes the proof of (x) and the proof of the necessity.
Sufficiency. We assume to the contrary, that X is not a Baire space. Then there

exists such an open set V#@ that V= D K., where K, is nowhere dense for

n=1
n=1,2,.... We may assume that for n¥+m K,nK, =0.
Let f: X— R as follows:

0 for xeX\V,
m for xeK,.

s ={

We shall show that f does not possess the property (H). In fact, we suppose, on
the contrary, that f has the property (H), then there exists a g-ideal J such that

' (k\Intf(k)eJ, for k=1,2,....
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We infer that
fFiUk)=K. for k=1,2, ...,

and so f~'(k) = K. and since K is nowhere dense, then IntK, =0 for k=1, 2, ...;
this means that

V= kUI Ki= kLJI (f'(\Intf~'(k)) e J
which is impossible because J does not include nonempty open sets. Hence f does
not possess the property (H).

The following examples show that there such a continuous function (it possesses
a Blumberg set), that f does not possess the property (H) and also there exists such
a function f, that f has the property (H) and f does not possess a Blumberg set. The
above functions are real functions defined on some metric spaces.

Example 3.3. Let X=Qn|[0, 1], o be the natural metric in X and let f: X— R
be the identical function (i.e. f(x) = x). Then f is a continuous function. Moreover,
f does not possess the property (H). In fact, let J be an arbitrary o-ideal and let
a€ Qn[0, 1]=R. Then

fHa)=f"(a)={a}

so Intf~'(a) =@, this means that f~'(a)\Intf'(a) = f"'(a). We have
X= U fl(w.

aeQnlo, 1]
If now f possesses the property (H), then f'(a)eJ and so XeJ, which is
impossible.
Example 3.4. Let X =0, 1] X (Qn[0, 1]), o be the natural metric in the plane

restricted to X. Let h denote the 1—1 function mapping Q on N. Let f: X— R be
defined in the following way:

f((x, @))=h(q) +x.

We first show that f possesses the property (H). Let J denote the o-ideal of all
denumerable subsets of X. For every a.e R, cardf '(a) <2, then f'(a)eJ and

therefore f~'(a)\Intf'(a)eJ.
Now, we show that f does not possess a Bluberg set. Let B be an arbitrary set
dense in X and let (bo, qo) € B. There exists a sequence {(b., g.)}, (b, g.) € B such

that lim (ba, g.) = (bo, qo) and g.#qo for n=1,2, ....

This means that f((bx, g.))-» f((bo, g0)) and so fs is a discontinuous function.
This proves that B is not a Blumberg set of f.
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We introduce a new class of functions which may be of interest in connection
with Baire spaces.

Definition 3.5. We say that a function f: X— Y, where X and Y are arbitrary
topological spaces, possesses the property (H*) if there exists a o-ideal J in X such

that f'(a)\Int f~(U,) € J for every a.€ Y and for every neighbourhood U, of a.

Theorem 3.6. Let X and Y be arbitrary topological spaces. Then if a function f:
X — Y possesses a Blumberg set then f possesses the property (H*).

Proof. Let B be a Blumberg set of f. Let, for A = X, Ints(A) denote the set of
all points x € B for which there exists a neighbourhood U. of x such that
U NBcA.

Of course

Ints(A)cIntA for every closed set A. )
It is easy to see that
Ints(A)cIntg(A) forevery AcX. )

We put J=2*"2, Since B is dense in X, then J does not include nonempty open
sets. Let ae Y and U, be an arbitrary neighbourhood of a. fis is a continuous
function, so

Ints(fis (U)) = fis (Us) = f'(Us)NB,
this means that
fH(@\Ints (fie (Ua)) = f (N (U)uB) = fH(@\(f(@)nB) € J.
According to (2) we have
f ()\Ints(fig (Ud)) € J.

This means, according to (1), that f~'(a)\Int iz (U,) € J and consequently

f ()\Intf~ (U €J,
this ends the proof.

Of course, if a function f possesses the property (H), then f possesses the
property (H*). Theorem 3.6 shows that the function described in Example 3.3
possesses the property (H*) but does not possess the property (H). On the other
hand, Example 3.4 shows that the inverse theorem to Theorem 3.6 is false.

Theorem 3.7. Topological space X is a Baire space if and only if every real
function defined on X possesses the property (H*).
Proof. Necessity is obvious.
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Sufficiency. We shall show that the function described in the proof of the
sufficient condition of Theorem 3.2 does not possess the property (H*). Suppose,
on the contrary, that there exists a o-ideal J in X such that

FUNIntf'((k—3, k+1))el.
We infer that
f'((k—=% k+13))=Ki (see proof of Theorem 3.2).

Similarly as in the proof of Theorem 3.2, we may show that @ # V € J, where Vis
some open set, which is impossible.

Now we may ask: what connections are there between the class of functions
possessing a Blumberg set and the class of functions f for which there exists such
a dense set B that the restriction fip is a continuous function with respect to some
o-ideal (see Definition 1.1).

Definition 3.8. Let f: X— Y, where X and Y are arbitrary topological spaces.
We say that a set B <X is a weak Blumberg set of f if B is dense in X and in B (we
understand B as the subspace of X) there exists a o-ideal J(B) such that fs is
J(B)-continuous.

Theorem 3.9. Let X be an arbitrary topological space, let Y be a second-counta-
ble space. Then f: X— Y possesses a Blumberg set if and only if f possesses a weak
Blumberg set.

Proof. Necessary condition is obvious.

Sufficiency. Let B be a weak Blumberg set of f and let J(B) denotes such o-ideal
in B that fjz is J(B)-continuous. Thus according to Lemma 1.2 Dy, € J(B) and
because J(B) does not include open sets (in B) then C;, is dense in B and so it is
dense in X. Moreover, we infer that fiq,, = fisics, because G, < B, and conse-
quently G, is the Blumberg set of f.

Corollary 3.10. A metric space X is a Baire space if and only if every real
function defined on X possesses a weak Blumberg set.

Corollary 3.11. A metric space X is a Baire space if and only if for every real
function defined on X there exists a set B; dense in X such that the set of
discontinuity points of fs, is of the first category and a boundary set in B;.

Definition 3.12. We say that a function f: X— Y, where X and Y are arbitrary
topological spaces, is strongly J-continuous (J — some o-ideal in X) if

1° Y (UNIntf~'(U)eJ and f~*(U) & J, for every open set Uc Y,
and
2° f(A)eJ, for every nowhere dense set AcY.
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Theorem 3.13. Let X be a Baire space and let f be a strongly J-continuous
function mapping X onto Y. Then Y is a Baire space.

Proof. According to [4, Theorem 1.13] it is sufficient to show that for every
sequence {V,} of open and dense sets in Y, ﬁ V., is dense in Y.

n=1

Let W* be an arbitrary open set in Y. It is sufficient to prove that

(*) W*n[) V,#8.

n=1
First, we infer that

f"(V.) isdensein X,forn=1,2,.... 1)

In fact, assume, to the contrary, that there exists a nonempty open set W = X such
that Wnf~'(V,)=40, for some n. Thus f(W)nV,=0 and so f(W) is nowhere
dense, but f is strongly J-continuous function, this means that

Wef(f(W)el

which is impossible because J does not include nonempty open sets.
Now we shall show that

FUWINN (V) #9. @)
In fact, suppose, on the contrary, that f"(W*)nﬁ f'(V.)=0. Then
Intf~ (W*)n () f(V.)=0 and so
n=1

Intf~I(W*) = Q (Intf~ (W\FL(VL)). 3)

Let n be an arbitrary positive integer and let V be an arbitrary nonempty open
set. It is easy to see that

Ve VAaf (V). 4
Hence from (4) and Definition 3.12 we deduce that
VAlntf~'(V,)+0. )

In virtue of (5) we infer that Intf~'(W*)\f~'(V,) is nowhere dense, this
according to (3) means that

Intf~'(W*) is of the first category. (6)

339



On the other hand
Intf~{(W*) #0. @)

In fact, suppose, on the contrary, that Intf~'(W*)=@. Hence, according to
Definition 3.12,

WS e fAW*) cf(WH\Intf(W*) e J

which is impossible because f~'(W*)¢J.

Conditions (6) and (7) contradict the supposition that X is a Baire space. Hence
(2) holds true.

According to (2) we have

£ (W*nﬁ Vn) +0,
n=1
this proves (x) and ends the proof of this theorem.

REFERENCES

[1] BLUMBERG, H.: New properties of all real functions, Trans. Amer. Math. Soc. 24, 1922,
113—128.

[2] BRADFORD, J. C. and GOFFMAN, C.: Metric spaces in which Blumberg’s theorem holds, Proc.
Amer. Math. Soc. 11, 1960, 667—670.

[3] ENGELKING, R.: Topologia ogélna, PWN, Warszawa, 1975.

[4] HAWORTH, R. C. and McCOY, R. A.: Baire spaces, Dissert. Math. CXLI, 1977, 1—77.

[5] KURATOWSKI, K.: Sur les fonctions representables analytiquement et les ensembles de
premiere catégorie, Fund. Math. 5, 1924, 75—86.

[6] MAULDIN, R. D.: o-ideals and related Baire systems, Fund. Math. LXXI, 1971, 171—177.

[7] MAULDIN, R. D.: Some examples of g-ideals and related Baire systems, Fund. Math. LXXI,
1971, 179—184.

[8] MANK, T. and SWIATKOWSK]I, T.: On some class of functions with Darboux’s characteristic,
Zesz. Nauk. P.L. 301, Mat. z. 11, 1977, 5—10.

[9] NEUBRUNNOVA, A.: On quasicontinuous and cliquish functions, Cas. Pest. Mat. 99, 1974,
109—114.

[10] NEUGEBAUER, C. J.: Blumberg sets and quasi-continuity, Math. Zeitschr. 79, 1962, 451—455.

[11] OKCTOBEM, [.: Mepa u kareropus, Mocksa, 1974.

[12] PAWLAK, H. and PAWLAK, R. J.: On some conditions equivalent to the condition of
Swigtkowski for Darboux functions of one and two variables, Zesz. Nauk. P.L. 413, Mat. z. 16,
1983, 33—40.

[13] SEMADENI, Z.: Functions with sets of continuity belonging to a fixed ideal, Fund. Math. 52,
1963, 25—39.

Received May 23, 1983

Institute of Mathematics
LoédZ University
Banacha 22, 90-238 Lédz
Poland

340



OB ®YHKIUAX MHOXECTBO TOYEK PA3PbBIBA KOTOPBIX
NPUHAIUVIEXWUT K HEKOTOPOMY o-UEAJTY

Ryszard Jerzy Pawlak
Pe3rome

B 3Toii cTaThe MBI paccMaTpHBaeM KJace (yHKLHH, CBS3aHBIX ¢ O-ufeasaMu. B nepBoit yactu Mbl
roBopuM 06 HeOGXOAMMBIX H AOCTATOYHBIX YCIOBMAX A J-HenpepbiBHOCTH ¢yHkuuu f. Teopemsl,
HOKa3aHHbIE BO BTOPOM YaCTH, NPEACTABISAIOT CBA3b MEXIY MOHATHEM J-HENPEPLIBHOCTH M APYTHMHU
MOHATHAMH, TMOXOXMMH Ha HenpepbIBHOCTh. [lOCNemHsst 4YacThb COAEPXKMT, MEXAY MpoYeM,
Heo6XOMMbIE M AOCTaTOYHBIE YCIOBHSA IJIS TOro, 4To0bl TOMOJOrMYecKoe mpocTpaHcTBo X 6bLIO
npocTtpancTBoM Bepa.
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