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ABSTRACT. Let Int P be the system of all nonempty intervals of a partially 
ordered set P , ordered by inclusion. In the present paper, we show that the char­
acterization of partially ordered sets P with Int P selfdual given in [Czechoslovak 
Math. J. 44 (1994), 523-533] remains valid without assuming that each interval 
of P contains a finite maximal chain. 

For a partially ordered set P we denote by Intf) P the system of all intervals 
of P including the empty set. Next wTe put Int P = Int0 P \ {0}. Both Int() P 
and Int P are partially ordered by inclusion. 

In the case of a lattice L, the system Int0 P was investigated in the papers 
[1] [7], [9], [10]. In [1], it was proved that for a finite lattice L, IntQ L is selfdual 
if and only if either card L ^ 2, or card L — 4 and L has two atoms. 

Also, in [1], the problem was proposed whether there exists an infinite lattice 
L such that Int0 L is selfdual. 

A negative answer to this problem was given in [8] by showing that if P is 
any partially ordered set with card P > 4, then Int0 P is not selfdual. 

In [10], there is presented the characterization of partially ordered sets P 
satisfying the condition that every interval of P contains a finite maximal chain 
and having a selfdual system Int P . 

In the present note, it will be shown that the characterization given in [10] 
remains valid without assuming that each interval of P contains a finite maximal 
chain. 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06A99. 
K e y w o r d s : interval of a partially ordered set, selfdual partially ordered system. 
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The system of all convex subsets of a part ial ly ordered set was dealt with in 

|12j; t he condit ion for this system to be'selfdual was found . 

1. Pre l iminar ies 

For a part ial ly ordered set P we apply the same nota t ion as in [10: Section 1]. 

Let U and V be equivalence relations on P. Consider the following condi­

t ions for U and V (cf. [10]): 

(i) For every a G P there are elements H1,H2 G M i n P and v{. v2 G Max P 

such t h a t ux ^ v1, u2 ^ v2 and [a]U = (ux, vx), [a]V — (H9, E9). 

(ii) U H V is the least equivalence on P (i.e., the equali ty) . 

(iii) For every a, b G P wi th a ^ b there exist z ^ ^ ^ («• &) satisfying 

aUZiVb, aVz2Ub. 

These condit ions imply t ha t 

(ii7) For any a,b £ P , [a]U P [b]V is either empty or a one-element set. 
(ii") For each ae P , [«]U H [a]V == { a } . 

(iv) Given a,b E P wi th a ^ 6, the elements z 1 , z2 from (iii) are uniquely 

de te rmined . 

1 .1 . T H E O R E M , (cf. [10]) Let P be a partially ordered set satisfying the con­

dition 

(*) every interval of P contains a finite maximal chain. 

Then the partially ordered set Int P is self dual if and only if there exist equiva­
lence relations U and V on P such that conditions (i). (ii) and (iii) are valid. 

P r o o f . Cf. [10; 2.7 and 3.8]. • 

1.2. T H E O R E M . Let P be a partially ordered set. Then the following conditions 

are equivalent: 

(a) Int P is self dual. 
(b) There exist equivalence relations U and V on P satisfying conditions (i), 

(ii) and (iii). 

The implication (a) = > (b) is contained in [10; 3.8] (in the proof of 3.8 the 
condit ion (*) was not applied) . The inverse implication wrill be proved below. 

2. Proof of implicat ion (b) ==-> (a) 

In this section, we suppose t h a t P is a part ia l ly ordered set, and that U. \ 
are equivalence relations on P satisfying condit ions (i), (ii) and (iii). 
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We apply the following cons t ruc t ion from [10; Section 2]. 

Let (a, b) G In t P. In view of (i), (ii) and (iii), there exist uniquely de termined 

elemen ts 

u G M i n P n [a]U; 

v G Max P R [b]U] 

zx G (a, b) wi th aU z^Vb\ 

f G (u^\) wi th uUcVzl] 

d G (zvv) wi th zxUdVv. 

We pu t <p((a,6)) = (c,d). (Cf. Fig. 1.) 

The following two lemmas have been proved in [10] wi thou t applying the 
condi t ion (*). 

2 . 1 . L E M M A . ([10; 2.2.]) The mapping p is one-to-one. 

2 . 2 . L E M M A . ([10; 2.3.]) The mapping p is onto In t P . 

2 . 3 . L E M M A . The equivalence classes corresponding to the relations U, V are 

convex subsets of P . 

P r o o f . Let us suppose, e.g., that p = s = O, pUq. By (iii). there exists 
/• G (p, s) such that pVr and rUs. Using (iii) again we ob ta in that there exists 
t G (r,q) satisfying rVt, tUq. Then , in view of pUq, we have pUt and, clearly, 
pVt. Hence p = t. This implies p = r , p U s . D 

Let a , 6 and z1 be as above. There exists a uniquely de termined elemen t 

z2 G (a, 6) wi th aV2;2f7b. 

2 . 4 . L E M M A . Lei x G (a, 6) , aVx. Then x = z2. 

P r o o f . There exists xQ G (x, b) wi th xVxQUb. T h u s 

xQUbUz2 , xQVxVaVz2 , 

hence .r() = z2 . Therefore x ^ z2. D 

In the previous lemma, we can replace z2 and V by z : and U . 

2 . 5 . L E M M A . Let x G (a, 6) . There exist uniquely determined elements xx G 

( a . c . ) . ./'., G (a, z2), x'x G (zj_,b), x 2 G (z2,b) with 

allx{ Vx , a V x 2 U x , xU x^ Ub , xUx'2Ub . (1) 

P r o o f " . The exis tence and uniqueness of x , , x 2 G (O ,x) , x'., x 2 G (x, b) 
satisfying (1) is a consequence of (i) - (iii). Then , in view of 2.4 and its dual , we 
have x, G (n,z{) and x2 G (a, z 2 ) , .r7, G ( ^ , 6 ) , x 2 G ( z 2 , b ) . D 
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2.6. LEMMA . Let x G (a,b), and let xx G ( a , z _ ) , x2 G (a, ::2) . j - ' . G ( c , , b ) . 

x' G (z 9 ,b ) 6e as m 2.5. 7%en £•_ = inf {x,zx}, x2 = inf { J \ - 9 } . ./•' =: 
z (a,b) (a-b) 

s u p { x , z , } 7 x' = s u p { x , z 2 } . x = sup{xvx2}, x = inf {x'r x'.,} . 
(aj>) (a.b) (a,b) <M> 

P r o o f . Let us prove x} = inf {x, zx}, x = s u p { x p j \ , } . The other rela-
(a-b) (a.b) 

lions can be verified analogously. Let x be a lower bound of {.r, .:,} in (O.b). 

Since a __̂  x 5_ z_ and Otfz, , we have O77x by 2.3. In view of 2. 1, the relations 

x G (a,x), aUxxVx, aUx imply J7 5_ J:, . 

To prove the second relation, take any y G (O, b) with y _f .r. . // ^ ./•_. 
By 2.5, there exist //, G ( O , ^ ) , _/2 G (a, 22) satisfying aUy{\'y. aVy2Uy. Bui 
J-, G (O, H) and aUxx, therefore .r, __i //j by 2.4. Similarly. .r_ ^ /;.,. Since 
x". 5_ /;, there exists p such tha t x^VpUy. However, p G (O./y) and / ; ( ' / / . so 
tha t p ^ /y2 by the dual of 2.4. Analogously, there exists q G (//,.//) satisfying 
x.yUq. Fur ther , let us take r G (x^q) such tha t xxVrUq and ,s G (x.,.p) with 
.T.,U.sl7p. As r G (xi,y) and jr_X/r, in view of 2.4, we have r __ />. Analogously. 
,s 5: O. Now rUqUs, sVpVr, which yields r = ,s. Finally, the relations sUx.J'x. 

rVx^Vx, r = s imply r = x. But y __: r , and the proof is complete . n 

2 .7\ L E M M A . Under the notation as above, let a' G (O ,b). 77/Or/. ^ ( (O ' .b ) ) I; 

P r o o f . In view of 2.6, there exists 

a\= inf { « ' , - - , } . 
(a,/;) 

(CM*. Fig. 2.) Next, if we consider the elements c, O, O, 2;. and a'{ . t hen 2.(i 

yields t h a t there exists 

Pi = y
i n f \ K ^ } -

( ' W . , 2 l ) 

W(> 11 a ve p l V a \ V a'. 
rFhere exists u' G Min P H \px]V. Next there exists r ' G (O ' .c) such that 

By 2.6, there exists q, G U , , b ) with 

(/1 = s u p j O ' . - , } . 
(aJ>) 

By considering the elements O7, b. : p r and O, and In' applying 2.6. we get 

that there exists q2 G ((/• <') with 

<h ^ *"P {<1r^} • 
< • - . - ' • ) 
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In view of the definition of the mapping p, we have 

p((a,b)) = (e',q2). 

Hence, p((a',b)) D p((a,b)) . • 

By analogous considerat ion, we obtain: 

2 . 7 ' . L E M M A . Under the notation as above, let b' G (a, b). Then (p((a,b')) 2 

v(M». 
2 . 8 . L E M M A . Let (a / , / / ) C (a,b). Then p((a',b')) D p((a,b)) . 

P v o o f . This is an immedia te consequence of 2.7 and 2.7'. • 

By considering the mapp ing p, we can give an explicit description of p~x as 
follows. 

Let (r, d) be an interval of P. T h e n there exist uniquely de termined elements 

(ef. Fig . 1) 

// G M i n P n [ c ] [ 7 ; 

r G M a x P n [ d ] V ; 
c. G (r,rf) with c V ^ U d ; 
a G ( a , - ! ) with uVaUzl; 
/; G (2„t) ) with zxVbUv. 

From the definition of </?, we obta in: 

2 . 9 . L E M M A . <^ - J ( ( c ,d ) ) = (a, 6) . 

In other words, the const ruct ion of (^_1 is the same as the construct ion of p 

with the dist inction tha t t he roles of U and V are interchanged. 

Hence, by the same me thod as we used for p, we obta in 

2 . 1 0 . L E M M A . Let (c,d) and (c',d') be intervals in P such that (c',d') C 
(c.d). Thcnp-x((c',d'))^p-'((c,d)). 

P r o o f o f 1.2. As we already remarked above, the implication (a) => (b) 

was proved in [10]. 

Let (b) be valid, and let p be as above. Then , in view of 2.1, 2.2, 2.8 and 2.10, 

we infer that p is a dual isomorphism of I n t P . D 

The following example shows t h a t a part ial ly ordered set P wi th Int P self-
dual need not satisfy the condit ion (*). 

Let R be the set of all reals writh the na tu ra l linear order, X = R, and let Y 

be the interval (0, 1) of X. P u t P = X x Y. For (x{py{) and (x2,y2) in P we 
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pu t (x1Jy1) ^ (x2,y2) if y2 —y1 __̂  \x2 —xx\. Nex t we define binary rela t ions U 

and V on P by 

(xl,yl)U(x2,y2) 4=> y l - x 1 = y 2 - x 2 , 

(x 1 ,H 1 )V (x 2 ,H 2 ) <=> y 1 + a ; 1 - - i / 2 + a;2. 

Then U and V are equivalence rela t ions on P satisfying condit ions (i). (ii) 

and (iii). Hence, P is selfdual. P does not satisfy (*); in fact, there does not 

exist any pr ime interval in P. 

F I G U R E 1. F I G U R E 2. 
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