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ABSTRACT. Let Int P be the system of all nonempty intervals of a partially
ordered set P, ordered by inclusion. In the present paper, we show that the char-
acterization of partially ordered sets P with Int P selfdual given in [Czechoslovak
Math. J. 44 (1994), 523-533] remains valid without assuming that each interval
of P contains a finite maximal chain.

For a partially ordered set P we denote by Int, P the system of all intervals
of P including the empty set. Next we put Int P = Int, P\ {0}. Both Int, P
and Int P are partially ordered by inclusion.

In the case of a lattice L, the system Int, P was investigated in the papers
(1] [7].[9], [10]. In [1], it was proved that for a finite lattice L, Int, L is selfdual
if and only if either card L £ 2, or card L = 4 and L has two atoms.

Also, in [1], the problem was proposed whether there exists an infinite lattice
L such thar Int, L is selfdual.

A negative answer to this problem was given in [8] by showing that if P is
any partially ordered set with card P > 4, then Int, P is not selfdual.

In [10], there is presented the characterization of partially ordered sets P
satisfying the condition that every interval of P contains a finite maximal chain
and having a selfdual system Int P.

In the present note, it will be shown that the characterization given in [10]
remains valid without assuming that each interval of P contains a finite maximal
chain.
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The system of all convex subsets of a partially ordered set was dealt with in
[12'; the condition for this system to be selfdual was found.

1. Preliminaries

For a partially ordered set P we apply the same notation as in [10; Section 1].
Let U and V be equivalence relations on P. Consider the following condi-
tions for U and V (cf. [10]):
(i) For every a € P there are elements u ,u, € Min P and v, v, € Max P
such that u; S v, u, S v, and [a)U = (u;,v;), [a]V = (uy.v,).
(i) UNV is the least equivalence on P (i.e., the equality).
(iii) For every a,b € P with a < b there exist z,,z, € (a.b) satisfving
aUz Vb, aVz,Ub.
These conditions imply that
(ii") For any a,b€ P, [a]U r [b]V is either empty or a one-element set.
(ii"”) For each a € P, [a]U N |a]V = {a}.
(iv) Given a,b € P with a < b, the elements z;, z, from (iii) are uniquely
determined.

1.1. THEOREM. (cf. [10]) Let P be a partially ordered set satisfying the con-
dition
(x) every interval of P contains a finite mazimal chain.

Then the partially ordered set Int P is selfdual if and only if there exrist equiva-
lence relations U and V' on P such that conditions (i), (i) and (iii) are valid.

Proof. Cf. [10; 2.7 and 3.8]. O

1.2. THEOREM. Let P be a partially ordered set. Then the following conditions
are equivalent:

(a) Int P is selfdual.
(b) There exist equivalence relations U and V' on P satisfying conditions ().

(ii) and (iii).
The implication (a) == (b) is contained in [10; 3.8] (in the proof of 3.8 the
condition (%) was not applied). The inverse implication will be proved below.

2. Proof of implication (b)) — (a)

In this section, we suppose that P is a partially ordered set, and that 7. 1
arc equivalence relations on P satisfving conditions (i), (ii) and (iii).
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We apply the following construction from [10; Section 2].

Let (a,b) € Int P. In view of (i), (ii) and (iii), there exist uniquely determined
clements

w € Min PN [a]V;
v € Max P N [b|U;
z, € (a,b) with aUz Vb,
c € (u,z;) with ulUcVz;
d € (z,,v) with 2, UdVwv.
We put ¢({a,b)) = (c,d). (Cf. Fig. 1.)

The following two lemmas have been proved in [10] without applying the
condition ().

2.1. LEMMA. ([10; 2.2.]) The mapping ¢ is one-to-one.
2.2. LEMMA. ([10; 2.3.]) The mapping ¢ is onto Int P.

2.3. LEMMA. The equivalence classes corresponding to the relations U, V are
convex subsets of P.

Proof. Let us suppose, e.g., that p < s < ¢, pUq. By (iii). there exists

€ (p,s) such that pVr and rUs. Using (iii) again we obtain that there exists

t € (r,q) satisfying rVt, tUq. Then, in view of pUgq, we have pUt and, clearly,
pVt. Hence p =t. This implies p =71, pUs. a

Let a, b and z, be as above. There exists a uniquely determined element
z, € (a,b) with aVz,Ub.

2.4. LEMMA. Let x € (a,b), aVx. Then = < z,.
Proof. There exists x, € (z,b) with 2Vz Ub. Thus
z,UbU 2, , z,VzVaVz,,
hence r, = z,. Therefore x < z,. O
In the previous lemma, we can replace 2z, and V by 2z, and U.

2.5. LEMMA. Let x € (a,b). There exist uniquely determined elements r, €
(a.z)) oy € (a zy). o) € (z,,b), o) € (z,,b) with

allr Vi, aVa,Ur, a2Uz\Vb, xViriUb. (1)

Proof The existence and uniqueness of x,a, € (a,x), x|, 2, € (r,b)

satisfving (1) is a consequence of (i) - (iii). Then, in view of 2.4 and its dual, we
ave o (g ~ N . , . ~ o P =l

have oy € (1, z)) and i, € (a.2,). ) € (2, b), 2, € (2,,0). 0
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2.6. LEMMA. Let x € {a,b), and let x, € (a,2,), v, € {a.z,). ) € (z,.b)
1w, € (zy,b) be as in 2.5. Then = mf {;r,,zl}, r, = <1“n’f”{ N I A
sup{w,z, }, @ = sup{w, z,}. « —Mlp{ll,' )} r= Hlf{J L}
(a.b) (a.b) (a.b) (a.b)
Proof. Let us prove &, = lnf {1,~1} r = sllI){Jl CThe other rela-
(a. /1>
tions can be verified analogously. L(‘ Z be a lower bound of {u =} in (a.b).

Since a £ 7 < z; and aUz,, we have (I,([.IT by 2.3. In view of 2.1. the relations
7€ (a,x), alz Vo, aUT imply T = r,
To prove the second relation, take any y € (a.b) with y = o+ .y = 0.

By 2.5, there exist y, € (a,z,), y, € (a,2,) satisfying al/y,V'y. aV7y,(y. Bu
r, € <(1,,y> and aUx,, therefore @, < y by 2.4. Similarly. o+, = y,. Since
r, = y. there exists p such that o, VpUy. However. p € (a.y) and pl7y. so

that p = y, by the dual of 2.4, Analogously. there exists ¢ € (y,.y) satisfving
o, Uq. Further, let us take r € (r).q) such that + VrUq and s € (o, p) with
r,UsVp.o As re (i, y) and o, Vr, in view of 2.4, we have r < p. ;\11;“\]0;);()11.\1.\:
s = q. Now rUqUs, sVpVr, which yields » = s. Finally, the relations s, 0.

rVa, Va, r=simply r =ux. But y 2 r, and the proof is complete. o

2.7. LEMMA. Under the notation as above, let o' € (a,b). Then ~((a' b)) =
).

Proof. In view of 2.6, there exists

[—
al mf{a,-l}
(a.b)
(Cf Fig. 2.) Next, if we consider the elements ¢, a, u, =, and o). then 2.6
yields that there exists
p, = inf {(1 ch.

(u. zy)
We have p, Va' V.
There exists v’ € Min”0 [p,[V. Next there exists ¢ € (v’ ¢) snch that
W Ud'Ve.
By 2.6. there exists ¢, € {z,.b) with
gy — supfa’ =}
{a.h)
By considering the clements d. bz, e oand g, and by applying 2.6, we e
that there exists ¢, € (d- r) with

¢, = sup {q,.d}.
(z1.0)
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In view of the definition of the mapping ¢, we have
(0, 1) = (1)

Henee, o((a',0) 2 ¢({a,b)). O
By analogous consideration, we obtain:

2.7°. LEMMA. Under the notation as above, let b' € (a,b). Then ¢({a,V')) D

S({ab)).
2.8. LEMMA. Let (a’,V') C (a,b). Then ¢({a’,b')) 2 p({a,b)).

Proof. This is an immediate consequence of 2.7 and 2.7’. O

By considering the mapping ¢, we can give an explicit description of o= ! as

follows.
Let {e.d) be an interval of P. Then there exist uniquely determined elements
(cf. Fig. 1)
w € Min I’ N [c]U;
v € Max PN [d]V;
2, € (e.d) with ¢Vz Ud;
a € (u,z) with uVaUz;
be (z,v) with 2, VbUv.
Irom the definition of ¢, we obtain:

2.9. LEMMA. ¢ '({c,d)) = (a,b).

1

In other words, the construction of ¢~ is the same as the consiruction of ¢
with the distinction that the roles of U and V' are interchanged.

Henee, by the same method as we used for ¢, we obtain

2.10. LEMMA. Let {(c,d) and (',d") be intervals in P such that {¢',d") C
(eod). Then o "((dd')) D™ ({e.d)).

Proof of 1.2. As we already remarked above, the implication (a) == (b)
was proved in [10].
Let (b) he valid, and let ¢ be as above. Then, in view of 2.1, 2.2, 2.8 and 2.10,

we infer thet ¢ is a dual isomorphism of Int . O

The following example shows that a partially ordered set P with Int 7 self-
dual need not satisfy the condition ().

Let R be the set of all reals with the natural lincar order, X = R, and let Y
be the interval (0.1) of X Put P =X x VY. For (x,.y,) and (x,.y,) in P we
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put (z,,y;) = (24,y,) if y, —y, = |z, — x,|. Next we define binary relations [’
and V on P by

(21, y)U(2y,y,) = Yy, — ), =y, — 7y,

(@, y)V(ry,yy) =yt =y, + Ly
Then U and V are equivalence relations on P satisfying conditions (i), (ii)

and (iii). Hence, P is selfdual. P does not satisfy (); in fact, there does not
exist any prime interval in P.

FIGURE 1. FIGURE 2.
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