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REMARKS ON THE INTEGRABILITY
IN BANACH SPACES

IVAN DOBRAKOV

Z. Lipecki in [8] pointed out that the proof of Theorem 1 in [10] is invalid. In
fact, the measure u constructed there is countably additive only in the strong
operator topology, see [11]. In the proof of Theorem 2 below, using the Dvoretz-
ky—Rogers theorem, see Theorem IV.1.2 in [2], we construct the required
measure countably additive in the uniform operator topology. Thus Theorems 1
and 2 below give a correct proof of Theorem 1 in [10]. Although our Theorem 1 is
equivalent to Theorem 6 in [10], we give a very simple proof of it. Finally in
Theorem 3, which is a complement to [9], we characterize the integrability of
a measurable function using its weak (in [9] called scalar) integrability.

Let & be a d-ring of subsets of a non empty set T, let X and Y be Banach spaces
(both real, or complex) and let L(X, Y) be the Banach space of all bounded linear
operators from X to Y. We say that a set function m: ?— L(X, Y) is an operator
valued measure countably additive in the strong operator topology, if for every
x € X the set function E— m(E)x, Ee€ %, is a countably additive vector measure.
In [3] we started to develop a Lebesgue type integration theory for functions on T
with values in X with respect to such a measure. The basic quantity of the theory is
the semivariation it of the measure m, which is defined by the equality

r

> m(EnE)x

i=1

m(E)=sup{ , x€X, |[x|=1, Ee?,

EnE=0 for i#j, i,j=1,..,r, r=1, 2}

=sup v(y*m, E), Eeoa(?P),
brlst

where o(%) denotes the smallest o-ring containing %, and v(y*m, .), y*e Y*=
the dual of Y, is the variation of the measure A—y*m(A)e X*, AeP. We
immediately see that (@) =0, ni is monotone, subadditive and has the Fatou
property: E,€e a(%?), n=1,2, ... and E, / E implies m(E,) /' m(E). We say that
m is continuous on P if E,e®, n=1,2,... and E,\\@ implies m(E,)—0. It is
easy to see that fnis continuous on 2 if and only if it is locally exhaustive on 2, i.e.,
Ae?; E,e® n=1,2, ... pairwise disjoint implies m(ANE,)—0.
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The basic assumption of the theory is the requirement of finiteness of the
semivariation ‘mon . In Theorem 5 in [3] we proved that if the semivariation in is
continuous on P, if f: T— Xis a bounded measurable function, and A € P, then
the function f. x4 is integrable. As Theorem 6 in [10] shows, the result is in a sense
the best possible. We now give a very simple proof of Theorem 6 from [10].

Theorem 1. Suppose that the semivariation m is not continuous on P
(equivalently, not locally exhaustive on ). Then there is a set A€ P and
a bounded P-elementary function f: T— X such that the function f . y. is not
integrable.

Proof. By assumption there is an €>0 a set A € P, and a sequence of pairwise
disjoint sets E,€ , n=1,2, ... such that m(AnE,)>¢ for each n=1,2,....
According to the definition of the semivariation i for each n=1, 2, ... there is

j f. d m’ > €. Now
E,nA

a P-simple function f,: T—X, sup |f.(t)|=1 such that

te AnE,

f=> d..xeis P-elementary,and f . xa cannot be integrable, since the indefinite
n=1

integral E—)f fdm, E € o(%), of an integrable function f is a countably additive
E

vector measure, see Theorem 3 in [3].

If the Banach space Y contains no subspace isomorphic to ¢, see pp. 160 and
161 in [1], then the finiteness of the semivariation m on % is equivalent to its
continuity on &, see the *-Theorem in [3] and the Corollary of Theorem S in [4].
We now show that the assumption’ ¢, Y is essential for the finiteness of m to
imply its continuity.

Theorem 2. LetX be an infinite dimensional Banach space and let % =2N be the
power set of the set N of positive integers. Then there exists a measure
m: P— L(X, c) countably additive in the uniform operator topology with finite
but not continuous semivariationm on P.

Proof. Since X*, the dual of X, is also infinite dimensional, according to the
Dvoretzky—Rogers theorem (see Theorem IV. 1.2 in [2]) there is a sequence

x*e X* n=1,2, ... such that the series >, x* is unconditionally convergent in X*

n=1
and i |x#%| = +o°. Without loss of generality we may suppose that |x%| =1 for each
n=1

n=1,2, ... - Put no=0and let n, be the first positive integer such that 2 |x%]|>1.

i=1
Clearly "2 |x*%|=2. Similarly, let n, be the first positive integer such that
i=}1
i |x%| 1. Then obviously n,>n,+1 and again 2 |x%| =2. Continuing in

N i=m+1
i=n +1
v
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this way we obtain a subsequence ny, k=1, 2, ... such that 1 < i |x*%| =2 for
i=ng-1+1

each k=1,2,..., where no=0. Put L={n,+1,..,n) and let e=
©,...0,1,0,..)eco, k=1,2,.... Clearly T=) L and LnL=0 for k#},
k=1

jyk=1,2,.... For iel, put y=e and Ux=x*x.y€c, xeX. Obviously
UeL(X, c) foreach i=1,2,...and > Ux=) x%x.y€c for any E€ ? and

ieE ieE
x€ X. BEvidently >, U: X— ¢ is linear and |, U,I =|> x*|. Hence if we put
i€E ieE i€E
m(E)=>Y U for E€®, then m: ?—L(X, ¢) is countably additive in the

ieE
uniform operator tepology.
Now according to the definition of the norm in X* there are x; e X, |x|=1,

i=1,2, ... such that 2 x%x;>1 for each k=1, 2, ..., From the definition of

i=nk—1+1

the semivariation ra we have

i(T)=sup { |3 m(E)x

, x€X, |x|=1, Ee€?P, EnE=0

for i+j, VE=T, i, j=1,...r, r=1,2,...}

i=1

=sup{ 2 2 U,r.-', }
i=1 teE;
=sup{ > Y xix. y,I, }
i=1 teE;
=max{ Zx*,xi, , }, where i,=i for teE;
k tely

=max D, |x%|=2.
k tely

S e
imng_g+1
k=1, 2, ... are pairwise disjoint elements of ? with union equal to T e P, i is not
continuous on &. The theorem is proved.

The next theorem, a complement to [9], characterizes the integrability of
a measurable function using its weak (in [9] called scalar) integrability. It may be

proved similarly as Theorem 17 in [3].

On the other hand m(L)= >1 for each k=1,2,.... Since I,
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Theorem 3. A measurable function f: T— X is integrable with respect to
m: P— L(X,Y) if and only if fis integrable with respect to y*m: P— X* for

eachy* e Y* and the scalar measures { [ f d(y*m), y* € Y*, |y*| =1} are uniform-

ly countably additive on o(?) (equivalently, uniformly exhaustive on P).

Note a certain similarity between integrable functions and the elements of
%(m), see Definition 4 in [4]. Namely, a measurable function f: T— X belongs to
&% (m) if and only if the function |f| is integrable with respect to the measure

v(y*m,.): P—[0, +) for each y*e Y* and the integrals {[ |f| dv(y*m,.),

y*€ Y*, |y*|=1)} are uniformly o-additive on o(%) (equivalently, uniformly
exhaustive on %).

Let us note also that if 2 is generated by a ring R, i.e., if ?=6(R), or if
P=08(%) is the d-ring of relatively compact Baire subsets of a locally compact
Hausdorff topological space, then according to Theorem 11 and Lemma 7 in [6]
the above mentioned uniform exhaustivity on % may be replaced by a uniform
exhaustivity on &, or on %,, respectively. (6, denotes the lattice of all compact G,
subsets).
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3AMETKH OB UHTETPUPYEMOCTU B ITPOCTPAHCTBAX BAHAXA
Ivan Dobrakov

Pe3oMe

OCHOBHBIM pe3ylbTaTuM paBoThI ABIAETCS JOKa3aTENbCTBO ClieYIOLIeN

Teopemb! 2. TTycts X GecKOHEYHOMEPHOE MPOCTPAHCTBO GaHaxa M mycTh P ceMeHcTBO BCex
MIOIMHOXECTB MHOXECTBA HaTypanbHbIx uucen. Torga cywectsyet mepa m: P— L(X, co) cyeTHO
AIUTHBHAs B PABHOMEPHON OMNEPATOPHON TOMONOIMH, UMEIOLLAsi KOHEYHYIO OJNYBapHALMIO M Ha P,
KOTOpasi He SIBNSIETCS HENPEPbIBHOM CBEPXY Ha MYCTOM MHOXECTBE.

W3 31oro pesynbTaTa BbITEKaET KOPPEKTHOE NOKa3aTenbcTBO Teopembl 1 u3 [10].
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