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CONDITIONAL E N T R O P Y AND ROKHLIN M E T R I C 

PRAMILA SRIVASTAVA* — M O N A K H A R E * * 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. In the present paper we introduce a pseudo-metric on an m-equiv­
alence class [Af] of fuzzy sub-a-algebras having finitely many atoms. Identifica­
tion of elements of [A/] which are equivalent modulo 0 converts the pseudo-metric 
into a metric which we call the Rokhlin metric. In the classical crisp case all 
sub-<J-algebras with finitely many atoms belong to the same equivalence class 
and the Rokhlin metric in the generalized fuzzy setting reduces to the classical 
Rokhlin metric. 

1. Introduction 

R i e c a n and D v u r e c e n s k i j [14] suggested a new model for quantum 
mechanics, based on P i a s e c k i 's ideas [11], which was further developed in [13]. 
Subsequently, M a r k e c h o v a defined an entropy and a conditional entropy of 
complete fuzzy partitions ([9]) and that of stochastical complete repartition ([8]) 
of an F-probability measure space (cf. [3], [10]). Using triangular norms (cf. 
[1], [16]), the entropy of a fuzzy process is defined and studied in [2], (cf. [7]). 
In [5], [17], [18] we developed a cohesive approach to the fuzzification of the 
entropy theory using the concept of atoms in a fuzzy cr-algebra; an appropriate 
generalization of concepts leads to a satisfactory theory circumventing lacunae 
to such a theory in other approaches ([2], [8], [9]). In [17], a metric g on a 
fuzzy measure algebra M ([19]) is introduced, and it is proved that (jVf, g) is a 
complete metric space, which is convex if and only if A4 is nonatomic 

The object of this paper is to extend the concept of Rokhlin metric based 
on conditional entropy to the more general setting of fuzzy sub-cr-algebras. Sec­
tions 2 and 3 deal with the prerequisites for the results proved in Section 4. 
In Section 2 the definitions of an F-measure space (X, A^,m), atoms of a 
fuzzy sub-cr-algebra J\f of jVf, the concepts of the m -refinement of JV, the 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28E10, 28D05; Secondary 47A35. 
K e y w o r d s : F-measurable space, atom, m-equivalence, m-refinement, entropy, conditional 
entropy, Rokhlin metric. 
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m-equivalence of two fuzzy sub-a-algebras having finitely many atoms, and 
some basic results are given. The notions of the entropy H(Af) of M and the 
conditional entropy H(J\f1 | JV2), MVM2 G T(M), are described in Section 3 
using the convex function x logx , x G [0,1]. In Section 4, some propositions are 
proved which lead to the definition of a pseudo-metric d on the m-equivalence 
class [Af] containing Af. By identifying elements of [Af] which are equivalent 
modulo 0, we obtain the Rokhlin metric on [Af] following the terminology of 
the classical crisp case. 

2. F-measure space, atoms and m-equivalence 

2 .1 . A fuzzy set in a nonempty set X is an element of Ix , where I = [0,1]. A 
fuzzy set which assigns the value t, t G / , to each x in X is denoted by t . 

If X( belongs to Ix, the sequence {^{(x)}i=1 is monotonic increasing and 
converges to X(x) for each x m X, then we say that {Xi}

c*=1 increases to X in 
Ix and write Â  t A. 

We shall denote by N the set of natural numbers and by R the set of real 
numbers. 

2.2. ([6]) A fuzzy a-algebra M on a nonempty set X is a subfamily of Ix 

satisfying: 

Al . 1 G . M , 
A2. XeM => 1-XeM, 

oo 

A3, if {A i}^ : 1 is a sequence in M, then \/ X{ = supX{ E M. 
i=l 

An arbitrary intersection of fuzzy a-algebras on X is a fuzzy a-algebra 
on X. If M1, J\f2 are fuzzy a-algebras on X, then J\fx V M2 stands for the 
smallest fuzzy a -algebra on X containing J\f1l)J\f2. 

2.3. ([6]) An F-probability measure on a fuzzy a -algebra M. is a function 
m: M —>> / such that 

Ml . m ( l ) = 1, 
M2. for A G M, m ( l - A) = 1 - m(A), 
M3. for A , / X E M , m(A V fi) + m(A A fi) = m(X) + m(fi), 
M4. if {Xi}

<^=1 is a sequence in M such that Â  t A, A G M, 
then m(A) = supm(A i) . 

i 

The triple (X, yVf.m) is called an F-probability measure space, elements of 
Ai are referred to as F-measurable sets. 
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2.4. ([17]) Let (X, yVi,m) be an F-probability measure space. For A,/i G/W 
define 

A = /x (mod m) <==> m(\) = m(/x) = m(\ V /x). 

The relation " = (mod m ) " is an equivalence relation on M; M denotes 
the set of all equivalence classes induced by this relation and /x denotes the 
equivalence class determined by /x. 

We define A , / i G M m-disjoint if A A /x = 0 (mod m ) , i.e. m(\ A /x) = 0. 

If A ,̂ i G N, are pairwise m-disjoint F-measurable sets in (X, jW,m), then 

' CO \ ° ° 
m 

2.5. ([18]) Let (X, yVi,m) be an F-probability measure space and let M be 
a fuzzy sub- a -algebra of M. An element /x G M is called an aiom of M if 
m(/x) > 0 and, for any A G JV", 

m(A A /x) = m(A) 7̂  m(/x) =-> m(A) = 0 . 

We shall denote the set of all atoms of JV by AT, and by F(M) the family 
of fuzzy sub- a -algebras of M having finitely many atoms. 

The following are proved in [18]: 

(i) Distinct atoms are pairwise m-disjoint. 

(ii) If JT1 = {A- : 1 < i < k}, Jf2 = {nj : 1 < j < q}, then 

Af1 V/V2 = {A- A p. : A- G A/\ , Hj G Jf2 and m(\ A p.) > 0} . 

2.6. ([18]) Let (A", M,m) be an F-probability measure space and let Mx, JV2 

be fuzzy sub- a -algebras of M. Then J\f2 is called an m-refinement of A/̂  , 
written as J\fl < m JV2, if, for each /x G AT2, there exists A G JV^ such that 
m(A A fi) = m(/x). 

The fuzzy sub- a -algebras Afx and Af2lJ\f1,J\f2 G F(M), are called m-equiv­
alent, written as J\f1 ~ m ./V2, if 

and 

m(\ A (\J{ji : /x G J\T2})) = m(A) for each A G JV^ , 

m(/iA(\J{\: \e771}))=m(fjL) for each /x G 772 . 

The following are proved: 

(i) The relation of m-equivalence of fuzzy sub- a -algebras is an equivalence 
relation in T(M). 
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We denote by [AT] the equivalence class containing AT in T(M). 

(ii) For Afl,AT2eT(M) 
(a) Mi<mN1vN2,i = l,2; 
(b) A/>mJV2 => AT.^AT^AT,. 

3 . E n t r o p y a n d c o n d i t i o n a l e n t r o p y 

3.1. ([18]) Let (X, M, m) be an F-probability measure space and AT G T(M). 
The entropy H(Af) of AT is defined by 

HW) = - E s(m M ) > 

where the function g: [0,1] -» R is given by 

f x logx , x > 0 , 
<?(.c) = < 

[ 0, otherwise. 

Here, the empty sum is defined to be zero. 

3.2. ([5]) Let Afl,AT2 G F(M) and Jfl = {A- : 1 < i < p}, and AT2 = {^ : 
1 < .7 < <?} • Define the conditional entropy H(ATX \AT2) by 

#(Ni i N2) - - YlHm^Mm(xi i ^)) -
3 i 

where 
m(A.A/i.) 

m(Xi AO = — r — \ • 1 J/ m(/x) 

3.3. It is observed that: 

(i) For Arx,N2 G ^(yW), . f f ^ ) > 0 and H(MX | AQ > 0 ([5], [18]). 
(ii) For Nx = {0,1} and M G ^"(M), H(M \ Mx) = H(A0 . 

(iii) TAe function g is convex, and so, for any convex combination ^ ajxj 
3 

(i.e. a. > 0 for all j and Ylaj = 1) °/ dements x- G [0,1], 
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4. The Rokhlin metric 

Throughout this section (X, JVl,m) denotes an F-probability measure space 
and M a fuzzy sub- a -algebra of M. 

PROPOSITION 4 . 1 . ([5]) If AT1, M2, Mz be elements of [AT], then 

H(MxyM2 | AQ = H(A/i | AQ +H(A/*2 | Mx VJV3). 

COROLLARY 4.2. Let NX,N2 G [AT]. Then 

H(A/i V M2) = FT(A/i) + H(AT2 | M,). 

Consequently H(Af1 V JV2) > H(MX). 

P r o o f . Follows from Proposition 4.1 and 3.3(ii). • 

PROPOSITION 4 .3 . If J\f1,M2,Af3 e [Af], then 

ff(^J^2v^3)<H(^i|^2). 
P r o o f. Let Jf1 = {Ai : 1 < % < p}, J72 = {p. : 1 < j < q}, and 

7^3 = {uk : 1 < k < r}. Since A/i V jV2 « m JV3, we have 

m(A- A p.) =m((\i A ^.) A \JukJ = m^A- A (v(^j A ^ ) ) ) 

= m ( A • A ( V W ) = ^ m(A* A Vjh) > 

where rjjk= p^ Avk, l<j<q, 1 <k <r. Hence 

/m(A- A / i - ) \ 

mi^) = -EE^)4-^) 
.7 * 

V ^ V " /• x l/
v^w(AíAr?.fc)N 

— E E ^ W E ^ - ^ Y ^ 

>-EEm^)Em^T^m ( A;A^ f c ) ' 

V ^ V ^ V ^ / \ (m(XiArljk)\ 

= -EEE".Mp(^^rJ 
= ff(^i|AÍ,vAf,). 

D 
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P R O P O S I T I O N 4.4. For AfvAf2,Af3e [Af], 

HMlNJ + HMlAfJ^HWlATJ. 

P r o o f . Using Corollary 4.2 and Proposition 4.3, we obtain 

tf(N, | N2) + tf (N2 | N3) = tf(N. V N2) + tf(N2 V N3) - tf (N2) - tf (N3) 

= tf (N, V N2) + tf (N3 | N2) - tf (N3) 

> tf (N. V N2) + tf (N3 | N, V N2) - tf (N3) 

= tf(NlVN2VN3)-tf(N3) 

> tf (N v N3) - tf (N3) = tf (N IN3). 

P R O P O S I T I O N 4.5. For Af1,Af2,Af3 € [Af], 

tf(N vN2 |N3) < tf(N |N3) + tf(N2 |N3). 

P r o o f . Follows from Proposition 4.1 and Proposition 4.3. D 

THEOREM 4.6. For AfvAf2e[Af], define 

d(AfvAf2) = HiN, I Af2) + H(Af2 I Af,). 

Then d is a pseudo-metric on [Af]. 

P r o o f . By definition, d(Af1 | N2) > 0 and d(Afx \ Af2) = d(Af2 | N). 
Evidently d(Afl,Nl) = H(Afl | Afx) = 0. Finally, for N,, N2,N3 € [N], by 
Proposition 4.4, we obtain 

d(Nx,N3) = tf(N | N3) + tf(N3 | N.) 

< tf(N | N2) + tf(N2 | N3) + tf(N3 | N2) + tf(N2 | N.) 
= d(N1,N2) + d(N2,N3). 

D 

P R O P O S I T I O N 4.7. If Af1,Af2 e [Af], then 

H(Af1\Af2) = 0 «=> Ni^Nj. 

P r o o f. Let Al1 = {Â  : 1 < i < p} and N2 = {/j,j : 1 < j < q}. Let 
Ni <TON2 • Then, for any /z • € N2, there exists Â  6 Afx such that m(\i A/i •) = 
m(fj,j). Consequently (̂A^ | // •) = 0 and so tf (Nx | N2) = 0. 
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Conversely, let H(J\f1 \ JV2) = 0. Since m(^i-) > 0 for all /z • G AT2, we obtain 

that g(m(Xi | //)) = 0 for all i, j , 1 < i < P, and 1 < j < q. Hence either 
m(\ I Mj) = 1 or m(A- | fjij) = 0 . If m(A- | /x̂ ) = 1 then m(A- A fi.) = m(fjLj). 

Let m(A^ | /JL-) = 0 . Since Afl « m JV2, for /i. G AT2, we get 

m 

or 

( ^ І ^ ( ү A v ) ^ҷ '̂ 

2m(Ai,-AA i ) = m ( 4 u j ) . (4-6.1) 
i 

If possible, let us assume that there is a AA G A/̂  such that 0 < m(Xk A ji-) < 
m ( / i ) . Then m(/x) • g(m(Xk | / / ) ) 7*- 0, which contradicts the hypothesis 
that H(Ml I JV2) = 0. Hence, from (4.6.1), we deduce that there exists an 20, 
1 < io < Pi s u c h that m ( \ 0 A /i •) = m(fij). 

ThnsAf1<mAf2. ° D 

PROPOSITION 4.8 . For fuzzy sub-a-algebras Ml, M2, JV3 0 / A 4 , A/̂  <mM2 

and M2 <m A/3 zrap/u £/m£ A/̂  < m JV3 . 

P r o o f . Let v G AT3. Then, since JV2 <m M3, there exists \i G A/*2 such 
that m(/z A «y) = m(i/). Also, since Mx <m JV2, there exists A G ~RX such that 
m(A A ji) = m(fi), and so m(A V /i) = m(A). Now, we have 

m(v) = m(/j, A v) = m(/x A/v)-f m(A) — m(A) 

= m((fj, A v) V A) + m(/z A 1/ A A) — m(A) 

= m((/x VA)A(i /V A)) + m(fi A 1/ A A) - m(A) 

= m(/x V A) + m(i/ V A) - m(/x V A V 1/) + m(fi A iv A A) - m(A) 

= m(v V A) — m(/i V A V v) + m(/i A v A A) 

< m(/x A v A A) < m(A A «v). 

Thus m(v) = m(X A 1/), i.e., Mx <m M3. U 

R e m a r k 4.9. For Ml, JV2 G [A/], define a relation ~ as follows: 

N ~ N2 <=-=> N < m N 2 and N2 <mM1. 

In view of Proposition 4.8, ~ is an equivalence relation on [A/*]. We call this 
relation equivalence modulo 0. If we identify the equivalence class M induced 
by the relation ~ with A/", then the pseudo-metric d defined in Theorem 4.6, 
becomes a metric on [M]. Following the terminology of the classical crisp case 
we call this metric the Rokhlin metric (cf. [4], [12], [15]). 

Thus we have the following: 

THEOREM 4.10. ForAf1,M2 G [Af]/~, d(Ml,M2) = H(^i I M2)+H{M2 | Mx), 
is a metric on [M]/~. 
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