Mathematic Slovaca

Harvir S. Kasana; Devendra Kumar
L^{p}-approximation of generalized biaxially symmetric potentials over Carathéodory domains

Mathematic Slovaca, Vol. 55 (2005), No. 5, 563--572

Persistent URL: http://dml.cz/dmlcz/133146

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

L^{p}-APPROXIMATION OF GENERALIZED BIAXIALLY SYMMETRIC POTENTIALS OVER CARATHÉODORY DOMAINS

H. S. Kasana* - D. Kumar**
(Communicated by Michal Zajac)

Abstract

Let $F^{\alpha, \beta}$ be a real generalized biaxially symmetric potentials (GBASP) defined on the Carathéodory domain and let $L^{p}(D)$ be the class of functions $F^{\alpha, \beta}$ holomorphic in D such that $\left\|F^{\alpha, \beta}\right\|_{D, p}=\left(A^{-1} \iint_{D}\left|F^{\alpha, \beta}\right| \mathrm{d} x \mathrm{~d} y\right)^{1 / p}$, A is the area of the domain D. For $F^{\alpha, \beta} \in L^{p}(D)$, set $E_{n}^{p}\left(F^{\alpha, \beta}\right)=\inf \left\{\| F^{\alpha, \beta}-\right.$ $\left.P^{\alpha, \beta} \|_{D, p}: P^{\alpha, \beta} \in H_{n}\right\}, H_{n}$ consists of all even biaxially symmetric harmonic polynomials of degree at most $2 n$. This paper deals with the growth of entire function GBASP in terms of approximation error in L^{p}-norm on D. The analysis utilizes the Bergman and Gilbert integral operator method to extend results from classical function theory on the best polynomial approximation of analytic functions of a complex variable.

1. Introduction

Let $F^{\alpha, \beta}$ be a real valued regular solution of the generalized biaxisymmetric potential equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{2 \alpha+1}{x} \frac{\partial}{\partial x}+\frac{2 \beta+1}{y} \frac{\partial}{\partial y}\right) F^{\alpha, \beta}=0, \quad \alpha>\beta>-\frac{1}{2} \tag{1.1}
\end{equation*}
$$

where α, β are fixed in a neighbourhood of the origin and the analytic Cauchy data

$$
F_{x}^{\alpha, \beta}(0, y)-F_{y}^{\alpha, \beta}(x, 0)=0
$$

are satisfied along the singular lines in the open hypersphere $\Sigma_{r}^{\alpha, \beta}: x^{2}+y^{2}<r^{2}$.

[^0]Such functions with even harmonic extensions are referred to as generalized biaxisymmetric potentials (GBASP) having local expansion of the form

$$
F^{\alpha, \beta}(x, y)=\sum_{n=0}^{\infty} a_{n} R_{n}^{\alpha, \beta}(x, y)
$$

such that

$$
\begin{equation*}
R_{n}^{\alpha, \beta}(x, y)=\frac{\left(x^{2}+y^{2}\right)^{n}}{P_{n}^{\alpha, \beta}(1)} P_{n}^{\alpha, \beta}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right), \quad n=0,1,2, \ldots, \tag{1.2}
\end{equation*}
$$

where $P_{n}^{\alpha, \beta}$ are the Jacobi polynomials ([1], [12]). Suitable limits of the parameters (α, β), after quadratic transformation from [1] as necessary, produce various special functions from the $R_{n}^{\alpha, \beta}$. For example, $\alpha=\beta=0$ gives the zonal harmonics so that $F^{\alpha, \beta}$ is interpreted as an axisymmetric potential on \mathbb{R}^{2}, and $\alpha=\beta=-1 / 2$ gives the even circular harmonics on \mathbb{R}^{2}, where the interpretation is $F^{\alpha, \beta}=\operatorname{Re} f, f$ being real analytic. The Euler-Poisson-Darboux equation arising in gas dynamics is viewed in terms of equation (1.1) after a transformation [4; p. 223]. Thus, global properties characterizing solutions to this partial differential equation that are determined by local properties are of special interest.

The invertible integral operators $\kappa_{\alpha, \beta}$ and $\kappa_{\alpha, \beta}^{-1}$ developed in [9] are fundamental to such type of studies. These operators locally associate regular GBASP $F^{\alpha, \beta}$, equation (1.2) and the unique analytic function $f: f(z)=\sum_{n=0}^{\infty} a_{n} z^{2 n}$ as follows

$$
\begin{aligned}
F^{\alpha, \beta}(x, y)=\kappa_{\alpha, \beta}(f) & =\int_{0}^{1} \int_{0}^{\pi} f(\zeta) \mu_{\alpha, \beta}(t, s) \mathrm{d} t \mathrm{~d} s \\
\zeta^{2} & =x^{2}-y^{2} t^{2}-2 \mathrm{i} x y t \cos s \\
\mu_{\alpha, \beta}(t, s) & =\gamma_{\alpha, \beta}\left(1-t^{2}\right)^{\alpha-\beta-1} t^{2 \beta+1}(\sin s)^{2 \alpha} \\
\gamma_{\alpha, \beta} & =\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha-\beta) \Gamma(\beta+1 / 2)}
\end{aligned}
$$

The inverse operator applies orthogonality of the Jacobi polynomials ([1]) and the Poisson kernel ([1]) to uniquely define the transform

$$
\begin{aligned}
f(z)=\kappa_{\alpha, \beta}^{-1}\left(F^{\alpha, \beta}\right) & =\int_{-1}^{1} F^{\alpha, \beta}\left(r \xi, r \sqrt{1-\xi^{2}}\right) \nu_{\alpha, \beta}\left((z / r)^{2}, \xi\right) \mathrm{d} \xi \\
\nu_{\alpha, \beta}(\tau, \xi) & =S_{\alpha, \beta}(\tau, \xi)(1-\xi)^{\alpha}(1+\xi)^{\beta}
\end{aligned}
$$

where the kernel is written with the help of [1] in closed form as

$$
\begin{aligned}
S_{\alpha, \beta}(\tau, \xi) & =\eta_{\alpha, \beta} \frac{1-\tau}{(1+\tau)^{\alpha+\beta+2}} F\left(\frac{\alpha+\beta+2}{2} ; \frac{\alpha+\beta+3}{2} ; \beta+1 ; \frac{2 \tau(1+\xi)}{(1+\tau)^{2}}\right) \\
\eta_{\alpha, \beta} & =\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)}
\end{aligned}
$$

The normalizations $\kappa_{\alpha, \beta}(1)=\kappa_{\alpha, \beta}^{-1}(1)$ are taken. The kernel $S_{\alpha, \beta}(\tau, \xi)$ is analytic in $\|\tau\|<1$ for $-1 \leq \xi \leq 1$. The local function elements $F^{\alpha, \beta}$ and f are continued harmonically and analytically by contour deformation using the envelope method ([3]).

Let B denote a Carathéodory domain, that is bounded simply connected domain, such that the boundary of B coincides with the boundary of the domain lying in the complement of the closure of B and containing the point ∞. In particular, a domain bounded by a Jordan curve is Carathéodory domain. Let $L^{p}(B)$ and $\ell^{p}(B), 1 \leq p \leq \infty$, denote the class of GBASP $F^{\alpha, \beta}$ and associate f holomorphic in B such that

$$
\begin{aligned}
\left\|F^{\alpha, \beta}\right\|_{B, p} & =\left[\frac{1}{A} \iint_{B}\left|F^{\alpha, \beta}(x, y)\right|^{p} \mathrm{~d} x \mathrm{~d} y\right]^{1 / p}<\infty \\
\|f\|_{B, p} & =\left[\frac{1}{A} \iint_{B}|f(z)|^{p} \mathrm{~d} x \mathrm{~d} y\right]^{1 / p}<\infty
\end{aligned}
$$

where these norms are understood to be $\sup _{(x, y) \in B}\left|F^{\alpha, \beta}(x, y)\right|, \sup _{z \in B}|f(z)|$ for $p=\infty$, and $\|\cdot\|_{B, p}$ denotes the L^{p}-norm and ℓ^{p}-norm for $F^{\alpha, \beta}$ and f, respectively and A is the area of domain B. For $f \in \ell^{p}(B)$, define $b_{n}, n=0,1,2, \ldots$, the Fourier coefficients as

$$
\begin{equation*}
b_{n}=\iint_{B} f(z) \overline{p_{n}(z)} \mathrm{d} x \mathrm{~d} y \tag{1.3}
\end{equation*}
$$

Also,

$$
\delta_{m}^{n}=\iint_{B} p_{n}(z) \overline{p_{m}(z)} \mathrm{d} x \mathrm{~d} y
$$

where $\delta_{m}^{n}=1$ for $m=n$ and $\delta_{m}^{n}=0$ otherwise, and $\left\{p_{n}\right\}_{n=1}^{\infty}$ forms a complete orthonormal sequence of polynomials in $\ell^{p}(B), p_{n}$ being even polynomial of degree at most $2 n$. It is known ($\left[11 ;\right.$ p. 273]) that $f \in \ell^{p}(B)$ is entire if and only if $\lim _{n \rightarrow \infty}\left|b_{n}\right|^{1 / n}=0$. Moreover, $f(z)=\sum_{n=0}^{\infty} b_{n} p_{n}(z)$ holds in the whole complex plane.

H. S. KASANA - D. KUMAR

For $p=\infty$, the best polynomial approximation error for GBASP and its associate (see [5]) is defined as

$$
\begin{aligned}
e_{n}(f) \equiv e_{n}(f, B) & =\inf \left\{\|f-\pi\|: \pi \in h_{n}\right\}, \quad n=0,1, \ldots, \\
\|f-\pi\| & =\sup _{z \in B}|f(z)-\pi(z)|
\end{aligned}
$$

Here, we define

$$
E_{n}^{p}\left(F^{\alpha, \beta}\right) \equiv E_{n}^{p}\left(F^{\alpha, \beta}, B\right)=\inf \left\{\left\|F^{\alpha, \beta}-P^{\alpha, \beta}\right\|_{B, p}: P^{\alpha, \beta} \in H_{n}\right\}, \quad p>0
$$

and for $p=\infty$,

$$
E_{n}^{\infty}\left(F^{\alpha, \beta}\right)=\left\|F^{\alpha, \beta}-P^{\alpha, \beta}\right\|=\sup _{(x, y) \in B}\left|F^{\alpha, \beta}(x, y)-P^{\alpha, \beta}(x, y)\right|
$$

The set h_{n} contains all even polynomials of degree at most $2 n$, and the set H_{n} contains all even biaxisymmetric harmonic polynomials of degree $2 n$. The operators $\kappa_{\alpha, \beta}$ and $\kappa_{\alpha, \beta}^{-1}$ establish one-one equivalence of the sets h_{n} and H_{n}.

Let L^{0} denote the class of functions $\phi(x)$ defined on $[a, \infty)$, satisfying the conditions $\mathrm{H}(\mathrm{i})$ and $\mathrm{H}(\mathrm{ii})$:
$\mathrm{H}(\mathrm{i}) \phi(x)$ is positive, strictly increasing, differentiable, and $\phi(x) \rightarrow \infty$ as $x \rightarrow \infty$.
H (ii) $\lim _{x \rightarrow \infty} \frac{\phi(x(1+\varphi(x))}{\phi(x)}=1$ for every $\varphi(x)$ such that $\varphi(x) \rightarrow 0$ as $x \rightarrow \infty$.
Let Δ be the class of functions $\phi(x)$ satisfying conditions $\mathrm{H}(\mathrm{i})$ and $\mathrm{H}(\mathrm{iii})$:
H (iii) $\lim _{x \rightarrow \infty} \frac{\phi(c x)}{\phi(x)}=1$ for every $0<c<\infty$.
Let Ω be the class of functions $\phi(x)$ satisfying $H(i)$ and $H(i v)$:
H(iv) There exists a $\delta(x) \in \Delta$ and x_{0}, K_{1}, K_{2} such that

$$
0<K_{1} \leq \frac{\mathrm{d}(\phi(x))}{\mathrm{d}(\delta(\ln x))} \leq K_{2}<\infty \quad \text { for all } \quad x>x_{0}
$$

Also, let $\bar{\Omega}$ be the class of functions $\phi(x)$ satisfying $H(i)$ and $H(v)$:

$$
\mathrm{H}(\mathrm{v}) \lim _{x \rightarrow \infty} \frac{\mathrm{~d}(\phi(c x))}{\mathrm{d}(\ln x)}=K, \quad 0<K<\infty
$$

The generalized growth parameters of an entire function GBASP are defined as

$$
\begin{aligned}
& \limsup _{r \rightarrow \infty} \frac{\alpha\left(\ln M\left(r, F^{\alpha, \beta}\right)\right)}{\alpha(\ln r)}=: \rho\left(\alpha, \alpha, F^{\alpha, \beta}\right), \\
& \liminf _{r \rightarrow \infty} \frac{\alpha\left(\ln M\left(r, F^{\alpha, \beta}\right)\right)}{\alpha(\ln r)}=: \lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right),
\end{aligned}
$$

where $\alpha(x)$ either belongs to Ω or $\bar{\Omega}$ and $M\left(r, F^{\alpha, \beta}\right)=\sup _{(x, y) \in B}\left|F^{\alpha, \beta}(x, y)\right|$.

DEFINITION. An entire GBASP is said to be of regular growth if $1<$ $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)<\infty$.

Following the reasoning of McCoy [9], it can be shown that generalized orders of entire GBASP and its associate are the same. Mc C oy [9], [10] has characterized classical order and type of an entire GBASP in terms of approximation error in L^{p}-norm on $[-1,1]$.

In this paper, we extend the results of McCoy to arbitrary domains and generalized growth parameters. We identify those GBASP $F^{\alpha, \beta} \in L^{p}(B)$ that harmonically continue as an entire function GBASP. The characteristic feature follows from the rate of convergence of a sequence of best GBASP polynomial approximates to $F^{\alpha, \beta}$ in $L^{p}(B)$ and sup norms. The generalized growth parameters of an entire GBASP have been characterized in terms of the approximation error $E_{n}^{p}\left(F^{\alpha, \beta}\right)$ in L^{p} and sup norms on Carathéodory domains.

The following notations will be used throughout the paper

$$
\vartheta_{\eta}(\nu)= \begin{cases}\max \{1, \nu\} & \text { if } \alpha(x) \in \Omega \\ \eta+\nu & \text { if } \alpha(x) \in \bar{\Omega}\end{cases}
$$

We shall write $\vartheta(\nu)$ for $\vartheta_{1}(\nu)$.

2. Auxiliary results

Let B^{*} be the component of the complement of the closure of the Carathéodory domain that contains the point ∞. Set $B_{r}=\{z:|\psi(z)|=r\}, r>1$, where the function $w=\psi(z)$ maps B^{*} conformally onto $|w|>1$ such that $\psi(\infty)=\infty$ and $\psi^{\prime}(\infty)>0$.

LEMMA 1. Suppose $F^{\alpha, \beta}$ is an entire GBASP having generalized growth parameters $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)$ and $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)$. Then

$$
\begin{aligned}
& \limsup _{r \rightarrow \infty} \frac{\alpha\left(\ln \bar{M}\left(r, F^{\alpha, \beta}\right)\right)}{\alpha(\ln r)}=\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right) \\
& \liminf _{r \rightarrow \infty} \frac{\alpha\left(\ln \bar{M}\left(r, F^{\alpha, \beta}\right)\right)}{\alpha(\ln r)}=\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)
\end{aligned}
$$

where $\bar{M}\left(r, F^{\alpha, \beta}\right)=\max _{z \in B_{r}}\left|F^{\alpha, \beta}(z, 0)\right|$.
Proof. The proof follows on the lines of [6; Lemma 1] and taking the definition of generalized growth parameters into account.

H. S. KASANA - D. KUMAR

Lemma 2. Let $F^{\alpha, \beta} \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function GBASP having generalized growth parameters $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)$ and $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)$. Then $g(z)=\sum_{n=0}^{\infty} b_{n} z^{2 n}, b_{n}$ are given by (1.3), is also an entire function satisfying

$$
\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\rho(\alpha, \alpha, g) \quad \text { and } \quad \lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\lambda(\alpha, \alpha, g) .
$$

Proof. In view of $\left|b_{n}\right|^{1 / n} \rightarrow 0$ as $n \rightarrow \infty, g$ is an entire function. From [11], we have $\max _{z \in B_{r}}\left|p_{n}(z)\right| \leq C r^{n}, n=0,1, \ldots$, where C is a constant independent of n and $r(r>1)$. Thus, applying the Bernstein inequality ([2]) for each term of the series $\sum_{n=0}^{\infty} b_{n} p_{n}(z)$, we get

$$
\begin{array}{rlrl}
|f(z)| \leq\left|b_{0}\right|+C \sum_{n=1}^{\infty}\left|b_{n}\right|\left(r r^{\prime}\right)^{n}, & & z \in B_{r}, \\
\bar{M}(r, f) & \leq\left|b_{0}\right|+C M\left(r r^{\prime}, g\right), & & r>1 . \tag{2.1}
\end{array}
$$

Let us consider the relation $F^{\alpha, \beta}(x, y)=\kappa_{\alpha, \beta}(f)$ defined globally in [10]. The nonnegativity and normalization of the measure lead directly to the bound

$$
\begin{equation*}
\bar{M}\left(r, F^{\alpha, \beta}\right) \leq \bar{M}(r, f) . \tag{2.2}
\end{equation*}
$$

In view of (2.1) and (2.2), we have

$$
\begin{equation*}
\bar{M}\left(r, F^{\alpha, \beta}\right) \leq\left|b_{0}\right|+C M\left(r r^{\prime}, g\right), \quad r>1 . \tag{2.3}
\end{equation*}
$$

Thus, using Lemma 1 and the fact that either $\alpha \in \Omega$ or $\alpha \in \bar{\Omega}$, (2.3) gives

$$
\begin{equation*}
\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right) \leq \rho(\alpha, \alpha, g) \quad \text { and } \quad \lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right) \leq \lambda(\alpha, \alpha, g) . \tag{2.4}
\end{equation*}
$$

Fix $r^{*}>1$. Since f is entire, it follows that ([9]) there exists a sequence of polynomials $\left\{Q_{n}\right\}_{n=1}^{\infty}, Q_{n}$ being of degree at most $2 n$ such that

$$
\left|f(z)-Q_{n}(z)\right|<\frac{2}{3} \bar{M}(r, f) \frac{\left(r^{*} / r\right)^{n+1}}{\left(1-r^{*} / r\right)}, \quad z \in \bar{B},
$$

for all sufficiently large n and all $r>r^{*}$. Also,

$$
b_{n}=\iint_{B} f(z) \overline{p_{n}(z)} \mathrm{d} x \mathrm{~d} y=\iint_{B}\left[f(z)-Q_{n-1}(z)\right] \overline{p_{n}(z)} \mathrm{d} x \mathrm{~d} y .
$$

Since p_{n} is orthogonal to any polynomial of degree $\leq 2 n$, using the Schwarz inequality, we get

$$
\left|b_{n}\right| \leq\left\|f-Q_{n}\right\|_{B, p} \leq A^{1 / p} \max _{z \in \bar{B}}\left|f(z)-Q_{n}(z)\right|, \quad 1 \leq p<\infty
$$

where A is the area of B. Using (2.2) in above, it follows that

$$
\begin{equation*}
\left|b_{n}\right| \leq \gamma \bar{M}(r, f)\left(\frac{r^{*}}{r}\right)^{n} \tag{2.5}
\end{equation*}
$$

for large values of n and $r>2 r^{*}, \gamma$ is a constant independent of n and r. Moreover, (2.5) gives

$$
\begin{equation*}
\mu\left(r / r^{*} ; g\right) \leq \gamma \bar{M}(r, f) \tag{2.6}
\end{equation*}
$$

The inverse relation $f(z)=\kappa_{\alpha, \beta}^{-1}\left(F^{\alpha, \beta}\right)$, valid globally in view of [9; Theorem 1], leads to

$$
\begin{aligned}
|f(z)| & \leq M\left(r, F^{\alpha, \beta}\right) N_{\alpha, \beta}(\tau), \quad \tau=\left(\frac{z}{r}\right)^{n}, \\
N_{\alpha, \beta}(\tau) & =\max _{-1 \leq \xi \leq 1} \eta_{\alpha, \beta}^{-1}\left|S_{\alpha, \beta}(\tau, \xi)\right| .
\end{aligned}
$$

However, for $z=\varepsilon r \mathrm{e}^{\mathrm{i} \theta}(\varepsilon$ real $), M(\varepsilon r, f) \leq M\left(r, F^{\alpha, \beta}\right) N_{\alpha, \beta}$ implies

$$
\begin{equation*}
\bar{M}(r, f) \leq \bar{M}\left(r / \varepsilon, F^{\alpha, \beta}\right) N_{\alpha, \beta}\left(\varepsilon^{2}\right), \quad z \in B_{r} \tag{2.7}
\end{equation*}
$$

Using [3; Theorem 3], Lemma 1, (2.6) and (2.7) and the fact that either $\alpha \in \Omega$ or $\alpha \in \bar{\Omega}$, we obtain

$$
\begin{equation*}
\rho(\alpha, \alpha, g) \leq \rho\left(\alpha, \alpha, F^{\alpha, \beta}\right) \quad \text { and } \quad \lambda(\alpha, \alpha, g) \leq \lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right) . \tag{2.8}
\end{equation*}
$$

Combining (2.4) and (2.8), the desired results are available. For $p=\infty$, just proceed on the lines of [13].
Lemma 3. Let $F^{\alpha, \beta} \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function GBASP having generalized growth parameters $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)$ and $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)$. Then $\widetilde{g}(z)=\sum_{n=0}^{\infty} E_{n}^{p}\left(F^{\alpha, \beta}\right) z^{2 n}$ is also an entire function. Further, we have

$$
\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\rho(\alpha, \alpha, \tilde{g}) \quad \text { and } \quad \lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\lambda(\alpha, \alpha, \tilde{g}) .
$$

Proof. This is a direct consequence of [7; Lemma 3], and (2.2) and (2.8) for an even function.

3. Main results

Theorem 1. Let $F^{\alpha, \beta} \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function GBASP having generalized order $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)$ and generalized lower order $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)$. Then
(i) $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\vartheta(L)$,
(ii) $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\vartheta\left(L^{*}\right)$, where

$$
L=\limsup _{n \rightarrow \infty} \frac{\alpha(n)}{\alpha\left(-\frac{1}{n} \ln E_{n}^{p}\left(F^{\alpha, \beta}\right)\right)}, \quad L^{*}=\limsup _{n \rightarrow \infty} \frac{\alpha(n)}{\alpha\left(\ln \left(E_{n-1}^{p}\left(F^{\alpha, \beta}\right) / E_{n}^{p}\left(F^{\alpha, \beta}\right)\right)\right)}
$$

(iii) $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right) \geq \vartheta(\tilde{\ell})$,

$$
\tilde{\ell}=\liminf _{n \rightarrow \infty} \frac{\alpha(n)}{\alpha\left(-\frac{1}{n} \ln E_{n}^{p}\left(F^{\alpha, \beta}\right)\right)}
$$

(iv) If we take $\alpha(x)=\alpha(a)$ on $(-\infty, a)$, then $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right) \geq \vartheta\left(\ell^{*}\right)$,

$$
\ell^{*}=\liminf _{n \rightarrow \infty} \frac{\alpha(n)}{\alpha\left(\ln \left(E_{n-1}^{p}\left(F^{\alpha, \beta}\right) / E_{n}^{p}\left(F^{\alpha, \beta}\right)\right)\right)}
$$

THEOREM 2. Let $F^{\alpha, \beta} \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function GBASP having generalized order $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)$ and generalized lower order $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)$. If $E_{n}^{p}\left(F^{\alpha, \beta}\right) / E_{n+1}^{p}\left(F^{\alpha, \beta}\right)$ is nondecreasing, then
(i) $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\vartheta(L)=\vartheta\left(L^{*}\right)$,
(ii) $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\vartheta(\tilde{\ell})=\vartheta\left(\ell^{*}\right)$, where $\tilde{\ell}$ and ℓ^{*} have the same meaning as in Theorem 1.

THEOREM 3. Let $F^{\alpha, \beta} \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function GBASP having generalized lower order $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)$. Then
(i) if $\alpha(x) \in \Omega$,

$$
\begin{equation*}
\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\max _{\left\{n_{k}\right\}_{k=1}^{\infty}}\left\{\vartheta_{\xi}\left(\ell^{\prime}\right)\right\} \tag{3.1}
\end{equation*}
$$

(ii) further, if $\alpha(x)=\alpha(a)$ on $(-\infty, a)$,

$$
\begin{equation*}
\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)=\max _{\left\{n_{k}\right\}_{k=1}^{\infty}}\left\{\vartheta_{\xi}\left(\ell^{\prime *}\right)\right\} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\xi & \equiv \xi\left(n_{k}\right)=\liminf _{k \rightarrow \infty} \alpha\left(n_{k-1}\right) / \alpha\left(n_{k}\right) \\
\ell^{\prime} & \equiv \ell^{\prime}\left(n_{k}\right)=\liminf _{k \rightarrow \infty} \frac{\alpha\left(n_{k-1}\right)}{\alpha\left(-\frac{1}{n_{k}} \ln E_{n_{k}}^{p}\left(F^{\alpha, \beta}\right)\right)} \\
\ell^{\prime *} & =\liminf _{k \rightarrow \infty} \frac{\alpha\left(n_{k-1}\right)}{\alpha\left(-\frac{1}{n_{k}-n_{k-1}} \ln \left(E_{n_{k-1}}^{p}\left(F^{\alpha, \beta}\right) / E_{n_{k}}^{p}\left(F^{\alpha, \beta}\right)\right)\right)}
\end{aligned}
$$

The maximum in (3.1) and (3.2) is taken over all increasing sequences $\left\{n_{k}\right\}_{k=1}^{\infty}$ of the positive integers.

L^{p}-APPROXIMATION OF GENERALIZED BIAXIALLY SYMMETRIC POTENTIALS

Also, if $\left\{n_{m}\right\}_{m=1}^{\infty}$ is the sequence of principal indices of $\widetilde{g}(z)=$ $\sum_{n-0}^{\infty} E_{n}^{p}\left(F^{\alpha, \beta}\right) z^{2 n}$ and $\alpha\left(n_{m}\right) \simeq \alpha\left(n_{m-1}\right)$ as $m \rightarrow \infty$, then (3.1) and (3.2) hold for $\alpha(x) \in \bar{\Omega}$.

Proof of Theorems 1, 2, 3. These theorems follow easily from [5; Theorems 4 6, Lemma 1] and Lemma 3 of this paper.

For $F^{\alpha, \beta} \in L^{p}(B), 1 \leq p \leq \infty$, let $\left\{n_{k}\right\}_{k=1}^{\infty}, n_{0}=0$, be a sequence of positive integers such that $E_{n_{k-1}}^{p}\left(F^{\alpha, \beta}\right)>E_{n_{k}}^{p}\left(F^{\alpha, \beta}\right)$ and

$$
\begin{equation*}
E_{n}^{p}\left(F^{\alpha, \beta}\right)=E_{n_{k-1}}^{p}\left(F^{\alpha, \beta}\right) \quad \text { for } \quad n_{k-1} \leq n \leq n_{k}, \quad k=1,2, \ldots \tag{3.3}
\end{equation*}
$$

Finally, we derive a result that shows how this sequence influences the growth of an entire GBASP.

Theorem 4. Let $F^{\alpha, \beta} \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire function GBASP having generalized order $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)$ and generalized lower order $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)$. Then

$$
\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right) \geq \rho\left(\alpha, \alpha, F^{\alpha, \beta}\right) \lim _{k \rightarrow \infty} \frac{\alpha\left(n_{k}\right)}{\alpha\left(n_{k+1}\right)}
$$

where $\left\{n_{k}\right\}_{k=1}^{\infty}$ is defined by (3.3).
Proof. Define the function

$$
h(z)=\sum_{n=1}^{\infty}\left[E_{n-1}^{p}\left(F^{\alpha, \beta}\right)-E_{n}^{p}\left(F^{\alpha, \beta}\right)\right] z^{2 n}=\sum_{k=1}^{\infty} b_{k} z^{2 k}
$$

where $b_{k}=E_{k-1}^{p}\left(F^{\alpha, \beta}\right)-E_{k}^{p}\left(F^{\alpha, \beta}\right)$. Clearly, $h(z)$ has the generalized order $\rho\left(\alpha, \alpha, F^{\alpha, \beta}\right)$ and generalized lower order $\lambda\left(\alpha, \alpha, F^{\alpha, \beta}\right)$. Now, the application of [5; Theorem 4] to $h(z)$ yields the desired inequality.

Corollary. Let $F^{\alpha, \beta} \in L^{p}(B), 1 \leq p \leq \infty$, be the restriction to B of an entire GBASP with generalized regular growth. Further, if $\alpha \in \Omega$ or $\alpha \in \bar{\Omega}$, then

$$
\alpha\left(n_{k}\right) \simeq \alpha\left(n_{k-1}\right) \quad \text { as } \quad k \rightarrow \infty
$$

Acknowledgement.

The authors are extremely thankful to the referee for giving excellent critical comments.

H. S. KASANA - D. KUMAR

REFERENCES

[1] ASKEY, R.: Orthogonal Polynomials and Special Functions. Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia, PA, 1975.
[2] BERNSTEIN, S. N.: Leçons sur les Properties Extremales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Reele, Gauthier-Villars, Paris, 1926.
[3] GILBERT, R. P.: Function Theoretic Methods in Partial Differential Equations. Math. Sci. Engrg. 54, Academic Press, New York, 1969.
[4] GILBERT, R. P.-NEWTON, R. G.: Analytic Methods in Mathematical Physics, Gordon and Breach Sci. Publ., New York, 1970.
[5] KAPOOR, G. P. NAUTIYAL, A.: Polynomial approximation of an entire function of slow growth, J. Approx. Theory 32 (1981), 64-75.
[6] KASANA, H. S.-KUMAR, D.: On approximation and interpolation of entire functions with index-pair (p, q), Publ. Mat. 38 (1994), 255267.
[7] KUMAR, D.-KASANA, H. S. : On approximation of entire functions over Carathédory domains, Comment. Math. Univ. Carolin. 35 (1994), 681-689.
[8] MARKUSHEVIC, A. I. : Theory of Functions of a Complex Variables, Prentice Hall, Inc. Englewood Cliffs, NJ, 1967.
[9] MCCOY, P. A.: Polynomial approximation of generalized biaxisymmetric potentials, J. Approx. Theory 25 (1979), 153-168.
[10] MCCOY, P. A.: Best L^{p}-approximation of generalized biaxisymmetric potentials, Proc. Amer. Math. Soc. 79 (1980), 435-440.
[11] SMIRNOV, V. I.-LEBEDEV, N. A.: Functions of a Complex Variable: Constructive Function Theory, MIT Press, Mass USA, 1968.
[12] SZEGÖ, G. : Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ. 22, Amer. Math. Soc, Providence, RI, 1967.
[13] WINIARSKI, T. N.: Approximation and interpolation of entire functions, Ann. Polon. Math. 23 (1970), 259-273.

Received August 1, 2003

Revised August 22, 2004

[^1]
[^0]: 2000 Mathematics Subject Classification: Primary 41D10; Secondary 30E05.
 Keywords: generalized biaxially symmetric potential, L^{p}-norm, approximation error, generalized growth parameter, Fourier coefficient.

 This work was supported by International Centre for Theoretical Physics, Trieste, Italy.

[^1]: * Department of Mathematics E Computer Applications Thapar Institute of Engineering \& Technology Patiala 147004 INDIA
 ** Department of Mathematics Addis Ababa University Addis Ababa ETHOPIA

