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ABSTRACT. Let Fa^ be a real generalized biaxially symmetric potentials 

(GBASP) defined on the Caratheodory domain and let LP(D) be the class of func

tions Fa'^ holomorphic in D such tha t \\Fa^\\D = ( - 4 - 1 J J | F a , / 3 | dxdy)1 

V D J 

A is the area of the domain D.For Fa^ e Lp(D),set En(F
a^) = i n f { | | F a ^ -

Fa'^llD v : Fa'^ £ 11n} ' Hn consists of all even biaxially symmetric harmonic 
polynomials of degree at most 2 n . This paper deals with the growth of entire 
function GBASP in terms of approximation error in Lp-norm on D. The analy
sis utilizes the Bergman and Gilbert integral operator method to extend results 
from classical function theory on the best polynomial approximation of analytic 
functions of a complex variable. 

1. Introduc t ion 

Let Fa^ be a real valued regular solution of the generalized biaxisymmetric 
potential equation 

\dx2 dy2 x dx y dyJ ' 2 ' ' 

where a, j3 are fixed in a neighbourhood of the origin and the analytic Cauchy 
data 

F^(0,y)-F^(x,0) = 0 

are satisfied along the singular lines in the open hypersphere E ^ : x2 +y2 < r2 . 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 41D10; Secondary 30E05. 
K e y w o r d s : generalized biaxially symme t r ic potential , Lp-norm, approximation error, gener
alized growth parameter, Fourier coefficient. 
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Such functions with even harmonic extensions are referred to as generalized 
biaxisymmetric potentials (GBASP) having local expansion of the form 

oo 

F^(x,y) = __anR^(x,y) 
n=0 

such that 

K'^y) = ̂ a f K * (^)' n = °'1; 2' • • •' (L2) 

where Pa^ are the Jacobi polynomials ([1], [12]). Suitable limits of the pa
rameters (a, (3), after quadratic transformation from [1] as necessary, produce 
various special functions from the Ra^. For example, a = (3 = 0 gives the 
zonal harmonics so that Fa^ is interpreted as an axisymmetric potential on R2 , 
and a = (3 = —1/2 gives the even circular harmonics on R2 , where the inter
pretation is Fa^ = R e / , / being real analytic. The Euler-Poisson-Darboux 
equation arising in gas dynamics is viewed in terms of equation (1.1) after a 
transformation [4; p. 223]. Thus, global properties characterizing solutions to 
this partial differential equation that are determined by local properties are of 
special interest. 

The invertible integral operators Ka * and n~\ developed in [9] are funda
mental to such type of studies. These operators locally associate regular GBASP 

oo 

Fa^, equation (1.2) and the unique analytic function / : f(z) = _*_] anz
2n as 

n=0 

follows 

1 7T 

Fa'0(x,y) = Ka>fi(f) = J J f(Qna^(t,s) dtda, 
0 0 

(2 = x2 - y2t2 - 2 ixyt cos s , 

A*ai/,(*,-) = 7 a , / J ( l - « 2 ) a - / , - 1 ^ + 1 ( - i n * ) 2 a , 
_ 2 r ( a + l) 

la^~ ^T(a - p)T(f3 + 1/2) ' 

The inverse operator applies orthogonality of the Jacobi polynomials ([1]) and 
the Poisson kernel ([1]) to uniquely define the transform 

l 

f(z) = Ka^(F^) = JF^(rZ,r^/r=?)vatP((z/r)2,{;) d£, 

- 1 

vaA
T>t) = sc,AT>M1-s)a(1 + o0> 
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where the kernel is written with the help of [1] in closed form as 

1 - r 
sa.вЫ) V/З (1 + т )a+/3+2 

T(a + ß + 2) 

r (a+(3+2. Q + /3+3. o , -, 2 r ( l + Q \ r \ 2 ' 2 iP^Li (1+r)2 y ' 

V/3 2«+^+ 1 r (a + l)T(/3 + 1) ' 

The normalizations Ka Q(1) — ^\(X) a r e taken. The kernel Sap(r,£) is ana
lytic in | |T| | < 1 for — 1 < £ < 1. The local function elements F a , / 3 and / 
are continued harmonically and analytically by contour deformation using the 
envelope method ([3]). 

Let B denote a Caratheodory domain, that is bounded simply connected 
domain, such that the boundary of B coincides with the boundary of the domain 
lying in the complement of the closure of B and containing the point oo. In 
particular, a domain bounded by a Jordan curve is Caratheodory domain. Let 
Lp(B) and £P(B), 1 < p < oo, denote the class of GBASP Fa^ and associate 
/ holomorphic in B such that 

i i / p 
\Fa'0\ B,p 

B,p 

\IJ\Fa^(x,y)\^dxdy 
B 

\Jj\f(zWdxd 

< oo. 

< oo, 

where these norms are understood to be sup \Fa>@(x, y)\, sup | / ( z ) | for p = oo, 
(x,y)EB z£B 

and || • \\B denotes the Lp-norm and -P-norm for Fa^ and / , respectively 
and A is the area of domain B. For / G £P(B), define bn, n = 0 ,1 , 2 , . . . , the 
Fourier coefficients as 

Also, 

Ьn= II f(Фn(Z)dxdУ-
B 

ôm = JJ P„(z)Pm(z) dxdУ, 

(1.3) 

where o7^ = 1 for m = n and 5^ = 0 otherwise, and {pn}n

<)

=1 forms a complete 
orthonormal sequence of polynomials in £P(B), pn being even polynomial of 
degree at most 2n. It is known ([11; p. 273]) that / € £P(B) is entire if and only 

if lim \bn 
n—>oo 

plane. 

1/ /n = 0. Moreover, f(z)= ^ bnpn(z) holds in the whole complex 
n=0 
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For p — oc, the best polynomial approximation error for GBASP and its 
associate (see [5]) is defined as 

en(f) = en(f, B) = in f{ | | / - TT|| : TT G hn} , n = 0 , 1 , . . . , 

| | / - 7 r | | = sup | /(*) -n(z)\. 
zeB 

Here, we define 

EP(Fa>P) = E-(Fa>P,B) = inf {\\Fa^ - Pa>0\\BtP : P a / 3 G Hn} , p > 0, 

and for p = 00, 

E™(Fa^) = \\Fa^ -Pa^\\ = sup | F a , / 3 ( x , H ) - P Q , ^ ( x , 2 / ) | . 
(x,y)€B 

The set /in contains all even polynomials of degree at most 2n, and the set 
Hn contains all even biaxisymmetric harmonic polynomials of degree 2n. The 
operators na ^ and K~1Q establish one-one equivalence of the sets hn and Hn. 

Let L° denote the class of functions (j)(x) defined on [a, oc), satisfying the 
conditions H(i) and H(ii): 

H(i) (j>(x) is positive, strictly increasing, differentiable, 
and (j)(x) -» 00 as x —> 00. 

H(ii) lim 0 ( g ( ^ ( a ) ) = 1 for every ^(x) such that (f(x) -» 0 as x -» 00. 

Let A be the class of functions (j)(x) satisfying conditions H(i) and H(iii): 

H(iii) lim - ^ - = 1 for every 0 < c < 00. 
x->oo ^ W 

Let $1 be the class of functions (j)(x) satisfying H(i) and H(iv): 

H(iv) There exists a S(x) G A and rr0, JiC1, K2 such that 

dfo(s)) 

d(*(lna;)) 
0 < Kx < —-— ү < K2 < 00 for all x > x0 . 

Also, let ft be the class of functions (p(x) satisfying H(i) and H(v): 

HW }&*& = *> o<K<^. 
The generalized growth parameters of an entire function GBASP are defined 

as 

r a(\nM(r,F^)) 
lim sup = : t)(a,a,F ,M) , 

r-+oo a ( l n r ) v 

. ta(lnM(r,Fa>0)) 0 lim ml — = : A(a,a,F '^) , 
r^oo a ( l n r ) 

where a(x) either belongs to ft or ft and M(r,Fa'@) = sup | F a , / 3 ( x , H)|. 
(x,y)e~ 
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DEFINITION. An entire GBASP is said to be of regular growth if 1 < 
A ( a , a , F Q ^ ) = p(a, a,Fa^) < oo. 

Following the reasoning of M c C o y [9], it can be shown that generalized 
orders of entire GBASP and its associate are the same. M c C o y [9], [10] has 
characterized classical order and type of an entire GBASP in terms of approxi
mation error in Lp-norm on [—1,1]. 

In this paper, we extend the results of M c C o y to arbitrary domains and 
generalized growth parameters. We identify those GBASP Fa^ G LV(B) that 
harmonically continue as an entire function GBASP. The characteristic feature 
follows from the rate of convergence of a sequence of best GBASP polynomial 
approximates to Fa^ in LV(B) and sup norms. The generalized growth par
ameters of an entire GBASP have been characterized in terms of the approxi
mation error Ev(Fa^) in Lv and sup norms on Caratheodory domains. 

The following notations will be used throughout the paper 

/ N f max{l,*v} if a(x) G Q. 
У-0 - { T 

' l r) + v 
if a(x) e -1. 

We shall write d(v) for ,d1(v). 

2. Auxiliary results 

Let B* be the component of the complement of the closure of the Caratheo
dory domain that contains the point oo. Set Br = {z : \ip(z)\ = r } , r > 1, 
where the function w = ip(z) maps B* conformally onto \w\ > 1 such that 
v(oc) = oo and ip'(oo) > 0. 

LEMMA 1. Suppose Fa^ is an entire GBASP having generalized growth pa-
rameters p(a,a,Fa^) and \(a,a,Fa^). Then 

a(\nM(r,Fa^)) , „, 
Kzsy j l , ) "=-(«.«.*"•''). 

i i m i n f t t ( 1 n M ( r , F ^ ) ) = 

r->oo a ( m r ) v 7 

where M(r,Fa^) = max \Fa^(z, 0 ) | . 

P r o o f . The proof follows on the lines of [6; Lemma 1] and taking the 
definition of generalized growth parameters into account. • 
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LEMMA 2. Let Fa^ e LP(B), 1 < p < oo, be the restriction to B of an 
entire function GBASP having generalized growth parameters p(a,a, Fa^) and 

oo 

\(a, a,Fa,/3) . Then g(z) = ^ bnz
2n. bn are given by (1.3), is also an entire 

n=0 
function satisfying 

p(a, a, Fa^) = p(a, a, g) and \(a, a, Fa^) = X(a, a, g). 

P r o o f . In view of | b j 1 / / n -> 0 as n —> oo, g is an entire function. Prom 
[11], we have max |I?n(z)| < Crn, n = 0,1,... , where C is a constant indepen-

Z E B r 

dent of n and r ( r > 1). Thus, applying the B e r n s t e i n inequality ([2]) for 
oo 

each term of the series ^ bnpn(z), we get 
n=0 

l/WI<iy + c E l U K ) n , zeBr, 
n=l 

M(r, f) < |b0| + CM(rr',g), r > 1. (2.1) 

Let us consider the relation Fa^(x,y) = KQ ̂ (f) defined globally in [10]. 
The nonnegativity and normalization of the measure lead directly to the bound 

M(r,Fa^) <M(r,f). (2.2) 

In view of (2.1) and (2.2), we have 

M(r,Fa^) < \bQ\ + CM(rr',g), r > 1. (2.3) 

Thus, using Lemma 1 and the fact that either a G ft or a G Q, (2.3) gives 

p(a, a, Fa^) < p(a, a, g) and \(a, a, Fa^) < X(a, a, g). (2.4) 

Fix r* > 1. Since / is entire, it follows that ([9]) there exists a sequence of 
polynomials {Qn}n

<)
=l, Qn being of degree at most 2n such that 

9 (V*/r)n + 1 — 

\f(z)-Qn(z)\<^M(r,f)[
{i^^/r), zeB, 

for all sufficiently large n and all r > r*. Also, 

K = ff f(z)vjz) dxdy = ff[f(z) ~ Qn-MW3 dx&y. 
B B 

Since pn is orthogonal to any polynomial of degree < 2n, using the Scfrwarz 
inequality, we get 

K\<\\f-Qn\\B,p<A"Pm^\f(z)-Qn(z)\, l < p < o o , 
z<EB 
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where A is the area of B. Using (2.2) in above, it follows that 

| & „ l < 7 M ( r , / ) ( £ ) " (2.5) 

for large values of n and r > 2r*, 7 is a constant independent of n and r . 
Moreover, (2.5) gives 

/ i ( r / r * ; g ) < 7 M ( r , / ) . (2.6) 

The inverse relation f(z) = Ka\(F
a'P), valid globally in view of [9; Theorem 1], 

leads to 

\f(z)\<M(r,F^)Na^(r), r= ( * ) " , 

^ W = _™1^-i|5a^(r>0|. 

However, for z = ere{0 (e real), M(er,f) < M(r,Fa^)Na^ implies 

M(r, / ) < M(r/e, Fa^)Na^(e2), z G Br . (2.7) 

Using [3; Theorem 3], Lemma 1, (2.6) and (2.7) and the fact that either a E i l 
or a G . 1 , we obtain 

p(a, a, g) < p(a , a, F ^ ) and A(a, a, g) < A(a, a, F a ^ ) . (2.8) 

Combining (2.4) and (2.8), the desired results are available. For p = 00, just 
proceed on the lines of [13]. D 

LEMMA 3. Let Fa^ G LP(B), 1 < p < 00, be the restriction to B of an 
entire function GBASP having generalized growth parameters p(a , a, Fa^) and 

A ( a , a , F a , / 3 ) . Then g(z) = ^ Ep(Fa^)z2n is also an entire function. Further, 
n=0 

we have 

p(a,a,Fa^) = p(a,a,g) and A(a, a , F a ' ^ ) = A(a, a , g ) . 

P r o o f . This is a direct consequence of [7; Lemma 3], and (2.2) and (2.8) 
for an even function. D 

3. Main results 

THEOREM 1. Let Fa^ G Lp(B), 1 < p < 00, be the restriction to B of an 
entire function GBASP having generalized order p(a,a,Fa>@) and generalized 
lower order A (a, a, Fa^) . Then 

(i) p(a,a,F<*'0)=tf(L), 
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(ii) p(a,a,Fa>P) = i)(L*), where 

r r
 a(n) r* r a(n) 

L = lim sup —-f— — —r-, L = lim sup a(-\X*El(F**)) ' n^ooa^E^F-^/EUF^))) ' 

(iii) A ( a , a , F a ^ ) > t f ( J ) , 

7 v • r a ( n ) 
£ = lim ml —7—-——-^7——TTT- . 

n-^00 a ( - l l n £ ? g ( F ^ ) ) 

(iv) If we take a(x) = a (a) on (—00, a), then \(a,a,Fa^) > $(£*), 

f*=v • f ^ 0 

THEOREM 2. Fe£ F a ' ^ e LV(B), 1 < p < 00, be the restriction to B of an 
entire function GBASP having generalized order p(a, a,Fa^) and generalized 
lower order \(a,a,Fa^). If Ev(Fa^)/E^+1(F

a^) is nondecreasing, then 

(i) p(a,a,F°>P)=0(L) = #(L*), 

(ii) A (a, a,Fa,P) = $(£) =$(£*)} where £ and £* have the same meaning 
as in Theorem 1. 

THEOREM 3. Let Fa^ e LV(B), 1 < p < 00. be the restriction to B of an 
entire function GBASP having generalized lower order A (a, a, Fa^) . Fben 

(i) ifa(x) en, 

A ( a , a , F ^ ) = m a x { ^ ( 0 } , (3.1) 

(ii) further, if a(x) = a (a) on (—00, a), 

\(a,a,Fa^)= max {^(r)}, (3.2) 
\nkfk=l 

where 

£ = £ K ) = l™inf«(n/b-i ) / " ( % ) 
«—>CO 

/,/ — 0i( \ T • r a ( n A ; - l ) 
£ = £ (nk) = hmmi 

= lim inf 

k->™ « ( - ^ l n ^ ( I 7 a ' / 3 ) ) ' 

" ( П f c - l ) 

* - ~ « ( - ^ r k T 7 l n ( ^ - 1 ( I ? Q ' / 3 ) / ^ ( I 7 a ' / 3 ) ) ) ' 

F.be maximum in (3.1) ana7 (3.2) is taken over all increasing sequences {nk}kL1 

of the positive integers. 
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Also, if {^m}^=i is the sequence of principal indices of g(z) = 
oo 

__ EP(Fa^)z2n and a(nm) ~ ot(nni_l) as m -> oo, then (3.1) and (3.2) 
M-0 _ 
hold for a(x) G Q. 

P r o o f of T h e o r e m s 1, 2, 3 . These theorems follow easily from [5; 
Theorems 4 6, Lemma 1] and Lemma 3 of this paper. • 

For Fa^ G LP(B), 1 < p < oo, let {nk}^=1, n0 = 0, be a sequence of 

positive integers such that E*^ (Fa^) > Ep
k (Fa^) and 

E*n{F«*) = E*nh_x{F«*) for nk_, < n < nk , k = 1,2, . . . . (3.3) 

Finally, we derive a result that shows how this sequence influences the growth 
of an entire GBASP. 

THEOREM 4. Let Fa^ G LP(B), 1 < p < oo. be the restriction to B of an 
entire function GBASP having generalized order p(a,a,Fa^) and generalized 
lower order A (a, a, Fa^) . Then 

\{a,a,F^)>p(a,a,Fa'P) lim ^ ^ 
k->oo a(nkJrlj 

where {nk}^=1 is defined by (3.3). 

P r o o f . Define the function 

oo 
2k *(*) = £ [K-i (F^) - K (Fa'")\ *2n = £ <^: 

n=l k=l 

where bk = ££_-_ ( F 0 ^ ) - Ev
k(F

a^). Clearly, h(z) has the generalized order 
p(a,a,Fa^) and generalized lower order A(cY, a,Fa>P). Now, the application 
of [5; Theorem 4] to h(z) yields the desired inequality. • 

COROLLARY. Let Fa^ G LP(B) , 1 < p < oo, be the restriction to B of an 
entire GBASP with generalized regular growth. Further, if a G Q or a G -1 . 
then 

a(nk) c__ a(nk_1) as fc^oo. 
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