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DIFFERENTIAL FORMS ON MANIFOLDS 
W I T H A POLYNOMIAL STRUCTURE 
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(Communicated by Julius Korbaš] 

ABSTRACT. On a C°°-manifold endowed with an integrable polynomial struc­
ture (with only simple roots of the characteristic polynomial), the decomposition 
of the tangent bundle which corresponds to the decomposition of the charac­
teristic polynomial, induces a decomposition of the bundle of complex p-forms. 
This decomposition enables us to introduce derivation operators (of degree 1) of 
three types on the graded commutative algebra of differential forms. For these 
operators, we prove Poincare Lemma (that every closed form is exact). 

All objects under considerations are supposed to be smooth (of class C°° ). M 
will denote a manifold, TM and T*M denote the tangent and cotangent bundle 
of M , respectively, TCM and Tc* M the corresponding complexifications. Let 
us denote by ftpM the bundle of differential p-forms on M . 

1. Let (M, / ) be a polynomial structure, i. e. a smooth m-dimensional manifold 
M endowed with a (1,1)-tensor field / satisfying an equation R(f) = 0 where R 
is a polynomial. Suppose that i t is a minimal polynomial of the endomorphism 
fx: TXM -» TxM of the tangent space at each point x G M . In what follows we 
shall suppose that R has only simple roots. A polynomial structure / on M is 
called integrable if there are local coordinates in a neighborhood U (abbreviated 
as nbd) of any point x in which the matrix representation of fx has a constant 
canonical form on U ([3], [5], [6], [9]). 

The decomposition of i?(£) over C into pairwise distinct prime factors 

R(0 = fl^-bi)fl^-cj)f[^-cj) (1) 
- = 1 j = l j = l 
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with b{ e M, c. e C gives decompositions of both the complex tangent bundle 
and the complex cotangent bundle as follows. Let us denote 

H^kevif-bJ), i = l,...,r, 

Hr+j=tet(e -{cj + CjK + cfi), j = l,...,s, ( j 

where I denotes the identity isomorphism of TCM. (Hv . . . , Hr+S) is an almost-
product structure associated with / . Let Pt be a projector projecting onto the 
subspace i J t , £ = l , . . . , r + s. Further, let 

ni = Hc = kev(fc-biI) for z = l , . . . , r , 

ttr+i = ker(/ c - Cj. J) for j = 1 , . . . , s , (3) 

ftr+,+i = ker(/ c - cjl) = %+j for i = 1 , . . . , 5 . 

It follows that Hc
+j = ?£r+J. ©

 /Hr+J., j = 1, . . . , 5. Now the complex tangent 
n 

bundle has decomposition TCM = 0 Hti n = r + 25, and (nx,... ,/Hr+2s) 
t=i 

is a complex almost product structure associated with f. The subbundle Hr+j, 

j G { l , . . . , s } , is equipped with the endomorphism J. satisfying J? = — i"?, 
77 = i d l i J , •' '̂ = 1 ' - * - ' 5 ' 

2 / - ( c , + c,) 
J,= , J J E r + j , ; = i *• (4) 

^s-s) 2 

That is, J- is an almost complex structure on Hr+-, and the complex linear 
extension of J. to Hc

+^ acts on nr+j (respectively, on nr+j) as multiplica­
tion by i (respectively by — i). The (l,l)-tensor field $ = J2JjPr+j satisfies 

3 

$ 3 -f $ — 0 (and is called an almost contact structure associated with f, or an 
/-structure ([7], [12])). 

The following can be verified: 
THEOREM 1.1. The polynomial structure (with characteristic polynomial hav­
ing simple roots) is integrable if and only if the associated complex almost product 
structure is integrable (which means that nt ®nw are integrable for all the pairs 
1 ^ t < w ^ n). 

Let us define, for t = 1 , . . . , r + 25, 

Ct = {ueT*cM\ (X,u)=OfoiallXeHk, k^t, k = 1, . . . ,r + 25} . (5) 

For any multi-index a = (a l 5 . . . , an), n = r + 25 of weight \a\ = ^ a{ = p, let 
i 

us introduce the subspace 
Ca = Cx A • • • A C1 A • • • A Cn A • • • A Cn . 

' * ' ' * ' 
ai-times an-t imes 
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Now the complexification of the cotangent bundle T*CM = A1(M) has a de-
n 

composition T*CM = 0 C t , and the bundle of complex differential p-forms 
t=i 

on M , AP(M) = ( f i p (M))C is decomposable as follows: hP(M) = 0 Ca. 
\a\=p 

2. In what follows, we suppose that the polynomial structure / on M is inte­
g r a t e . The following can be proved: 

THEOREM 2 .1 . The structure f is integrable if and only if the following con­
dition is satisfied: 

n 

(i) if UJ G Ca, a = ( a 1 , . . . , a n ) . n = r + 2s then duo e 0 C@ where 

0 = {a1+8L...,an + 6n). 

EXAMPLE 2 .1. A complex m-manifold M can be viewed in particular as a real 
2m-dimensional manifold equipped with an integrable almost complex structure, 
J2 = -I and vice versa, any integrable almost complex structure on M turns 
a real manifold M 2 m into a complex manifold Mm. The tangent bundle of an 
almost complex (respectively, complex) manifold admits the decomposition 

TCM = ker(J - i I) 0 ker( J + i / ) 

and the algebra of complex differential forms can be bigraded as A(M) = 
777, 

0 C^^ .By in tegrab i l i ty [4 ] , d C ^ C C<p+1'9) 0 C ( p ' 9 + 1 ) for p, q = 0 , . . . , m . 
p,q 0 

Elements of C^p^ are called forms of type (p, q). 

r s 
Let us set h = ^ dim H{, n = ^ dim Hr+j. In the case of an integrable 

i=i j=i 

structure, there exist local coordinates ( x l 5 . . . , x m ) in some nbd U of an arbi­
trary point x such that on U, Hi is the span of 

{ ^ - 5 5 ] d i m H t + l ^ k ^ ^ d i m H t ) , i = l , . . . , r , 
^ X / c t<i t=i ' 

and Hr+j is the span of 

\dx~1 n + ^ d i m H r + t + l <\ k ^ n + ^ d i m H r + t I , j = l , . . . , s . 

With respect to the holonomic frame (^ f - ) , the coordinate expression of the 
associated almost contact structure is 

*(AUo, *(jM _.___, J M = i (6) 
\ 0 s j V^x j ftr-+.« V3x=+j ^ . W 
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where n + l ^ j ^ n + n . Let us introduce 

d i d d 
- i » T — • (7) dzn 2 dx-. dx-,-. 

q n+q n+n+q 

Then - ^ - , -^- and the complex conjugates ^ | - form a frame field for the 
complex tangent bundle (suitable parts of which are bases for %i,

 /Hj+r and 
7-Lj+r+si respectively). Its dual co-basis (dxk,dzq,dzq) consists of 

dZq = dXn+q + [ dxh+h+q > dZq = dxh+q ~ [ dXn+h+q ' 

By the integrability conditions, for any differential form u £Ca, a = (aY,..., an), 
n = r + 2s the differential do; G C ( a i + 1 ' - - ' a n ) © • • • ©C ( a i ' " - ' a " + 1 ) . We can intro­
duce the derivation operators 

g . £(ai , . . . ,a;, . . . ,an) _^ £(ai, . . . ,ai + l , . . . ,an) 1 < Z < T 

^ . £ (ai , . . . .a r + i , . . . ,a n ) _^ ^ (a i , . . . , a r + j + l , . . . ,an) 1 < 7 < 5 (8) 

A - : C(ai'---'a^+*+j'---»an) __̂  ^ (ai , . . . ,a r + s + i H- l , . . . ,a n ) 1 < j < 5 

uniquely determined by the formula 

du = d1u + h dru + AXCJ + • • • + Asu + Axu + • • • + Asu . 

By evaluation in local coordinates A p = A -a;. 

EXAMPLE 2.2. On a complex manifold we obtain the decomposition d = dx +d2 . 

Let D stand for the operator di, or A , or A •, respectively. We say that a 
differential p-form on a polynomial manifold (M, / ) (respectively, on an open 
subset V C ( M , / ) ) is 

(i) D-closed if Do; = 0, 
(ii) D-exac£ if u = DcY for some (p— l)-form a on M (respectively, on V ) . 

As in the case of the exterior differential d, any D-exact form is D-closed but 
the converse is not true globally. We will prove that the converse holds locally. 

3 . We will use the following generalization of the Poincare Lemma ([8]) for 
p-forms depending smoothly on real parameters. 

LEMMA 3 .1 . Let M be a C°° -manifold, let U C M be an open subset, and 
let tj(t1,... ,tk) be a p-form on M depending (smoothly) on real parameters 
tx,..., tk . Let do; ( t 1 , . . . , tk) = 0. Then for any x G U there exists a nbd Vx 

and a (p — 1) -form a ( t l 5 . . . , tk) on Vx such that da = u on Vx . 

P r o o f . The proof is similar to the classical case [8; pp. 98-100]. • 

Similarly, the Grothendieck Lemma (sometimes incorrectly called the Dol-
beaut' Lemma) ([1; p. 71, 9.4]), which generalizes the Poincare Lemma in a 
complex setting, can be re-formulated as follows: 
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LEMMA 3.2. Let M be a complex manifold, let U C M be an open subset, and 
let u(tv ..., tk) e C^(U) be a C°° complex form on U of type (p, q), p _ 1, 
which depends on real parameters. Let dlu(tl,..., tk) = 0. Then for any x G U 
there exists a nbd Vx and a form a of type (p-l,q), a(tv .. .,tk) G C^p~liq\Vx) 
such that 

0i<*(*i,-•-,**) =u(t1,...,tk). 

For a (real) manifold equipped with a polynomial structure we shall prove a 
similar result. 

THEOREM 3 .1 . Let (M, / ) be a polynomial m-manifold for which the char­
acteristic polynomial R(£) admits only simple roots. Let U C M be open, and 
let LJ G Ca be a p-form where a = ( a 1 , . . . , a n ) . a, _: 1, n = r + 2s (re­
spectively, ar+. _\\, or a r + 5 + j _ 1). Let d^ = 0 (respectively, A-u = 0, 
or A,a; -= 0) . Then for any point x G U there exists a nbd Vx C U and a 
differential (p — 1) -form a G C@(U), ft = ( a l 5 . . . , a, — 1 , . . . , an) (respectively, 
(3 = (a1,...,ar+j - l , . . . , a j or /3 = ( a l 5 . . . , ar+s+j - l , . . . , a n ) ) such that 
dxa = u (respectively, A^-a = u, or A -a = u) on Vx . 

P r o o f . Let dtuj = 0, 1 _\i _\r. Locally, we can write 

u = S 4,...ji,..,fc™ ( x i ' • • •' xm) d ^ A • • • A dz^ A • • • A d z ^ 

= S d x i i A - - - A d ^ I A ( X ; 4 l . . . l ^ ^ ^ ^ (9) 

A d Va i + i A , , , A d Z i i A , , , A d ^ 

where the first sum runs over 1 _ i1 < • • • _ n, 1 _ ix < • • • _ n , 1 _ fca < 
• • • _ n, the third sum runs over (^ + 1 , . . . , i{ + a,) , / = a-_ H i- a ^ j , and the 
second sum over the remaining indices. Let us introduce ft(x) G (C{)

ai(M) = 
C(o,...,a„...,o), ft = V / , , . (x) dx, n A - A dx, . . Then u = dx, A 

' z _ ^ ii , . . . , ,7i , . . . ,«,„ v / 2/ + 1 ^ .+a^ ^l 

• • • A ft A • • • A dzk where ft is regarded as an a—form on T~ii in variables 
corresponding to the coordinates on /Ki while the other coordinates play the 
role of parameters. Let us consider an integral manifold M, of the distribution 
T-Li (which exists by integrability of / ) . Denote by d, the exterior derivative 
with respect to M, . Then 

d-u = ± dx- A • • • A dx, A d, ft A dx, A • • • A dzh . (10) 
1 ll H l ^l+ai + l Ku, V ' 

Since dp = 0 we obtain d,u; = 0. By Lemma 3.1, there exists locally an 
(a, — l)-form ft G (Ci)

ai~1(Mi) in the same variables, depending on the same 
parameters such that d, ft = ft. Now let us consider ft as a form in all the 
variables x 1 , . . . , x m , ft G ( C ^ - ^ M ) . Then 

a = _ T dxh A • • • A ft A • • • A dzkw (11) 
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is the required form satisfying d{a = u. 
Similarly, in the case A -u = 0, after a suitable replacement of coefficients in 

the coordinate formula for u, we obtain a form ft on Ur+j in variables corre­
sponding to Ur+j which depends on real parameters. By integrability, through 
each point there passes a unique maximal integral submanifold Mr+j of the dis­
tribution Ur+j • The restriction JjPr+j of $ onto Mr+j is an integrable almost 
complex structure on the almost complex manifold Mr+j. Therefore Mr+j is 
a complex manifold ([1], [4]), and we can apply Lemma 3.2 considering Q as a 
form on M or on M{ alternatively. Denote by p ( r + ^ the projector onto the 
dual space Ur+j • Let us introduce an operator dr+j by dr+jr = V{r+j\dr+j r ) 
for r E Ur+y Obviously, A-u = 0 if and only if dr+fil = 0. Locally, there 

exists ft e {Cr+j)
ar^~l such that dr+j(Cl) = ft. In some nbd of a given point, 

the form a introduced by 

a = ̂  dxh A • • • A &z A ft A • • • A dzkw (12) 

satisfies A . a = u. 

Let AJ-CJ = 0. Then A-u = 0 and locally, there is a form /3 satisfying 

A• (3 = u. Consequently, a = (3 satisfies A-a = u. D 
•* 3 
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