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(Communicated by Sylvia Pulmannovd) 

ABSTRACT. Let M be a BL-algebra or a pseudo BL-algebra or a bounded 
residuated ^-monoid and let a < b, a, b G M. We endow the subinterval [a, b] 
with algebraic s truc ture to form an algebra of the same kind as the original one. 
Ob tained results generalize ones presented in [CHAJDA, I .—KUHR, J.: A note 
on interval MV-algebras, Ma th. Slovaca 56 (2006), 47-52] and [CHAJDA, I.— 
KUHR, J.: GMV-algebras and meet-semilattices with sectionally antitone "permu
tations, Ma th. Slovaca (To appear)], [JAKUBIK, J.: On interval subalgebras of 
generalized MV-algebras, Ma th. Slovaca 56 (2006) (To appear)] for MV-algebras 
and pseudo MV- (GMV-) algebras, respec t ively We also s tudy restrictions of Bos-
bach s ta tes on such subinterval algebras. We show that for a commu ta t ive case 
it is necessary to introduce one additional condition and for a non-commutative 
case it is necessary to introduce two conditions, left and right one, in order tha t 
the restriction of a state can define a s ta te on the subinterval. We prove that 
BL-algebras always satisfy the additional condition. 

1. Introduction 

Many valued logics are modelled by many kinds of algebras. BL-algebras were 
introduced by P. H a j ek [14] as an algebraic model of the so called basic logic, 
i.e. a fuzzy logic of continuous t-norms and their residua. 
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Various kinds of generalizations of BL-algebras were studied. One line of gen
eralization follows from omitting the commutativity condition. Non-commutative 
BL-algebras, called pseudo BL-algebras, were introduced by A. D i N o l a , 
G. G e o r g e s c u , A. I o r g u l e s c u in [7], [8]. Particular examples of pseudo 
BL-algebras are pseudo MV-algebras. These were introduced by G. G e o r g 
e s c u , A. I o r g u l e s c u [13], and independently, under the name GMV-al
gebras, by J. R a c h u n e k [16]. In [7; Proposition 3.27] it was shown that 
pseudo MV-algebras are pseudo BL-algebras that satisfy the identity (x^)~ = x 
= (x~)~ , where x~ := x —> 0 and x~ := x ~> 0. 

Another line of generalization of BL-algebras stems from omitting the pre-
linearity condition. Such a generalization was studied by A. D v u r e c e n s k i j , 
J . R a c h u n e k [10], [11], [12] and the resulting algebras are called (commuta
tive) bounded residuated ^-monoids ((commutative) bounded I?£-monoids, for 
short). These monoids are also known as bounded integral generalized BL-alge
bras^ see [2]. For the sake of completeness, we note that commutative bounded 
I?^-monoids satisfying the prelinearity condition are BL-algebras and bounded 
I?£-monoids with the prelinearity are pseudo BL-algebras. 

Recently, I. C h a j d a , J. K u h r [3], [4] and J. J a k u b i k [15] solved the 
problem of introducing an MV-algebra structure ([3]) and a pseudo MV-algebra 
(GMV-algebra) structure ([4], [15]) on subintervals of the algebras. The natural 
question arises: 

Is it possible to do it also for BL-algebras, pseudo BL-algebras and 
(commutative) bounded Rl-monoids? 

A positive answer is in Section 3. 

Sections 4 and 5 contain an analysis of the properties of special conditions, 
namely, P(a) or PL(a) and PR(a) . With the use of the representational the
orem of BL-algebras due to P. H a j e k [14] it is shown that P(a) is satisfied in 
each BL-algebra M and any a G M. 

A motivation for the study of such identities is the fact that they are sufficient 
for restricting existing Bosbach states on the whole algebra also on subinterval 
algebras as it is shown in Section 6, which is dedicated to the study of some 
properties of Bosbach states. 

2. Basic definitions 

In this part, we define some notions used in this paper. We start with the 
definitions of the concerned structures. 

BL-algebras, as an algebraization of a basic logic, are due to P. H a j e k [14]. 
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DEFINITION 2 . 1 . An algebra (M;©, A, V, ->,0,1) of type (2,2,2,2,0,0) is 
said to be a BL-algebra if the following conditions are satisfied for all elements 
x,y,z G M : 

(i) (M; A, V, 0,1) is a bounded lattice with the smallest element 0 and the 
greatest element 1, 

(ii) (M; ©, 1) is a commutative monoid with a unit 1, 

(iii) x < y —r z iff x O y < z, 

(iv) xAy = x(D(x->y), 

(v) (x->y)V(y->x) = 1 . 

A non-commutative generalization of BL-algebras, introduced by A. D i 
N o l a , G. G e o r g e s c u , A. I o r g u l e s c u in [7], [8], is defined as follows. 

DEFINITION 2.2. An algebra (M; ©, A, V, -», ->, 0,1) of type (2, 2, 2, 2, 2, 0, 0) 
is a pseudo BL-algebra if the following conditions are satisfied for all x,y,z G M : 

(i) (M; V, A, 0,1) is a bounded lattice with the smallest element 0 and the 
largest element 1, 

(ii) (M; ©, 1) is a monoid with unit 1, 

(iii) x © H < z iff x < y —> z iff y < x ^ z, 

(iv) xAy = (x-+y)Ox = x®(x^y), 

(v) (x —> y) V (y —>• x) = 1 = (x ~> H) V (?/ ~> x) . 

In Definitions 2.1 and 2.2 the property (iii) is called an adjointness, (iv) a 
divisibility and (v) a prelinearity. 

We use the following abbreviations: x~ := x —r 0 and :r~ := x ~> 0 and for 
BL-algebras there are the following important subvarieties. 

A BL-algebra satisfying the identity x = x is said to be a Lukasiewicz 
BL-algebra and it is an MV-algebra. A BL-algebra satisfying the following two 
identities: 

(i) x A x~ = 0, 
(ii) z 0(xOz-±yOz)<x—> y 

is said to be a product BL-algebra. Finally, the identity xQx = x defines a Go del 
BL-algebra. Godel linear BL-algebras are obtained as ordinal sums (pastings) of 
trivial {0,1} MV-algebras. 

For a pseudo BL-algebra we can (due to [8]) assume the following subvarieties. 
A pseudo BL-algebra is said to be good, if it satisfies the identity x~~ = x~~ . As 
it was mentioned earlier, pseudo MV-algebras are good BL-algebras satisfying 
identity x = x~~ = x~~. A product pseudo BL-algebra is a pseudo BL-algebra 
with the following identities: 
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(i) x A x~ = 0 = x A x~ , 
(ii) z Q (x Q z ^ y Q z) < x -> y, 
(iii) z~~ 0 (zQx -w zQy) <x~^>y. 

Further generalization of the concept of a (pseudo) BL-algebra which omits 
a prelinearity condition, introduced by A. D v u r e c e n s k i j and J. R a -
c h u n e k in [10], [11], for commutative case, and in [12], for non-commutative 
case, are the notions of a commutative bounded residuated £-monoid (general
ization of a BL-algebra) and a bounded residuated £-monoid (generalization of 
a pseudo BL-algebra). In the same way as in [10], [11], [12] we will refer to these 
structures as (commutative) bounded R£-monoids for short. 

We say that a pseudo BL-algebra (bounded R£-monoid) is commutative if 
-> = -w. (This implies also commutativity of the operation 0 and vice-versa.) 

Previously defined algebraic structures form a hierarchy: a bounded R£-mo-
noid which is commutative is a commutative bounded it^-monoid, a bounded 
IZ£-monoid with the prelinearity condition is a pseudo BL-algebra and a com
mutative pseudo BL-algebra is a BL-algebra. 

If it is not said otherwise, we assume that M is one of the previously defined 
algebras. 

The following relations of product and residua are obvious: 

a 0 b , b0a<aAb<a, b and b < a -> b, a -w b for any a, b G M . 

The residua -» and ~> satisfy the following monotonicity rules: 
If a < b, then x ^ a < x -+ b, x -^ a < x ~> b, a ^ x > b -± x and 

a —> x > b ~» x for a, b, x G M. 
The operation 0 is distributive over lattice operations A, V, i.e. 

a 0 (x V y) 0 b = (a 0 x 0 b) V (a 0 y 0 6), 

a 0 (x A y) 0 6 = (a 0 x 0 b) A (a 0 y 0 b). 

An element a of M is called an idempotent if a 0 a = a. Using divisibility 
and adjointness, we can prove that if a is an idempotent, then 

.x0a = a 0 . r = aA . r for any xEM) (1) 

i.e. idempotent elements commute (in product 0 ) with any other elements. 
Indeed, a 0 x = a A (a 0 x) = (a 0 a) A (a 0 #) = a 0 (a A x) = a 0 (a 0 (a -w x)) 
= a 0 (a -w x) = a A .x, in the same manner we can prove, that x 0 a = x A a. 

We recall the definition of an ordinal sum (or a pasting) of a finite number 
of bounded i?^-monoids ([12]). For an infinite number, later in Section 5, we 
introduce two different concepts, one due to P. H a j ek [14] and the other due 
to P. A g l i a n o , F. M o n t a g n a [1]. Although the original definitions in [14] 
and [1] were introduced for BL-algebras and for hoops, respectively, we use the 
adaption for bounded /^-monoids. 

128 



ALGEBRAS ON SUBINTERVALS OF BL-ALGEBRAS 

Let (M^;©;, Ai? V ^ - ^ , ^ , 0 ^ 1.) ^ i — 1,2, ...,n, be bounded i^-monoids 
such that M- n M- + 1 = { 1 2 , 0 m } is a singleton for 1 < j < n - 1 and 
M. n M. = 0, for \i - j \ > 2. We identify the element 0-+ 1 with 1{ and set 
0 = 0X, 1 = ln, M = Mx U M2 U • • • U Mn. On M we define operations 0 , V, 
A, —>• and -w as follows: if the arguments are in the same M{, then operations 
coincide with operations in M{. For x G M{\ M- and y G M- \ M{, i < j , we 
define xQy = x = yOx, x—>y = x~>y = l, y ^ x = y-^x = x. Then 

n 
(Af; 0 , A, V, -», ~», 0,1), denoted also as |J M{, is an ordinal sum of bounded 

2 = 1 

it^-monoids M{. It is again a bounded ii^-monoid. This definition can be nat
urally adapted to all other three types of algebras, however, pasting of (pseudo) 
BL-algebras need not be again a (pseudo) BL-algebra. 

3. Algebras on subintervals 

In this part, we introduce a bounded Rl-monoid structure defined on the 
subintervals [a, b] of the interval [0,1]. First we introduce the structure on the 
subintervals of the type [a, 1], then for the [0, a] type and finally, by the combi
nation of the previous two types, we obtain desired results for arbitrary intervals 
[a, b]. We note, that a similar approach was taken in [3], [4], [15]. 

THEOREM 3 .1 . Let ( M ; 0 , A, V,-»,->,0,1) be a bounded Rl-monoid. Then 
algebra M^ := ([a, 1]; 0^ , A, V, -», ^>, a, l ) is a bounded Rl-monoid, where 
x 0 i y = (x 0 y)\l a. Moreover, if M satisfies the prelinearity condition, 
then also M\ satisfies it. 

P r o o f . It is obvious that ([a, 1]; A, V, a, l ) is a bounded lattice with the 
smallest element a and the greatest element 1. The facts that 1 is a unit in M 
and a trivial observation x = x V a for any x G [a, 1] imply that 1 is a unit in 
([a, 1]; 0 i , l ) . Associativity of 0^ is proved with the use of distributivity of the 
product operation over lattice operations and the fact that a 0 x, x 0 a < a. 
Divisibility is implied by divisibility in M. Yi x Q)\y = x Q) y M a < z, then 
x 0 y < z and x < y -> z, y < x —> z. The converse, x < y -> z implies 
x 0 y < z and for z > a, xQyVa<zVa = z. The implication y < x -w z 
is proved in analogous manner. Prelinearity on a subset [a, 1] follows from the 
prelinearity of M . • 

Trivially, M = Ml, {1} = M\ . 

THEOREM 3.2. Let (M; 0 , A, V, ->, -w, 0,1) be a bounded Rl-monoid and let 
ae M. Then M0

a := ([0, a]; ©g, A, V, ->g, -wg, 0, a ) . where 

xQ^y = x(d(a^ y), x ->£ y = (x -> y) ©a and x ^ y = a © (x ~» y), 
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is a bounded R£-monoid. Moreover, if M satisfies the prelinearity condition, the 
same is true for M£ . 

P r o o f . Obviously, ([0, a]; A, V, 0, a) is a bounded lattice with the smallest 
element 0 and the greatest element a. First we prove that a is a unit with 
respect to the 0 Q . Indeed, xQ^a = xQ(a^a)=xQl = x and a 0 Q X = 
aQ(a^x) = aAx = x for any x G [0, a]. For any x, y G [0, a] the product 0 Q 
can be expressed in the following ways: xQ^y = xQ(a ^ y) = (a Ax) 0 (a ~> y) 
= a 0 (a ^ x) 0 (a -w y) = (a -> x) 0 a 0 (a -w y) = (a -> x) 0 (a -> H) 0 a = 
(a —> x) 0 (y A a) = (a —> x) 0 y. Using the previous facts and associativity of 0 , 
we can prove associativity of a product ©{}. x 0 Q (y QQ z) = x 0g (y 0 (a -w z)) 
= (a -> x) 0 (y 0 (a -w z)) = (a -> x) 0 (j/ A a) 0 (a -w z) = (a -> x) 0 (a -> y) 
0 a 0 ( a - > z) = (xQ%y)Q (a ~> z) = (x Q%y) Q%z. Therefore, ([O,a];0g,a) is 
a monoid with a unit a. 

The divisibility condition, for any x,y G [0,a], can be proved as follows: 
X 0 Q ( X ~*Q y) = (a -> x)Q(aQ(x ^ y)) = (aAx)Q(x -w y) = xQ(x -w y) = xAy 
and (x ->g y) 0g x = ((x -> y) 0 a) 0 (a ~* x) = (x -> y) 0 (a A x) = (x -> y) Q x 
= x A H, where we used the divisibility of M . 

Let us assume that x 0 Q y < z, i.e. x 0 (a -w H), (a —> x) 0 y < z. From 
adjointness of M we have a ^ y < x -w z and a —> x < y -> z. Multiplying the 
first inequality by a from the left and the second by a from the right implies: 
y = a Ay < aQ(x ^ y) = x ~»Q y and x = a Ax < (x —> y)Qa = x —>Q y. For the 
converse, let us assume x < y —rg z = (y —> z)Qa (y < x -wg z = a 0 (x ~> z)). 
Then x 0 Q y = x 0 (a ~> y) < (y -> 2) 0 a 0 (a ~* y) = (y -> z) 0 (a A H) = 
(y -^ z)Qy < yAz < z for y < a (xQ%y = (a -> x)Qy < (a —> x ) 0 a 0 ( x -w 2) 
= (a A x) 0 (x ~» z) = x 0 (x ~> z) = x A z < z for x < a ) . 

Let M satisfy the prelinearity condition. Then (x ^ 5 y) v (y ^0 x) = 
(a 0 (x -~> y)) V (a 0 (y ~> x)) = a 0 ((x -w y) V (j/ -> x)) = a 0 1 = a . The 
equality for —> is proved in the similar manner. • 

Trivially, M = MQ1 , {0} = M0°. 
In the particular cases, e.g. a is an idempotent, is the operation x —>Q y 

simply defined as (x -> y)Aa. However, it is not the case for arbitrary elements a. 

E X A M P L E 3 .3 . The operation ->g cannot be defined as x ->jj y = a A (x —> y), 
e.g. if a is not an idempotent. Let us consider a BL-algebra whose product 
operation corresponds to the product t-norm and the subinterval [0, \] of the 
unit real interval. Then 

\ 1 A / N / 2 for X < 2V > 
x ^ , = ^ A ( x ^ H ) = ( f for^2y. 

1 1 1 

Due to the divisibility condition, xAy = X0Q (X -^Q y) = xQfi \ = x for x < 2y, 

but considering y < x < 2j/, we obtain x Ay = y ¥" x, i.e. the contradiction. 
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We can obtain an algebraic structure on the subinterval [a, 6], a < b, by 
applying Theorems 3.1 and 3.2. The order of the application is not important, 
i.e. both results lead to the same operations, as the following computations show: 
[ 0 , l ] - > [ a , l ] - > [ a , 6 ] : 

[a, 1]: x®l y = (x(Dy) Va , x->1
ay = x->y, x^\y = x^y. 

For any x, y G [a, b] we have the following inequalities. 

(x - r y) Ob > (x^y)Ox = xAy>a, 

b(D(x-^y)>xQ(x'^y)=xAy>a. 

[a,b]: 

x Qb
ay = x 0* (b ~*l y) = x ©* (b ~» y) = (x 0 (b ~* y)) V a, 

x -+b
ay = (x ->* y) Q\b = (x -> y) Qab = ((x -> y) Qb) V a = (x -> y) 0 6, 

z ~*a 2 / = & ©I (x ~*i y) = & ©a ( x *~ y ) = (b © ( x ~* 2 ! ) ) v a = b © ix ~* y) • 

[0, l ] ->[0 .&]->[a,6] : 
[0, b]: x Qb y = x 0 (b ~.> y) , s ->* y = (x -> y) 0 6, a -»* y = b 0 (re ~» y). 
[a,b]: 

x Qb
ay = (x Qb

0y)V a = (x 0 (b ~»y)) V a , 

* - > o I / = «->o » = ( « - > » ) © 6 , 

x •-»* j/ = x ~->* y = b 0 (.r ~> y ) . 

COROLLARY 3 .4 . Let (Af;©,A, V,->, ~»,0,1) 6e a bounded Rl-monoid and 
let a,b G M swe/i thai a < b. Then 

Mb
a:= ([a,b];Qb

a,A,V,^b
a,~>b

a,a,b) 

is a bounded R£-monoid, where 

x ®a ?/ = (# o (& ^ y)) v a» £ ->a ?/= ( x -* y) 0 & a n ^ 
x ~*a 2/ = 6 0 (x ~> y) • 

Moreover, if M satisfies a prelinearity condition, the same is true for Ma . 

Obtained operations correspond to ones presented in [3] and [4], [15] for 
MV-algebras and pseudo MV- (GMV-) algebras, respectively. We only check the 
non-commutative case from [4] because J a k u b i k ' s result is equivalent to it 
(see [15]). We will use a group representation of pseudo MV-algebras due to 
A. D v u r e c e n s k i j [9], i.e. M = T(G,u) = {x € G : 0 < x < u}, where G is 
a lattice ordered group with a strong unit u and MV-operations are defined as 
follows: x <§>y = (x + y ) A u , x~ = u — x and x~ = —x + u. 
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We recall this result ([4]): 

For a, b G M, a <b, the operations on GMV-algebra over [a, b] are 
defined as follows: x<Saby = ( x 0 (y 0 a")) Ab, x~ab = (x~ 0 b) 0 a, 
x~*b = a 0 ( i ) 0 x ~ ) . 

Then 

x®aby=(x®(y® O ) A b = (x 0 (y 0 ( - a + i/))) A b 

= (x 0 ( ( ( - a + u) - u + y) V 0)) A b = (x 0 ( - a + y) V 0) A b 

= ((x + (-a + y)V0) Au) Ab= ((x-a + y)V x) Ab 

= (x — a + y) A b for x, y G [a, b]. 

x-ab =(x- Qb)®a= ((u-x)Qb)@a= ((b-u + (u-x))v0)®a 

= ((b - x) V 0) 0 a = ((b - x) V 0 + a) A u = ((b - x + a) V a) A u 

= (b — x + a) A u = b — x + a for x, y G [a, b]. 

x~ab = a 0 (b 0 x~) = a 0 (b 0 ( - x + u)) = a 0 ( ( ( - x + u) - u + b) V 0) 

= a 0 ( ( - x + b) V 0) = (a + ( ( - x + b) V 0)) A u 

= ((a — x + b) V a) A u = (a — x + b) A u 

= a — x + b for x, y G [a, b]. 

Our results, when expressed in the group representation language, imply the 
following: 

x-ab = x - > J a = ( x 4 a ) 0 i ) = ( x " © a ) 0 6 = ((u - x + a) A u) 0 b 

= (b - u + (u - x + a) A u) V 0 = ((b - x + a) A b) V 0 = (b - x + a) V 0 

= b — x + a for x e [a, b]. 

x~ab = x ^ a = 6 © ( a ; ^ a ) = 6 0 ( a e x~) = b 0 ((a - x + w) A u) 

= ((a - x + u) A u - u + b) V 0 = ((a - x + b) A b) V 0 = (a - x + b) V 0 

= a — x + b for x G [a, b]. 

^ ©£ y = x 0 (b ~> y) V a = (x 0 (y 0 b~)) V a = (x 0 ((j/ - b + u) A u)) V a 

= (((?/ - b + u) A u - u + x) V 0) V a = (((y - b + x) A x) V 0) V a 

= (y — b + x) A x V a = (y — b + x) V a for x, y G [a, b]. 
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x®b
ay:= (x~«b Qb

a sT-*)~a b = ((b - x + a) Qb
a (b - y + a))~ a b 

= (((b -y + a)-b+(b-x + a))Vayab 

— ((b — V + CL — x + a) V a) ~ab 

= a— ((b — y + a — x + a) V a) +b 

= ((a + (-a + x-a + y-b)) A0)+b 

= (x — a + y) A b for x, y G [a, 6]. 

When b in Corollary 3.4 is an idempotent, then operations become as follows: 

x Qb
a y = x 0 (6 ~* y) V a = (6 A x) 0 (b ~> y) v a = (6 -> x) 0 b 0 (b ~> t/) V a 

= (6 -> x) 0 6 0 6 0 (6 ~> 7/) V a = (6 A x) 0 (6 A y) V a 

= (x©2/ )Va for x,y<b, 

x ->k ?/ = (x —> 2/) 0 b = (x —> y) A 6 and 

x ^ y = bO (x ^> y) = (x ~> y) Ab. 

Moreover, if a is also an idempotent, then x Qay = x Qy. 

4. Identities PL(a,x,y), PR(a,x,y) and P(a,x,y) 

Let us consider the following identities: 

a -> ((x —> y) 0 a) = x -> y , PL(a, x, H) 

a ^> (a 0 (x -w y)) = x ~> y . PR(a, x, H) 

In the commutative case PL(a, x, y) = PR(a, x, y) := P(a, x, y): 

a -> (a 0 (x -> y)) = x -> y . P(a, x, j/) 

Let M be a bounded Rt-monoid and let a E M be a fixed element. We say 
that M satisfies the condition PL(a) (PR(a) , P(a)) if the identity PL(a, x,H) 
(PR(a,x,H) , P (a ,x , y ) ) hold for any x,y < a. 

The monotonicity of residua ensures for the expressions in identities PL (a) 
and PR(a) the following lower and upper bounds: 

x -> y < a -> ((x -> y) 0 a) < a -> (x -> y) = (a 0 x) -> y, (2) 

x ^ y < a ^ (a 0 (x -^ y)) < a ~* (x ^> y) = (x 0 a) ~> ?/. (3) 

Thus by (1), if a is an idempotent, then PL(a) and PR(a) are satisfied. 
For lower bounds of residua we have for any x, y G [0, a]: 

x - > ? / > x - > 0 > a - > 0 , (4) 

x^y>x~^0>a~^>0. (5) 
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However, the replacing of the condition P(a) with either 

a —> (a 0 x) = x for any a > x > a —> 0 , 

or 

a —> (a 0 x) — (a -> 0) V x for any x G [0, a] 

weakens the original condition as the following example shows. 

E X A M P L E 4 . 1 . Let us consider M = {0, a, 1}, the 3-element linear Godel 
BL-algebra, i.e. M is an ordinal sum of two copies of {0,1} MV-algebras. Then 
a is an idempotent, so P(a) holds and a -> 0 = 0, but a^(aQa) = a^a = 
l / a = a V ( a - r 0 ) = a V 0 . 

If L is a pseudo MV-algebra, then the conditions PL (a) and PR(a) are 
satisfied. Let us recall, 

x ~^ y = ?/ 0 x~ , x -> y = x~ © ?/ ? a~ = a ^> 0, a ~ = a — » 0 . 

Using (4) and (5), for z — x-^y or z — x ~» y, we obtain: 

a -> (z 0 a) = a~ 0 (2 0 a) = a" 0 (2 0 a ) = a" V z = z , 

a ~» (a 0 z) = (a 0 z) © a~ = (a~~ O z) ® a~ = a~ V z = z. 

Please note, that we have used the GMV definition ([16]) of a product, i.e. 
x 0 y = (x~ 0 y~)~ instead of a converse definition of the product ([13]), i.e. 
y 0 x = (x~ 0 y~)~. (In the latter case, a divisibility becomes x 0 (x —> y) = 
(x ~> y)Qy, etc..) 

Moreover, for BL-algebras (by [5; Lemma 4.1]) if M is either a linearly 
ordered Lukasiewicz BL-algebra (an MV-chain) or a linearly ordered product 
BL-algebra (a product chain), then the equation x —> (x 0 y) = (x —> 0) V y is 
satisfied for any x,y G M. Applying the result f o rx = a, y — x-^ry and using 
the lower bounds for x —> y, x,y G [0,a], ((4), (5)), we obtain that P(a) holds 
for MV-chains and product BL-chains. 

Let us recall, that Godel BL-algebras satisfy the identity xQ)x = x, therefore 
each element of a Godel BL-algebra is an idempotent and the condition P(a) 
trivially holds for any a. Moreover, in Godel BL-algebras we have a -> (a 0 x) 
= a —> x for any a,x € M. Due to [8; Corollary 2.30], all Godel pseudo 
BL-algebras, i.e. pseudo BL-algebras satisfying identity x 0 x = x , are com
mutative, i.e. BL-algebras. 

Using the similar technique as in [5; Lemma 4.1] we can prove that linear 
product pseudo BL-algebras satisfy the conditions PL(a) and PR(a) for any a . 
First we prove that the following identities are satisfied for any a,x G M : 

a -> (x 0 a) = (a -> 0) V x , (6) 

a ~> (a 0 x) = (a -w 0) V x . (7) 
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Indeed, if a = 0, it holds trivially. Let us consider a / 0 , then from a A a~ = 
0 = a A a~ and linearity of order we obtain that a~ = a~ = 0 and therefore 
a = a = 1 . Using the second and third identity, where z = a, x = 1 and 
2/ = x, we have £ 0 ((x 0 2) -» (y 0 z)) < x —> y = 1 0 ((1 0 a) —> (x 0 a)) = 
a - > ( x 0 a ) < l - r X = x < x V ( a - > > O ) and 2:— 0 ((z 0 x) ^ (2:0 y)) <x^y 
= 1 0 ((a 0 1) ~» (a 0 x)) = a ~> (a 0 x) < 1 ~> x = x < x V (a ~» 0) . The 
converse inequalities stems from the monotonicity of residua and the adjointness, 
i.e. a —r (x 0 a) > x, a —r 0 and a —> (a 0 x) > x, a ^ 0. So again assuming 
x = x -> y in (6) and x = x -w y in (7) and the use of (4), (5) conclude the 
validity of the conditions PL(a) and PR(a) for any a G M. 

The previous reasoning is summarized in the following proposition. 

PROPOSITION 4.2. Let M be either 

(i) a linear product BL-algebra, 
or 

(ii) a Godel BL-algebra, 
or 

(iii) a linear Lukasiewicz BL-algebra, 
or 

(iv) an MV-algebra, 
or 

(v) a linear product pseudo BL-algebra, 
or 

(vi) a pseudo MV-algebra 

and let a G M. Then in the cases (i)-(iv). M satisfies the condition P(a) and 
in the cases (v) and (vi) M satisfies PL (a) and PR(a ) . 

5. Algebraic constructions and 
the conditions P(a), PL(a) and PR(a) 

In this part, we perform a further analysis of the conditions P(a ) , PL(a) 
and PR(a) with respect to algebraic constructions of new algebras such as form
ing a subalgebra, an isomorphic image, a direct and subdirect product and an 
ordinal sum (pasting). Unfortunately, homomorphic images in general do not 
preserve validity of the conditions P(a) , PL (a) and PR(a ) . As a consequence 
of P . Hajek's representational theorem ([14]) of BL-algebras we conclude that 
P(a) is satisfied for any BL-algebra M and all a G M. 

We start with direct and subdirect products. The componentwise definition 
of the operations in direct or subdirect products of bounded R£-monoids implies 
the following propositions. 
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PROPOSITION 5.1 . Let (M{ : i G I) be a non-empty system of commutative 
bounded R£-monoids such that for each i € I and a G Mi the condition P(a) 
is satisfied and let M be either (i) a direct, or (ii) a subdirect product of M{. 
i £ I. Then for any a G M the condition P(a) holds. 

PROPOSITION 5.2. Let (Mi : i G I) be a non-empty system of bounded 
Rl -monoids satisfying the conditions PL (a) and PR(a) for any i € I and 
a G Mi and let M be either (i) a direct, or (ii) a subdirect product of M{, i £ I. 
Then M also satisfies the conditions PL(a) and PR(a) for any a G M. 

The conditions P(a, x, y), PL(a, x, y) and PR(a, x, y) are in the form of the 
identities, therefore they remain valid also for subalgebras. 

PROPOSITION 5.3. Let M be a commutative bounded R£-monoid satisfying 
the condition P(a) for all a G M and let S C M be its subalgebra. Then S 
satisfies the condition P(a ,x ,y) for all a G S and all x,y G S fl [0, a] . 

PROPOSITION 5.4. Let M be a bounded R£ -monoid satisfying the conditions 
PL (a) and PR(a) for all a G M and let S C M be its subalgebra. Then S 
satisfies the conditions P L ( a , x , ^ ) . PR(a, x,y) for all a G S and all x,y G 
S H [0, a ] . 

Let A, B be bounded I?£-monoids and let h: A -> F? be a surjective homo-
morphism, i.e. a surjective mapping preserving operations A, V , © , - » , ~* and 
constants 0 , 1 . Then for any a,x,y G B, there exists ua, ux, u from A such 
that h(ua) = a, / i ( ^ ) = x and /i(w ) = ?/. Although a -» ((x -> T/) 0 a) = 
AK "> (K "> S) 0 ^)) a n d a ~> (tt©(X ^ 2/)) = KUa "> K © K ~> Uy))) > 
it need not be true that ^ a -> ((ux -> ^ ) 0 wa) — ux ^t uy (or u a -w 
(wa 0 (Wj ~> w )) = ux <w w ), because a > x,y does not in general imply 
u

a > ux->uy ^ e c a n o n ^ P r o v e M \ A ix^) = h(ux), but not in general (e.g. 
without assuming injectivity of h) ua Aux = ux. Thus, if h is an isomorphism, 
then the conditions PL (a) and PR(a) are preserved. 

For the finite ordinal sums we have the following. 

PROPOSITION 5.5. Let M be an ordinal sum of commutative bounded R£-mo
noids M1,..., Mn. Let a be an element of M, for some j , 1 < j < n. Then, 
if M- satisfies the condition P ( a ) . then the condition P (a ,x ,y ) holds for all 
x,y G [0, a] C M, i.e. P(a) holds in M. 

P r o o f . For a G M there are three cases: 

(A) a e Mj \ {0., 1.} , 
(B) o = 0, , 
(C) a=\i. 
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For j = 1 all three cases hold due to the assumption concerning the algebra 
M-. Let us assume j > 1 . We can exclude the case (B) from our reasoning, 
because it is equivalent to the case (C) for the index j — 1 . For the cases (A) 
and (C), each element u of the interval [0, a] is one of the following 

(i) ueMjXM^^MjMOj}, 
(ii) ueMjnMj_1=0j = lj_1, 

(iii) ueMk\Mj, k<j-l. 

The analysis of all the nine possibilities is summarized in the table: 

X — > • y ^ Л ^ - i W . П % 1 M,\Mjtl<j-l 

Mj^Mj^ 1 or є M f U l , . } єл^-ui,.} y£M,\ Mj 

MjПMj^ 1(<) 1(=) yвM,\ Mj 

Mk\Mjtk<j-l 1(<) 1(<) 1 or 6 Mt \ M- , í = min(fc, l) 

There are the following possibilities: 

• Case 1: x -> y = 1. 

. a -> (a 0 (x -> y)) = a -> (a 0 1) = a -> a = 1 = (x -> y). 

• Case 2: x -> y e M{\ M. for z < j . 

a —> (a © (x —> _/)) = a —> (x —> ?/) = x —> y . 

• Case 3: x -.> y G M^.. 
The condition implies that x ,y _ M- n[0, a] and we can use the assump
tion of the proposition for M- . 

• 
PROPOSITION 5.6. Let M be an ordinal sum of bounded Rt -monoids M{, 
i = l , . . . , n . Let a be an element of M- for some j , 1 < j < n. Then, if 
Mj satisfies the conditions PL(a) and PR(a ) . then the conditions PL(o,x,?/) ; 

PR(a ,x ,y) hold for all x,y e [0,a] C M . i.e. PL(a) . PR(a) hold in M. 

P r o o f . A similar analysis as in the commutative case gives us the following 
three cases: 

• Case 1: x - > j / = x ^ | / - - l . 

a —> ((x —> y) (D a) = a —>(l©a) = a - > a = l = x - > ? / , 

a ^ > ( a © ( x ^ > y ) ) = a - w ( a © l ) = a—> a = 1 = x ^ y. 
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• Case 2: x -» H, x ~> y G M{\ M- for j > i. 

a -> ((x -> y) 0 a) = a -> (x —>• H) = x —•> y, 

a ^ (a 0 (x -w H)) = a ~> (x ^ H) = x —» 2/ • 

• Case 3: x —>> y, x **> y G M-. 
The conditions imply x, H G M- fl [0, a] and we can use the assumption 
of the proposition for M . 

• 
For infinite ordinal sums we can consider two kinds of definitions of an ordinal 

sum. One is due to P. H a j e k [14] and the second is due to P. A g l i a n o , 
F. M o n t a g n a [1]. 

The essence of P. H a j e k 's definition is in the extension to a linearly ordered 
set with the smallest and greatest element for which the concept of the successor 
is used. In contrast, P. A g l i a n o , F. M o n t a g n a [1] are using only linearly 
ordered set with the smallest element and they identify all elements 1{, i G / , to 
the single element 1. The concept of successor is not needed for their approach. 
We introduce the extension of the definitions for bounded R£-monoids. 

DEFINITION 5.7 (HAJEK). Let (7, <) be a chain with a least element 0 and 
a largest element 1. For each a G / , we define cY+, the upper neighbour of a , 
if it exists, i.e. a + = (5 iff ft > a and there is no 7 such that a < 7 < (3. 
Otherwise, we define cY+ = a. Let (Ma : a G I) be a system of bounded 
Rt-monoids such that for each a , a is the least, a + the greatest element of 
Ma and (Ma - {a ,a+}) n (Mp - {/?,/?+}) = 0 for any a,0 G 7, a ^ (3. 
Then the ordinal sum of the system (Ma : a G I), denoted M , is the algebra 
(M; 0 , A, V, —r, -w, 0,1), where the sets and operations are defined as follows: 

M = \jMa, 

x < y for x G Ma , y G M iff a < ß or a — ß and x < y. 

x y = 

x - > y = < 

x ~» y = < 

x(Day, x,y G M a , 
min(x, y), x G M a , y G Mp , a 7-- f3 , 

' 1, a < 2l 

a -> a 2/ > x,y eMa, 
{y, xeMa\Mp, yeMp\Ma, c r > / 3 , 

1, x <y, 

x~*ay, x,y£Ma, 

L 2/- ^ M a \ ^ . y£M(3\M*> a > P ' 
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DEFINITION 5.8 (AGLIANO, MONTAGNA). Let (7, <) be a linearly or
dered set with the smallest element 0 and let MQ be a system of bounded 
^ - m o n o i d s such that Ma fi M^ = {1}, for a,/3 G / , a ^ /?. Then the ordinal 
sum of the system (M a : a G I) is the algebra ( | j M a ; A, V, 0 , —;>, ~*,0 0 ,1) , 
where the operations are defined as follows: 

x < y if x<ay, a e l , x,y G M a , 

x < H if xeMa, yeMp, a < / ? , 

' x 0 a y , x, ?/ e Ma , 

x 0 3 / = < p , x G A a , 2 / G A / 3 \ { l } , a > / ? , 

x , x G A a \ { l } , 2 /GA^, a < / 3 , 

r x -> a y , x, y G M a , 

2/, x G A a , 2 / G A / 3 \ { l } , a > / ? , 

1, X G A Q \ { 1 } , i / G ^ , a < / 3 , 

r x <wa 7/, x,yeMa, 

y=< y, xeAa,yeAp\{i},a>p, 

Kl, xeAa\{l}, yeAp, a<p. 

Same as for a finite case, also infinite ordinal sums preserve the conditions 
P(a) , PL(a) , PR(a) . 

PROPOSITION 5.9. Le£ (J, <) be a linearly ordered set with the smallest ele
ment 0 and the greatest element 1 and let (M a : a G I) be a system of bounded 
R£-monoids satisfying the conditions PL(a) , PR(a) for any ael and a G M a . 
Let M be the ordinal sum of the system Ma, a e I, in the sense of Hdjek. Then 
for any a G M the conditions PL(a) . PR(a) hold. 

P r o o f . Let a be an element of M . Then there exists a e l such that 
a e Ma. Let x, y be elements of [0, a] C M . Using the same reasoning as in 
Proposition 5.5, we conclude that there are the following three cases: 

(i) x -> H, x ~>y e M a , 

(ii) x-^y = l = x~^y, 

(iii) x^y,x^yeMp\Ma, (3 < a. 

Again, the case (ii) is trivial, the case (i) follows from the assumption con
cerning MQ and the case (iii) from the definition of the operations. • 
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PROPOSITION 5.10. Let (I,<) be a linearly ordered set with the smallest 
element 0, let (Ma : a G I) be a system of bounded R£ -monoids such that 
Ma D Mp = {1}, a, (3 G I, a ^ (3, and that PL(a), PR(a) are satisfied for 
all a E I and any a G Ma. Then the ordinal sum in the sense of Agliano, 
Montagna of the system (Ma : a G I), denoted M, satisfies the conditions 
PL(a) and PR(a) for any a G M. 

P r o o f . Any a G M is either 1, or a G Ma \ {1} for some a £ I. The 
case a = 1 is trivial. Let us assume a ^ 1 and let #, y G [0, a]. For the element 
u G [0, a] there are the following two possibilities: u G Ma \ {1}, or u G MQ \ {1}, 
(3 < a. The analysis of four possible combinations leads to the following cases: 

(i) x^y = l = x~>y, 
(ii) x^y,x^yeMa\{l} 

(iii) x -> y, x ~> y G Mp \ {1}, (3 < a. 

Using the definition of the operations we conclude the proof. D 

The application of the previous result on the Hajek representation theory 
of BL-algebras leads to the fact that the condition P(a) is satisfied in any 
BL-algebra M and any a G M. 

COROLLARY 5.11. The ordinal sum M of a system of BL-algebras (Mi : 
i G / ) satisfying the condition P(a) for any a G M{, i G / . satisfies again the 
condition P(a) for any a. 

COROLLARY 5.12. A linearly ordered BL-algebra M satisfies the condition 
P(a) for any a G M. 

P r o o f . Due to [14], each linearly ordered BL-algebra can be isomorphically 
embedded into a linear saturated BL-algebra, and each saturated linearly ordered 
BL-algebra is the ordinal sum of product of Lukasiewicz BL-chains (or Godel 
BL-chains [5]). Due to Proposition 4.2, each BL-chain of the previous two types 
satisfies the condition P(a,x,y). Corollary 5.11 and Proposition 5.3 conclude 
the proof. D 

THEOREM 5.13. Let M be an arbitrary BL-algebra. Then M satisfies P(a) 
for any a G M. 

P r o o f . Due to [5], each BL-algebra is a subdirect product of 
BL-chains. Corollary 5.12 and Proposition 5.1 conclude proof. D 
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6. Bosbach states 

Let us recall the definition of Bosbach states. 

DEFINITION 6 .1 . Let M be a bounded i^-monoid. Then a mapping s: 
M -> [0,1] is said to be a Bosbach state if the following conditions are satisfied: 

(i) s(0) = 0, s(l) = l, 
(ii) s(x) + s(x -> y) = s(y) + s(y -> x), 

(iii) s(x) + s(x -v* y) = s(y) + s(y ~> x). 

PROPOSITION 6.2. Let M be a bounded R£-monoid, let a,b G M fixed ele
ments and let s be a Bosbach state on M. Then 

(i) if s(a) T-= 1, then sa(x) = i y_7(a) ^s a bosbach state on Ma ; 

(ii) if s(a) 7-= 0 and M satisfies the conditions PL(a) and PR(a), then 
s(x) 
s(a) 

s%(x) — jffr is a Bosbach state on M£; 

(iii) if a <b, s(a) ^ 5(b) and the conditions PL(b,x,y), PR(b,x,y) hold for 

any x,y G [a,b], then sa(x) = _(%)_*(_) Z5 a Bosbach state on Ma. 

P r o o f . 

Case (i): 
The condition (i) of the definition of a Bosbach's state holds trivially. Let us 
compute: 

1 / x 1 / 1 x 1 / x 1 / x s(x) — s(a) s(x —> y) — s(a) 
SKX) + s\(x - i y) - s\(X) + si(x -> „) = -LJ-^J- + x ^ 

_ s(x) + s(x -> y) - 2s(a) _ s(y) + s(g/ -> x) - 2s(a) 

1 — s(a) 1 — s(a) 

l-s(a) + l-s(a) ~sa(y) + sa(y^x) 

= sl(y) + sl(y ^lx) • 

The case for <wo is proved analogously. 

Case (ii): 
When assuming PL(a, x,y) or PR(a,x,y) we obtain for s the following equali
ties: 

s((x -> H) 0 a) = s(a) + s(x-> y) - 1, 

s(a 0 (x —> t/)) — 5(a) + s(x -w y) — 1. 
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Indeed, 

s(a) + s(a -+ ((x -í> y) 0 a)) 

= s(a) + s(x -» y) = s((.x -r y) © a) + s(((x -> 2/) 0 a) -r a) 

= s ( ( a ; - * 2 / ) 0 a ) + 1 , 

s(a) + s(a -> (a 0 (x -w 2/))) 

= s(a) + s(x ^ | / ) = s ( a 0 ( x ^ | / ) ) + s ( (a 0 (x —> 2/)) ^ a ) 

= s ( a 0 (# ~> y)) + 1 . 

Therefore, 

sS(x) + s"0(x^a
0 y) = sa

0(x) + s«0((x -> y) 0 a) = -£-1 + a ( ( x " > y ) ° a ) 

s(a) s(a) 

s(x) + s(a) + s(x —г 2/) — 1 _ s(2/) + s(a) + s(H 

s(a) s(a) 

_ _ ) % ^ x ) Q a ) _ 
- s ( a ) + s ( f l ) - s 0 U / j + s 0 U / ^ 0 x j . 

For the residuum ~»{J we can proceed analogously. Trivially, s%(a) = 1 and 

sg(0) = 0. 
Case (iii): 
Residua in [a, 6] are the same as for the algebras [0, b], therefore we can use the 
same approach as in the case (ii). • 

If M is a BL-algebra, then P(a) holds for any a E M and we have the 
following corollary: 

COROLLARY 6.3. Let M be a BL-algebra, let a, b E M be fixed elements and 
let s be a Bosbach state on M. Then 

(i) if s(a) ^ 1. then s*(x) = 8^l~ffi is a Bosbach state on M\; 

(ii) if s(a) / 0. then s%(x) = jM is a Bosbach state on M£ ; 

(iii) if a<b, s(a) ^ s(b), then sb
a(x) = ffi)Zffij is a Bosbach state on Mb

a. 

We say that a non-empty subset F of M is a /z^er, if 

(i) x,y E F =i> £ 0 2 / E F , 
(ii) x E F , yeM, y>x => yeF. 

A /z/ter generated by an element a E M , denoted F ( a ) , is the smallest filter in M 
containing the element a. Trivially, F(a) = {x E M : am < x for some m E N}, 
where am := a 0 • • • 0 a (m-times) and a0 := 1. 
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PROPOSITION 6.4. Let M be a bounded Ri-monoid and let s be a Bosbach 
state on M. Let a G M be an element such that F(a) = M. Then s(a) ^ 1. 

P r o o f . For any a, x E M we have the inequality x < a —J> (xQa), therefore 
s(x) < s(a - ) ( x 0 a)). 

We claim, s(an) > ns(a) — (n — 1), where an := a 0 • • • 0 a. We can proceed 
by mathematical induction. For n = 1 it is obvious. Let us assume that the 
inequality is true for any k <n. Then for n + 1 we obtain s(an)-f-s(an -» a n + 1 ) = 
1 + s ( a n + 1 ) , so s(an) - s(an+1) = 1 - s(a n -> a n + 1 ) < 1 - s(a) and s(a n ) + 
5(a) — 1 < s ( a n + 1 ) . Due to the assumption for n , s(an) > ns(a) — (n — 1), we 
can conclude (n + l)s(a) — n < s(a n ) + 5(a) — 1 < s(an+1). 

Using the inequality, if s(a) = l , t h e n s(ak) > ks(a) — (k—l) = k— (k—1) = 1, 
i.e. s(ak) = 1 for any k. Let F(a) = M , so there exists an integer m G N such 
that am = 0 and 0 = 5(0) = s(am) = 1 that contradicts our assumption. • 

PROPOSITION 6.5. Let M be a good bounded Rl-monoid, i.e. x = x 
for any xeM. Then F(a~) = M iff F(a~) = M. 

P r o o f . Let F(a~) = M , then there exists a natural number k such that 
(a~)k = 0. For the implication F(a~) = M = > F(a~) = M , it is sufficient 
to prove, that this condition implies (a~)k = 0. We prove that if (a~)k = 0, 
then (a~)k~m 0 (a~)m = 0 for any 0 < m < k, where x° =: 1. We proceed 
with induction over m. For m = 0, it is trivial. Let us assume that k > m > 1 
and it holds for m - 1, i.e. (a~)k~m+1 0 (a^)™"1 = 0 . Then a~ 0 (a~)k-m 0 
(a^)771'1 = 0 iff (a~)k-m 0 (a-)™"1 < a~~ = a~" iff (a")*-™ 0 ( a ~ ) m = 0 . 
The other direction, i.e. F(a~) = M = > F(a~) = M , is proved with a dual 
reasoning. • 

An element a e M is said to be strong if F(a~) = M or F (a~) = M. 

N o t e 6.6. The motivation for the notion of a strong element stems from the 
notion of a strong unit in ^-groups. One of the characterizations of the strong 
units is the following. An element u of ^-group G is a strong unit iff the ^-ideal 
generated by u is the whole group G. 

Applying Propositions 6.4 and 6.2, if a is a strong element of a bounded 
ii£-monoid M and if s is a Bosbach state on M and the conditions PL(a) , 
PR(a) are satisfied, then either s(a~) ^ 1, or s(a~) / 1, i.e. s(a) ^ 0 and 
s*(x) = 4 4 is a Bosbach state on M0

a. 
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