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(Communicated by Stanislav Jakubec )

ABSTRACT. Let (G,);>0 be astrictly increasing sequence of non-negative inte-
gers defined by a linear recurrence relation. Let S;(n) denote the G-ary sum-of-
digits function. In this paper we establish several distribution results for S5 (n)
which include an analogue of a result of A. O. Gel'fond on the distribution of the
g-ary sum-of-digits function in residue classes as well as an Erdds-Kac-type the-
orem. The main tool in the proofs of these results is an estimate for exponential
sums of the form

| > exp(Zwi(%SG(n) +yn))| <« N,
n<N

where r,s € Z,y€R and A < 1.

1. Introduction and statement of results

The aim of this paper is the investigation of certain properties of number
systems defined by linear recurrences. Before we give an exact definition of these
objects we want to review some earlier results on related topics.

In the present paper we are interested in representations of integers by lin-
ear recurrence number systems. Such representations were studied for instance
by Peth6—Tichy [24] and Grabner—Tichy [13], [15]. In these papers
the authors mainly emphasize the sum-of-digits function S, of these represen-
tations. In particular, they establish an asymptotic formula for the summatory
function of S, which turns out to be of a similar shape as the summatory func-
tion for the g-ary sum-of-digits function obtained by Delange [3]. Moreover,
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they are interested in the distribution modulo 1 of certain sequences defined
via S (cf. also Grabner [14] and Larcher [20]). For similar results from
the viewpoint of substitutions we refer to Dumont—Thomas [7], [8] and
Dumont et al. [6]. Connections of linear recurrence number systems to au-
tomata theory and languages are outlined in Frougny [11].

Recently Drmota and his co-authors established several results on lin-
ear recurrence number systems. We mention here the papers Drmota—
Gajdosik [4], [5]. Especially the first of these papers is strongly related to
ours. In this paper the authors prove a local and a global limit theorem for S, .
Using this, one can easily derive that S is equidistributed in residue classes. In
our paper we want to improve and extend this equidistribution result. Firstly, we
obtain a better error term, on the other hand, we get distribution results even
if the argument of S;(n) is restricted by congruence conditions. The reason,
why this improvement is important, is that it makes it possible to apply sieve
methods. This leads to a series of distribution results of S, with respect to
primes.

After this short review we want to recall the general setting. Let G = (G) ;>0
be a strictly increasing sequence of positive integers and suppose that G, = 1.
For an arbitrary non-negative integer n there exists a unique integer L such
that G, < n < G, . Then the digits of n with respect to the base (G,),5,
can be computed using the greedy algorithm which leads to

n=¢ey(n)Gy+ - +¢e,(n)G,

where 0 < g,(n) < %f—‘ holds. This expansion is unique and the digits satisfy
the inequality
gg(n)Go + -+ +,(n)G <Gy
for 0<k<L.
In this case we define the sum-of-digits function of n with respect to (G;),;>,
by
Sg(n) =¢e4(n) +---+e,(n).

Important examples of such G-ary digital expansions are the ordinary g-ary
expansions with G = ¢’ where ¢ > 2 is an integer. Furthermore, we want to
mention the Cantor number system (see e.g. [16], [19]) which is defined by
G'j = ¢q ... g; with positive integers ¢, > 2.

In this work we are interested in digital expansions arising from sequences
(G j) j>o satisfying a linear recurrence relation. To be more precise, we give the
following definition (cf. [5], [25]):

DEFINITION 1.1. We will refer to a sequence (G J-) j>o0 as a finite linear recur-
rence base, if the following conditions hold: -

(1) Gg=1and G, >2a,G,_;+-+a,Gy+1for 1 <k<d.
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(2) There are integers a, >0 (1 <i<d-1) and a; > 0 such that for each
n>0
Gn+d = alGn+d—1 +oot adGn . (l)

(3) The coefficients a,,...,a, of the linear recurrence satisfy the Parry-
condition (cf. Parry [23]), ie.

(Qgs ppqs -5 ag) S (ay,a9,- 505 40 q)

for 1 < k < d, where < denotes the lexicographic order.

Remark. A lot of papers treating digital expansions which stem from finite
linear recurrences restrict themselves to the following class:

Grpa=0G g+ +a,G for n>0,
szale—1++akG0+1 fOI‘ 0Sk<d,

where a; > a, > -+ > a, > 0 are non-negative integers. From Brauer [1]
we know that in this case the dominant root of the corresponding characteristic
polynomial is a Pisot number a € (a;,a;+1). Remember that a Pisot number
is an algebraic integer whose conjugates lie all in the interior of the unit circle.
Note that this class is a special case of the class of finite linear recurrent bases
defined in Definition 1.1.

An example of a finite linear recurrence with non-decreasing coefficients is
Gnyq = Goiq_q1 + G, , which corresponds to a; = a; = 1 and a; = 0 for
2<i<d-1.

n?

Remark. We also want to note that Parry’s condition (3) of Definition 1.1
is equivalent to demand that the following holds for all n > 0 and 1 < k < d

(cf. Steiner [25]):
d

Grya—i > Z a,Gpyai
i=k+1

This version of the condition was used in Drmota—Gajdosik [4], [5].

The present paper is devoted to the study of distribution properties of S (n).
The starting point of our work is a paper of A. O. Gel’fond [12] who proved
the following result in the case G = 7.

Let r,a € Z, m,s € N and assume that gcd(s,g—1) = 1; then one has

N
H{n<N: n=a(m), S,(n)=r ()} = m—8+(’)(N”),
where 4 < 1 only depends on ¢ and s.
(A special case of this result can be already found in [9].)
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In several papers, extensions and generalizations of this result were obtained.
(cf. for instance Mauduit—Sdarkozy [21], [22], Kim [18] or Thus-
waldner [26]).

We now want to state our main results. They are all devoted to the structure
of the set of all integers for which the sum-of-digits function S fulfills certain
congruence properties. Thus we set

U, (N):={n<N: Szn)=7(s)}.

For convenience we set e(z) := e*"'# and ||z|| := min({z},1-{2}), where {2}
denotes the fractional part of z.

The main effort in our paper is needed to establish the following result on
exponential sums, from which all other theorems can be deduced.

THEOREM 1.1. Let (Gj)j>0 be given by a finite linear recurrence as in Def-
inition 1.1, let r € Z, s € N and suppose that ged(a; + -+ +a, —1,s) =1,
r#Z0 (s) and y € R. Then

(Z ( Sg(n) yn)}<<NA

where the implied constant depends only on a4,...,a,, s and

1 n2ad0
N P (O‘ - 2j1(s(A+'2)2))
2 log o

<1. (2)

Here, a denotes the dominating root of the characteristic polynomial of (Gj)j>0
and j, and j, can be calculated ezplicitly and depend only on (Gj)j>0 and
A := max{a,, 2} (see Sections 3 and 4). -

A first application of Theorem 1.1 is the analogue of the above mentioned
result of Gel’fond.

THEOREM 1.2. Let (G, )9>0 be given by a finite linear recurrence as in Defi-
nition 1.1 and suppose that ged(ag+ -+ - +ay,—1,8) = 1. Then the sum-of-digits
function is well distributed in residue classes, i.e. if r,a € Z, m,s € N, then

|{neu JN): n=a(m)}| = Ws-+(’)N’\)

with A as in (2).

Theorems on the distribution of certain sets in residue classes can often be
used to establish results on the distribution of primes in these sets. We will
establish two results in this direction. Namely, we will show an analogue to
Gel'fond [12; Théoreme II] as well as an Erdés-Kac-type theorem. First we
give the analogue of Gel’fond’s result.

4
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COROLLARY 1.1. Let (G;);5, be gzven by a finite linear recurrence as in
Definition 1.1 and suppose that ged(ay+ - +a,—1,8) = 1. Let P;(N) be the
set of those elements of U, (N) which are not divisible by an fth power of a

prime. Then N
_ A1

with A\; <1 only depends on (Gj)].>0 and s. Here ( denotes the Riemann zeta
function. -

The Erdds-Kac-type theorem reads as follows.

COROLLARY 1.2. Let (G, )J>0 be given by a finite linear recurrence as in
Definition 1.1, r € Z, s € N and suppose that ged(a,+---+ay,—1,s) = 1. Let
Qy be the frequency deﬁned by

1
QnX) = —— ) {neu, (N): w(n)-loglogN < Xy/loglog N }|,
where w(n) denotes the number of distinct prime factors of n. Then we have

logloglog N

Vloglog N

2
Qn(X) - ew/2 du‘ <
0y - =
uniformly in X € R and N € N, N > 8.

The next application is an analogue of a result on sumsets, whose version for
g-ary number systems has been proved in Mauduit—Sarkozy [21].
COROLLARY 1.3. Let (Gj)j>0 be given by a finite linear recurrence as in
Definition 1.1, r € Z, s € N and suppose that ged(a,+ - +a,—1,s) = 1. If
A,BCA{l,...,N}, then

1{(a,b): ac A, beB, Sgla+b)=r (s)}] - IA“B' < N/ A||B]

with Ay < 1 uniformly in N, s, A and B.

Finally, from aresult of Hooley [17] we get the following Barban-Davenport-
Halberstam-type theorem as a consequence of Theorem 1.2 (cf. also Fouvry—
Mauduit [10; Proposition 2]).

COROLLARY 1.4. Let (G, )]>0 be given by a finite linear recurrence as in
Defin. on 1.1 and suppose that ged(ay+---+ay—1,s)=1.Ifr,a€Z, m,s €N
and M < z, then

m—1
Z Z (l{n €U, (N):n=a (m)}| - %)2 = O(Mz)+0 ,(z*(log 22)~*)
m<M a=0
holds for all A > 0.
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2. Preparatory lemmas
In this section we collect some auxiliary results, which will be used later on
in the paper.

LEMMA 2.1. Let Gy,G,,...,G,_; be positive integers and G, , =

d
2. ;G 4_; forall n > 0. Under the assumption that gcd{i > 0: a; #0} =1,
=1

the characteristic polynomial x(2) of the recurrence has a unique real root
a > 1 of mazimal modulus which satisfies

G, = Ca™ +0(al179m)

for some § > 0 and a real constant C > 0.

LEMMA 2.2. Suppose that G = (G,);>, satisfies the conditions of Defini-
tion 1.1. B

If0<h<a; (for1<i<d),0<m<G, ., ; andn >0, then

k= alGn+d—1 +ot ai—lGn+d—i+1 +hG, g + ™M
has the digits

&(k) = g,(m) (0<i<n+d-1),
Enta_ilk) =h,
g(k) =a, 4 (n+d—-i<l<n+d).
Suppose that k has the digital ezpansion k = e, (k)G + -+ &,(k)G, .
Ifn+d<L, h<e, k), and m<G,_,, then
K =ep(R)G+e,1Gry+ 4 g (B)Grypary + hGppg +m
has the digits

Q) =em)  (0<i<n+d),
€npa(K) =h,
Q) =e(t)  (ntd<I<L).

The proofs of these results can be found in Drmota—Gajdosik [4].

We will also make use of the following lemma, which is an application of a
general method dye to Coquet et al. [2].

LEMMA 2.3. Let g: Ny = C be a function satisfying g(0) =1, |g(k)| <1 and

L(k) L(k)

g(k) = H 9(e,(k)G,,), where k= Z e, (k)G .
n=0 n=0
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Assume further that

1 1
= > gk < w5
‘GTL k‘<G" f(Gn)
where f: [1,00) — [0,00) is a continuous non-decreasing function satisfying
flw) <u.
Then ) c
~ 2 9k)| < :
% 9] < 7vm)

where C is a constant only depending on (G,,),>0-

For a proof of this lemma see also Grabner—Tichy [13].
In the next section we will need the following easy estimate.

LEMMA 2.4. For ¢, ¢,,¢, € R define ¢ := max([loll, llo,ll, llesll) . Then
the inequality

1
le(py) + e(w,) +e(ps) + 1] <4 — 5(7790)2
holds.

Proof. Because of the estimate cos(t) < 1 —t*/6 valid for ¢ € [—m, 7], we
get
le(py) + () + e(p3) + 1| < 3+ e(p)| = /10 + 6 cos(2mp) < /16 — (2mp)?

2
cq_ (M0
- 2

0

Let G, satisfy the conditions of Definition 1.1. Then we consider the expo-

nential sums
S, = kZG e(L55(k) +yk) (n€eN).
<Gn

We denote by Z the set
I:= {1 <i<d: a #O} = {pl,p2,...,pm}
of the indices of non-vanishing coefficients of the recurrence (1). Note that p; =1
and Pz = d.
We first set up a recurrence relation for the exponential sums S, . Keeping
track of Lemma 2.2, we derive by direct calculations that

Sn+d = Z ArtaSnta—j (3)
jeT
with
a;—1 j-1 j-1
A= e(%(Zaq+m)+y<Zaan , TmG, 1))
m=0 g=1 =1
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3. Construction of recurrences

In this section we will dwell upon certain recurrence relations which will be
needed in the proof of Theorem 1.1. The recurrence relation (3) has the disad-
vantage that its coeflicients A4, , j depend on n. Thus we want to construct a
finite recurrence with constant coeflicients which generates a sequence T, . This
will be done in a way such that T, is an upper bound for |S,|. Furthermore, the
characteristic polynomial x, of this recurrence will be of a shape that allows
a nontrivial estimation of the asymptotic behaviour of T, and, hence, of |S,|.
This will finally lead to a proof of Theorem 1.1.

The clue of the proof consists in comparing the characteristic polynomial
X With the characteristic polynomial of a recurrence relation for the sequence
(G,) >0~ Unfortunately, the characteristic polynomial of the recurrence (1) is
not suitable for this comparison. For this matter we have to set up a new recur-
rence relation for the G,, by iterating (1) in a certain way.

Now we want to set up a recurrence relation for the sequence T,,. For this
matter we will need the abbreviation

E, ;(m):= e(% (i a, +m) + y(iaan_q +mGn_j>) .

q=1 q=1

In what follows we have to distinguish two cases. Since the calculations corre-
sponding to each of these cases are rather tedious, we devote a subsection to each
of them. In both of these subsections we will need some notations. In particular,
we write j, := (jy,...,J,) and m, := (m,,...,m,) as well as

(jl;me) = (jl’-"’jz3m1r"ame) .
Furthermore, define the set
Mp:={(pm,): jy€Z, 0<m, <a; -1, 1<k< L},

3.1. The case a; > 1.
Our first task is to set up a new recurrence relation for the sequence S,,. For
this matter let

Ni={(ymy): j,=j,=1, 0<m; <a, -1, m,=0}.
We start from the recurrence relation (3). Iterating this relation two times
yields

Sptd = Z Bt (M) Enpaj, 5, (Ma) Spiaji i,
(j2imz) EM2

= Z En+d,jl (ml) E‘n+d—‘j17.7'2 (m2) S"+d_j1 —J2
(j2sm2)EM\N

+ D Eupa (M) By, (M) Snpajy g -
(j2;m2)EN
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In observing that E, ;(0) =1 for all n > 0, we derive

Sp4a = Z Ervai (M) Eryaiy 5. (Ma) Sopa i,
(j2imz)EM\N

(11—1

+ Z En+d,1 (m) S11+d—2 :
m=0

Iterating S, , ,_, in the last line of the previous equation (d — 1) times yields

S”'*'d = Z En+d,j1 (ml) En+d—j1,j2 (mz) Sn+d—j1—j2
(jZ;mZ)EMz\N
d—1
+ Z (En+d,1(m) H En+d—2-j1-—-~-—j£_1,je(m[)> X (4)
(ja—1ima—1)EMa,y £=1
me{0,...,a1—1}
X S de2mjy—mja_y *

In a next step we want to extract four summands of the sums in (4). For

this matter we adopt the following notation. Let Z(l) be the sum over all
(jo;m,) € M, \ N such that

(j2; m2) # (17d70,0) .

Furthermore, let 3°*) be the sum over all (Jgopymy_y) € M,_,, m € {0,...
...,a;—1} such that

(jd._l;md_l;m);é(1a"-71;0a'--,0;1)a
———— N —
d—1 times d—1 times
(jd_l;md..l;m) % (laal, 05""051;0)a
e N —r
d—1 times d—2 times
(gpymy_y;m) #(1,...,1;0,...,0;0).
—— N —
d—1 times d—1 times

With this notation we can rewrite (4) extracting the four summands which
are not contained in the sums ¥’ and }.". Keeping in mind that E, (0)=1
for all n > 0, this yields

Sn+d = (En+d—1,d(0) + En-i—d,l(l) + En,l(]') + I)Sn—l

(1)
+ Z En‘f'd,jx (ml) En+d—j1,jz (m2) Sn+d—j1 —J2
d—1

(2)
+ Z <En+d,1(m) H B a2 ji——je_1je (me)> S b dm2mjy = —jay -
=1
(5)

9
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By the definition of G,, and S, , substituting 1 for each E, ; in (5) yields the
recurrence

(1) (2
Gn+d = 4C';n—l + Z Gn+d—j1—j2 + Z G’n+d-—2——j1—---—jd_1 (6)

for the sequence (G,,),,>o- Let X be the characteristic polynomial of this re-
currence. B

Now we will set up the recurrence for the desired sequence T, . If we take
absolute values in (5), we get

Tn—{-d = |En+d 1, d(O) En+d 1(1) + E (1) + 1| Tn—l

(1 ) ~
+Z "+d J1—J2 +Z n+d 2—j1—+—Ja-1"

Clearly, T fulfills |5,,| < T, [ » < G,. The only disadvantage of this sequence is
that the coefficient of T _, in (7) depends on n and y. In order to get rid of
these dependencies, we Want to estimate the quantity

|En+d—l,d(0) + En+d,1(1) + En,l(l) + 1' (8)

(7)

uniformly in n and y.
Using the recurrence relation (1) we get

d— d—1
(s (£) o)
q=1
=€ (ZS‘- (Z aQ) +y (G"-i-d——l - adGn—l>> :
q=1

Obviously, (8) is of the form
le(p1) + e(py) + e(ps) + 1]

with
d-1

1= ':;: Zaq +Y(Gnygor = a,G,_1),

q:l
T
Py =35 +YG, a1
Py = § +yG, ;-

Observing that
T
P — Pyt agps = ;(“1+"'+ad—1),

10
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the conditions ged(a, + - +a, —1,s) =1 and r # 0(s) ensure that

1
lloy — g + agesll 2 5
Thus there exists an index j € {1,2,3} such that [l¢;]l > 1/(s(a, +2)) and,
hence, ¢ = rnjax{||<p]||} > 1/(s(ay +2)).
Now Lemma 2.4 yields

2
1 ™
|Brta1,00) +Epyq () +E, (1) +1] <45 (—S(ad - 2)> :

After these considerations we are in the position to define the recursion T,

by ,
1 T
Tnta = (4 2 (m) )T""l (9)

(1) (2)
+ Z Tn+d-j1—j2 + Z T”+d_2‘j1_"'_jd_1.

Furthermore, let x,. denote the characteristic polynomial for this recurrence.

3.2. The case a; = 1.

In this case the choice m, > 0 used in the set A above is impossible. Thus
we have to iterate in a different way than we did in the previous subsection. Set
first

N = {(iym,): j, €I, j,=1, m; =m,=0}.

Like above, we begin by a 2-fold iteration, which leads to

Sn+d = Z En+d,j1 (0) En'f-d—jl,jz (O) Sn+d—jl—jz
(j2;ma2) EM\N

+ B, g;(0)S, g1

JET
by the definition of the set A'. We denote by M the difference M :=d — p,,
where p, was the index of the second non-vanishing element in {a,,...,a,}.
The last summand S, ,_;_; above will be iterated M times:
Spra= D Bnyasi O Eoyajy ,(0) Snpaji,

(j2;mz)EM\N

M
+ Z (En-}-d,j(o) HEn+d—1—-j——j1—~--—jl_1,j£(0)> X (10)

(Gmimpr) EMM =1
JjET

x S

nt+d—1—j—ji——jm "

11
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Now we extract four summands of the sums in (10). Again we adopt the
following notation. Let S be the sum over all (j,;m,) € M, \ NV such that

Furthermore, let 2(2) be the sum over all (j,;;m,) € M,,, j € T such that

j ym ;. 1771’0a70,p)7
(Garsmpg; ) # ( 2

M times M times
jar; Mg ] 1,...,1,p,;0,...,0; ,
G wmid) #( ) P2)

M —1 times M times

Garsmpid) #(1,...,1;0,...,0;1).
M times M times

Remark. We note here that the case d = p, is excluded by the above way
of iteration. Nevertheless, easy calculations show that by extracting (1,d;0,0),
(d, 1;0,0), (d,d;0,0) and (1,1;0,0) from the set M,\N one is able to group the
same four coefficients at S, _, like in equation (12) below for the case d > p,.

With this notation we can rewrite (10) as

Sn+d = En+d——1,d(0) Sn—l + En+d,p2 (O) Sn—l
+ En+d,p2 (0) ’ Enypz (O) Sﬂ—pz + SH+P2—2

(1)
E"+dyj1 (O) E"-Hi—jl \J2 (O) Sﬂ+d—jl —Jj2

M
(2)
+ (En+d,j(0) M Enarsosi—miesi (0)) Sntd=1=j=js—mjrs °
=1
(11)

Here we notice that a; = 1 implies 4,,,, = E_,;,(0) = 1 for the recur-

rence (3). Thus, in general, we deal with

Sn-f—d = Sn+d—1 + Z En+d,j (0) Sn+d—j
JETI\{1}

which allows us to group the coefficients extracted in (11) at the common ele-
ment S, _ o2 Thus,

12
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Sn+d = (En+d—1,d(0) + En+d,pz (0) + En+d,p2 (O)En,pz(o) + I)Sn—pz

(1)
+ Z En+d 1 (0) En+d—j1 J2 (0) Sn-l-d—jl—'jz

+Z ( n+d1(0 HEn+d 1=j—j1——Je- 1,Je(o)>Sn+d~l—j—j1—~~—jM

=1
+ (En+d 1, d(O) + En+d,p2 (0)) x
3) 22!
Z H B 1=j1—=je- 1,Jt(0) Sﬂ—l—jl—"'—jp2—1
2p2 -2
Z H En+pz 2=j1——=Je— 1,11(0) Sn+pz—2—-11—~-~—12p2 2
=1
(12)
where we introduced the new notations
3) 4
INETDY ad 3 >
(jpg—l;mpz—l)EMpz—l (j2p2—2§m2p2—2)€M2p2—2
(J1seemrdpp—1)#(150.,1) (J1,--2d205—2)#(1,...,1)
Substituting 1 for each E,, ; in (12) yields the recurrence
(1) (2)
Grra=4G, D Grpajiin+ D Crydasiojimmjos (13)

(3) (4)
+2 Z Gn_l_jl_'“_jpz—l + Z Gn+p2—-2—j1—~~~~j2,,2_2

for the sequence (G,),>o- Let X be the characteristic polynomial of this re-
currence.

Now we will set up the recurrence for the desired sequence T, . If we take
absolute values in (12), we get

Tn+d = |En+d 1, 4(0) + E 4 2(0) + En+d 2(0) - En,Z(O) + ll Tn—p
(1)
Tl+d —Jj1—J2 + Z n+d 1—j—ji1——jm (14)

3) -~ (4) ~
+2 Z Tn—l—j1—’“‘jp2—1 + Z Tn+P2—2“j1"“'—j2p2—2 ’

Clearly, T, fulfills 1Sl < T, < G, To get rid of the dependence on n and y

of the coefﬁc1ent of T,_ —p, 10 (14), we observe that it has again the form

le(ey) + e(p,) + e(pz) + 1]

13
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with

d-1
P = % z:l a, + y(Gn+d—1 -G,_1),
g=
Py = § +YGoig1s
Y3 = 2% +Y(Grpa +G,l)-
Thus, in this case we end up with
P+ 3 — 20, = §(G1+“'+ad_1)= %(a1+"'+ad_1)’

and by arguing along the same lines as in the case a; > 1, the assumptions

ged(ay +---+ay—1,5) =1 and r # 0 (s) guarantee that ¢ = max{|lp,||} >
J

1/(4s) and therefore

1 2
IBpyie1,4(0) + B, 0) + Epyg (0 B, (0)+1] < 4= 2 ()7

In an analogous way as before we now define T, via

_ 1(7)\?
Tn+d - (4 - 5 (4_3) )Tn—pz
(1) (2) 15
D Toviaciimin ¥ D Tntdcimjmjimming (15)

(3) (4)
+ QZ Tn_l_jl"“"'_jpg-l + Z Tn+P2—2—J'1—-"—j2p2—2

and denote by X, the characteristic polynomial of this recurrence.
Summing up what we proved until so far, we get the following result.

PROPOSITION 3.1. Let (G,), >, © and s be defined as in Theorem 1.1 and

let (T,),,>o be either given by (9) if a, > 1, or by (15) in the case a; = 1. Then
there exist recurrences

D D
/
G..p= E b;G D and Toyp= § :ban+D—j
j=1

=1
for the sequences G, and T, and an indez jo € {1,...,D} such that
(i) b =1b; for j# jy, )
.o _ 1 T
(1) b.liO - bjo - 5(3(A+2)) ’
(iii) |S,| <T, forall y € R,
where A :=max{a,,2}.

14
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Proof. For a; > 1 the result follows by comparing (6) and (9), while
comparison of (13) and (15) yields the result for a; = 1. a

Remark. As mentioned in the introduction, Theorem 1.1 was proved for the
special case of g-ary expansions in Gel’fond [12; p. 260f]. If a; > 2 it is
possible to obtain a result which is equivalent to Proposition 3.1 by imitating
Gel'fond’s proof. In this case one has to deal with (d + 1)-fold products of
the shape

d sin (ra t+yG
|An1l___ H l n+d— l))

=g Sin +yGn+d )

|An+d,1| ’ lAn+d—1.1| e

If a; = 1 we are forced to use the alternative method proposed in the present
section.

4. Proofs of the results

4.1. Proof of Theorem 1.1.

In order to establish an estimate for the asymptotics of S, we want to apply
Lemma 2.1. Unfortunately the condition on the gcd of the indices can be violated
by the iteration process introduced in the previous section.

Remark. An example for the described situation is the recursion G, ; =
2G,,, + G,,. After manipulating the recurrence to allow the nontrivial esti-
mate, we get G, s = 2G, 4+ 12G,  ,+9G, ,+2G, which produces the same
sequence (G,,),>q, but has 2=gcd(i | b, #0).

In what follows, we set g = ged(i | b, # 0) = ged(é | b} # 0). Then, with
D' := D/g, one can write the recurrences defined in Proposition 3.1 in the form

Gn+gD’ = ban+g(D’—1) tot bgD’Gn

and
Tn+gD’ =b Tn+g(D’-1) +--t bgD’Tn )
where the initial conditions on G,...,Gp_,, respectively Ty,...,T_,, are

induced by the original recurrence (G,,),>,-

We are subdividing these recurrences into residue classes modulo g. Let there-
fore 0 < h < ¢g—1 and define

15
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h) h
G = E:ngGfHD, where GS) =G,,...,GH)_ ) = Gpipio1y
and

DI
B h O
™, —Zb’]T,S+)D,_J where Tg" =Ty, T 1 = Ty (pro1)g -

Thus for every k£ >0
h h
Gorsn =Gy Ty =T."  (0<h<g-1) (16)

holds.
Since ged(j | by; # 0) = 1, we can apply Lemma 2.1 to the recurrences

for the G;ch) (0 £ h < g—1). This guarantees the existence of a unique real
dominating root & > 1 such that by (16)

Gkg+h=G§ch):C +O( léh)k) (0<h<g-1)
with 6, > 0. Thus, for n = h (g)
G, = Gl + 0(a=5).

On the other hand the original recursion for (G, )n>0 obeys the conditions of

Lemma 2.1 which leads to G, = Ca™ + O(a!=9"). Thus we have o = +/a.
The same considerations give

T, = 6B/ + O(FI-)  (0<h<g-1)

and we define G := + {/T

Denote by x(z) and Xr(z) the accompanying characteristic polynomials of
G(h) and T(h) , respectively.

By Proposition 3.1 we see that

o) =3 (7@ )

Setting
F:=
Jmax (X X7)'(2)
we arrive at y
~ Jo
2F (s(A +2))

16
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and thus R

m ajO
B<a-

29F (s(A +2))°

This proves that |S,| < T, < o with

1 w2a%0
[ 08 (a ~ 2 (s(AF2)7) ))

B loga

and j, := gF. Theorem 1.1 now follows by an application of Lemma 2.3.

4.2. Proofs of the distribution results.

Proof of Theorem 1.2. For convenience, we set
(V) :=|{n€LIm(N): n=a(m)}|.

V;,s,a,m

Following the lines of the proof in Gel’fond [12] we derive

m—1s—1
Vi) = 0 5 35 (Set)=ry, e)

n k=0 £=0

m—1s-—1
ms S m S m

k=0 £=0 n<N
N 1 m-—1 _ (17)

N1 Z . (n ak)
ms ms k=1 n<N m
m—1s—1
+_1__ e(_ﬂ_ak) Ze(S’G(n)E_l_nk)
ms k=0 £=1 § m n<N § m

and, by Theorem 1.1,
> e(ﬁG(—n)e+%?)‘ < N*.

S
n<N

Taking absolute values in (17) together with the above estimates yields the

result. O

17
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Proof of Corollary 1.1. This can be proved in the same way as
Gel'fond [12; Théoréme II] with our Theorem 1.2 playing the part of Théo-
reme I of Gel’fond’s paper. O

Proof of Corollary 1.2. Here we can follow the same lines as in the
proof of Mauduit—Séarkozy [21; Theorem 2. O

Proof of Corollary 1.3. The proof of this statement is the same
as the proof of Mauduit—Sarkoézy [21; Theorem 1] with Theorem 1.2
playing the part of the original result of Gel’fond. Note that in the proof
of this statement the uniformity in y of the bound in Theorem 1.1 plays an
important réle (cf. [21; p. 30]). O

Proof of Corollary 1.4. Theorem 1.2 ensures that
{neLIr‘s(N): n=a(m)}

fulfills Criterion U of Hooley [17]. Thus the result follows from [17; Theorem 1].
a
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