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(Communicated by Stanislav Jakubec ) 

ABSTRACT. This paper extends some results of Allouche and Shallit for o-regu-
lar sequences to numerat ion systems in algebraic number fields and to linear nu­
meration systems. We also construc t au tomata tha t perform addition and multi­
plication by a fixed number. 

1. Introduction 

A sequence is called q-automatic if its nth term can be generated by a finite 
state machine from the g-ary digits of n . The concept of automatic sequences 
was introduced in 1969 and 1972 by C o b h a m [8], [9]. In 1979 C h r i s t o l [6] 
(see also C h r i s t o l , K a m a e , M e n d e s F r a n c e and R a u z y [7]) dis­
covered a nice arithmetic property of automatic sequences: 

A sequence with values in a finite field of characteristic p is p-automatic if 
and only if the corresponding power series is algebraic over the field of rational 
functions over this finite field. 

A brief survey on this subject is given in [2], see also [10]. Some generalizations 
of this concept were studied in [27], [23], [24], [3], see also the survey [1]. An 
automatic sequence has to take its values in a finite set. To relax this condition, 
A l l o u c h e and S h a l l i t [5] introduced the notion of q -regular sequences. To 
give a hint of what q-regularity is, let us consider the following example. If S(n) 
is the sum of the binary digits of n , then the sequence 

n —> S(n) mod 2 

is 2-automatic (this is the well-known Prouhet-Thue-Morse sequence), whereas 
the sequence 

n —> S(n) 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11B85, 11K31. 
K e y w o r d s : ^-automatic sequence, (/-regular map, numeration system. 
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is 2-regular. 

S h a l 1 i t [27] generalized the concept of g-automaticity to number systems 
with respect to linear recurring base sequences. The purpose of this paper is to 
generalize q-regularity to number systems in algebraic number fields as well as 
to number systems with respect to linear recurring bases. 

2. Canonical number systems in algebraic fields 

Let Q be the field of rational numbers. Let K = Q(a) be the simple extension 
field generated by the algebraic number a, and let Z K be the ring of algebraic 
integers in K. For f3 G K the symbol N(f3) denotes the norm of /3 and Af — 
{ 0 , 1 , . . . , \N(/3)\ — 1} • We say that {/?,JV} is a canonical number system (CNS) 
in ZK for some /? G Z K , if every 7 G Z K \ {0} can be uniquely represented as 

7 = a0 + a1/3 + •'• + ah(3
f\ ai G JV, i = 0 , 1 , . . . , / i , ah^0. 

This concept is a natural generalization of the base number systems in Z . For 
an extensive literature we refer to K n u t h [19]. The canonical number systems 
in the ring of integers of quadratic number fields were characterized by K a t a i, 
S z a b o [17] and K a t a i , K o v a c s [15], [16]. K o v a c s [20] gave a necessary 
and sufficient condition for the existence of CNS in Z K . 

THEOREM 2.1 (KOVACS). Let K = Q(a) be an extension of degree n, 
n > 3 . There is a CNS in Z K if and only if there exists ft G Z K such that 
{1, / ? , . . . , /3n~1} is an integral base of Z K . 

K o v a c s and P e t h 6 [21] characterized all those integral domains that have 
number systems. 

S c h e i c h e r [25], [26] recently gave a new proof of the above theorem gen­
eralizing a result of T h u s w a l d n e r [28]. The main tool of his proof is the 
following: 

LEMMA 2 . 1 . Let (3 G Z K . and let { l , / 3 , . . . , / ? n _ 1 } be an integral base of 7LK. 
Let (5 be a zero of the polynomial xn + bn__1x

n~1 + - • • + bQ with 

6 - G Z , b0 > 2 , and b0 > b1 > • • • > bn_1 > 1, 

and let V — { 0 , 1 , . . . , b0 — 1} . Then {/?, V} is a CNS in Z K . Furthermore there 
exists a finite automaton with at most 2 n + 1 — 1 states that is able to add 1 to 
every 7 G Z K . Each state q- can be interpreted as an additional carry. Such a 
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carry Qj has the form 

ij= K -K +K - • • • ) 
+ (bil+1-bi2+1 + bt3+1-...)P 

+ (bil+2-bt2+2 + bl3+2-...)p
2 M 

where {ix, i2,..., ik} is a nonempty subset of { 0 , . . . , n) . 

3. The set of /3 -regular functions 

Let K = Q(a) be an extension of degree n , and let {/3,J\f} be a CNS in Z K . 
Let E be a commutative Noetherian ring, and let R be a subring of E. 

D E F I N I T I O N 3.1 . Let s: Z K - * E. 

• The function s is called (3-automatic, if s(x) is a finite state function of 
the base-/? expansion of x (see also [3]). 

• The 3 -kernel of 5 is the set of functions 

K0(s) = {s(0kx + l): k>0, / €Z K > f c } 

where 

^K, f e=rEd / j : o<d ,<iiv^)i-i| . 

• The function s is called /3-regular, if there exists a finite number of 
functions s1,...,sr with values in E, such that each function in the 
/3-kernel is an i2-linear combination of the s^'s. 

• Let 
k-i 

xGZK , x = J2djPJ> djEAT, 
j = 0 

then the shift-function a is given by 

^) = ̂  = £W j -
• There is a natural total ordering of the elements of each Z K / ; namely 

the lexicographic order (from most significant to least significant digit) 
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induced by the order on digits. We define (j)(x) the index-function of x 

by 

n ltdjPJ) = E ^ I ^ W and 0(0) = 0. 
\j=0 J 3=0 

THEOREM 3 .1 . The following statements are equivalent: 

(a) The function s: IJK-J> E is (5-regular. 
(b) There exists a finite number of functions s 1 5 . . . , s r with values in E 

such that the R-module generated by KQ(S) is included in the R-module 
generated by s l 5 • . . , s r . We write (Kp(s)) C ( s l 5 . . . , sr). 

(c) There exists a finite number of functions s 1 5 . . . , s r with values in E 
such that (KQ(S)) = ( s 1 ? . . . , sr). 

(d) The R-module generated by KJs) is generated by a finite number of 

functions s((i^x + k{), ki G Z K j . • 

(e) There exists a positive integer E such that, for all e • > E. each function 

s(f3ejx+r-) with r • G Z K e . can be expressed as an R-linear combination 

s(Pejx + Tj) = J2 CijS(Pf^X + k{j) , 
i 

where /•• < E and k{- G -ZKj.. • 
(f) There exist an integer r and r functions s = s l 5 . . . , s r . such that for 

1 < i < r the \N((5)\ functions s{(Px + a), x G 7LK, a G Z K 1 are 
R-linear combinations of the s-. 

(g) There exist an integer r and r functions s = s l 5 . . . , s r . and \N(/3)\ 
matrices H0,..., E^Nrn^_1 in RrXr . such that, if 

(*l(*)\ 

V(x) = : 

then 
V(Px + k) = BkV(x) for kGZK1. 

P r o o f . 
(a) = > (b). This is trivial. 
(b) => (c). It suffices to remember that, if R is a Noetherian ring, then 

any i^-submodule of an ii-module of finite type has finite type. 
(c) => (d). There exist s l 5 . . . , s r such that (K/3(s)) = ( s 1 ? . . . , sr). Each 

s?- is a linear combination of elements of KAs), and there are only finitely mam 
si, so (KQ(S)) is generated by only finitely many members of K^(s). 
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(d) = > (e). Let (KJs)) = (s((3fix+ bl)) i<i'). Let E = max / . . Then 
i<z<?y 

for all e- > E, we can write 

s(0eSx + aj)=YlCiA0fiix + bii)' 

w here fij < E and b{j G ZKJi. . 

(e) => (f). Take as the r functions the functions st(x) = s(/3fix + bt) with 
0 < fi < E and ft. G Z K J . . Then 

5.(/?x + a) = s((lfi((3x + a) + &.) = s(/?*+1a; + a/?* + 6.) , 

which, if /• + 1 < E , is an element of Kp(s), and if f{ + 1 > F? is a linear 
combination of elements of Kp(s). 

(f) ==> (g). Follows trivially. 
(g) = > (a). We need to see that s((3ex + a) is a linear combination of 

the sr Express a in base /? as 

0<z<e 

then it is easy to see that 

VWex + a) = BaoBai.--Bae_V(x), 

and this expresses s(j3ex + a) as a linear combination of the si. • 

THEOREM 3.2. XTie function s\ Z K -+ E is f3-automatic if and only if it is 
ft-regular and takes only finitely many values. 

P r o o f . If a function is (3-automatic, it takes only a finite number of values. 
As Kp(s) is finite, it clearly generates a finitely generated module. 

Suppose now that s(x) is /3-regular and takes only a finite number of values. 
Theorem 3.1(g) implies that there exist functions s = s 1 ? . . . , sd in Kp(s), and 

T1 

matrices -30> • • •.-5|Iv(/3)|-i such that V(x) = («s1(x),. . . , sd(x)) satisfies 

V((3x + k) =BkV(x) 

for all k G ZK i l and x G Z K . We will study functions s(j3Jx + r) with r G 7LK •. 

Let r ^ dkP
k. Then 

A- 0 

Let G be the set of all values of V. This set is finite since s ^ Z J C s(ZK) and 
s(ZK) is finite. Thus the Dk 's are functions from the finite set 0 into itself. 
Since there are only finitely many maps from a finite set into itself, the set of 
maps x i-> V((3Jx + r), j > 0, r G Z K •, is finite. Hence Kp(s) is finite. • 

45 



JEAN-PAUL ALLOUCHE — KLAUS SCHEICHER — ROBERT F. TICHY 

THEOREM 3.3. Let s(x) and t(x) be (3-regular functions. Let a be a constant. 
Then (s + t)(x) = s(x) +t(x), (s • t)(x) = s(x) -t(x) and (a • s)(x). x G ZK are 
P -regular. 

P r o o f . Let K^s) = (sv...,sr), (Kp(t)) = (t19..., tr,). Then (Kp(s + t)) 
is generated by the r -f r' functions { s l 5 . . . , sr,t1,..., tr,}. And (Ko(s-t)) is 
generated by the r • rf functions {si- t-}, 0 < i < r , 0 < j < r ' . Finally 
(IVo(cY5)) is generated by the r functions {as1,..., a s r } . D 

THEOREM 3.4. Let u,v G Z K , it 7̂  0 swc/i £/ia£ £/ie diozis of uz + v can be 
computed by a finite automaton from the digits of z, for all z G 7LK. If s(x), 
x G 7LK, is a (3-regular function, then the function s(ux + v) is also (3-regular. 

P r o o f . Define t(x) — s(ux + v). There exist functions 5 1 , . . . , 5 r such 
that (KQ(S)) C (s1,..., sr). Take now an element of the /3-kernel of t(x), say 
t(/3kx + / ) , / G %Kk- Consider the base-/? expansion of ul + v and write it as 
ul + v = (3ka + b. This expansion can be computed by a finite automaton from 
the digits of /. But 

t(fikx + l) = s(u(Pkx + l) + v) 

= s((3k(ux + a) + b) . 

Since / G ZKA. and a = ak(ul + v) there exists only a finite number of possible 
values of a. (The automaton has a finite number of states.) Hence t((3kx + I) is 
the value at the point ux + a of an element of KAs). D 

R e m a r k 3 .1 . The second author has written a computer program that con­
structs such automata. 

THEOREM 3.5. Let f be an integer > 1. Then s(x) is ^-regular if and only 
if it is ftf -regular. 

P r o o f . Since K/3f(s) C KJs) the function is /3^-regular if it is /^-regular. 
Assume now that s(x) is /^-regular. We will show that there exists a B such 
that for all b > B and c G Z K 6 each function s((3bx + c) can be expressed as a 
linear combination 

s(Pbx + c) = ^dis(l3b*x + ci) 

with bi < B and c{ G %Kb • The result will then follow from Theorem 3.1(e). 
Let us write b = fr + u with 0 < u < / , and c = qP?r + t with t G Z , . 
From 3.1(e), there exists an E such that for all r > E we can write 

s((pfyy + t) =Y^dlS((PfYiy + tl), 
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where r. < E and t. G ZKJn . 
Now put y = /3ux + q. We find 

s((pf)ry + t)= s(Pbx + c) 

= J2<l
is(Pfri+ux + q(3fri+ti) 

i 

i 

where bt = fr • + u and c. = qftTi + tt. Note that bi < fE + f and q £ ZKu. 
So 

Ci = ^ / r ' + * . e z K . _ + / r 4 = z K i b j . 
Thus we may take fi = / ( £ + 1) . Hence s(x) is /3-regular. D 
THEOREM 3.6. Consider the ring of Gaussian integers Z K = {x + yl : 
x,y G Z } , where I2 = - 1 . Le£ /? = - a + i~, witf* a G N \ {0}. If s(x) is 
a P-regular function, then there exists a constant c such that \s(x)\ = 0 ( | x | c ) . 

P r o o f . Let 
k-l 

i=o 

Then, by [14; Proposition 2.6], we have 

2 loga2+1 \x\ - 2 loga2+1
 aJ+2 - 4 < fc - 1 

< 2 logfl2+1 |s | - loga2+1 I 1 - Q2 + 2 I 

fc<6 + 21oga2+1 |x|. 

+ 4. 
__ - „ , , x . • ~ u . - r . - i a^ + 'Z I 

Thus 

Theorem 3.1(g) gives 

Let I • I be a vector-norm, let || • || be a matrix-norm, compatible with | • | (hence 
\Mv\ < | |M| | |v |) . Thus we see 

\s(x)\<\V(x)\<\\Bdo\\\\Bdi\\...\\BdkJ\\V(0)\. 

Now let c = max ||BJ|, and d = ||V(0)||. Then 

0<i<k-l 

\s(x)\<cb+2l°z°2+iWd<d'\x\c' . 

D 
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E X A M P L E 3.1. We give here some examples of /^-regular functions. 
(a) Polynomials in x are /3-regular functions since 1 and x are (J-regular 

functions. 

(b) The index-function cj>(x) is /?-regular since, for j G ZK A ; , we have 

</>(l3kx + j) = \N(p)\k<l>(x) + <f>(j)l. 
(c) Suppose 

x = ~ldjPJ 

j>0 

toTdje{o,...,\N(p)\-i}. 
In this expansion let h be the least index j such that d- 7̂  0. Then 0h is 

called the (3-residue of x. We will construct an array A(0) = (a(i,j)) > 0 in 

the following way. 

The first row of A(f3) contains the elements (3J:, j > 0, i.e., 0(1, j ) = 0J~l. 
Column 1 contains the elements of Z K with /3-residue 1. 

Generally column / contains the elements with 0-residue j3J~l. 
If, for example N((3) = 2, then the lexicographic ordering of the elements of 

(1), (01), (11), (001), (101) , . . . . 

(1) (01) (001) .. 
(11) (011) (0011) .. 

(101) (0101) (00101) .. 

Thus every element of Z K occurs exactly once in A(f3). 

DEFINITION 3.2. (see [18]) The paraphrase-function pQ • 1>K -r N is defined 
as follows 

Pp(x) = the index of the row of A((3) in which x occurs. 

Thus, if x = a(i,j) then PQ(X) = i. 

R e m a r k 3.2. We get the paraphrase by ordering the elements of Z^ lexico­
graphically, beginning with the least significant digit. 

THEOREM 3.7. The paraphrase p^(x) is 0-regular. 

P r o o f . If 0ex + f = a(m,n) then p0{0ex + f) = m. Now / can be 
written as / = f3n~lz for 0 < n - 1 < e. Thus 0ex + f ~ 0C* + 0n [z ~ 

6n~](0e~n+1x + z) and 

P0(l3
ex + f)=p0(0

e-n+1x + z)-

18 
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(If (3ex -\- f — a(ra,n), then (3e n + 1 x + z = a(ra, 1).) A simple consideration 
gives that 

P0{X) = HX)-[MM\ (2) 

for all x that occur in the first column of A{(3). Hence 

4>{j3e-n+1x + z) 

W(P)\ 
\N(P)\e-n+1<P(x) + 4>(z) 

p0{/3e-n+1x + z) = 4>{Pe-n+1x + z)-

= \N(P)\e-n+14>(x) + (j)(z)-

= \N(P)rn(\N{P)\-l)-<f>{x)+[4>(z)-

Since (j)(x) and 1 are /3-regular pAx) is /3-regular. 

MP)\ 
_t__l 

VW(P)\\ 
1. 

D 

(d) The trace Tr(x) is ^-regular. Since /?" + bn_1P
n~1 + • • • + b0 = 0, there 

Pk = _ZakiF-

exist a -̂ £ Z such that 

Thus 
i=0 

n - l 

Tг^^x + l) = 5ľ afci ^ C ^ ) + Ћ ( 0 • 
i = 0 

THEOREM 3.8. Let R be a Noetherian ring without zero divisors, and let 
a E R. Then, the function s(x) = a^x>} is /3-regular if and only if a = 0 or a 
is a root of unity. 

P r o o f . One direction is trivial: Let ak = 1, k G N \ {0}. Since <fi(x) is 
regular, (p(x) mod k is automatic. Thus a^x^ = a^x^ m o d k is automatic. Thus 
a<f>(T) is regular. 

Assume now that a^(x) is /3-regular. Then, there exist r < oo and A with 
0 < j < r, such that 

V . £ Z K J ] A . ( a l ^ > l Y ( X ) = 0 -
0 < j < r 

We use the following formula for the Vandermonde determinant: 

/ l <o {? ••• ft" 
1 f- «? - « " i = n « , - ^ 

vi c e s71 

i>3 
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From this, we can see that the functions £px) are linearly independent if and 
only if the numbers £l5 £ 2 , . . . , fm are distinct. 

Hence the numbers a)NW\fi are not all distinct and we must have 

a l -V( /3 ) | ' - = a|-V(/?)|'i 

for some z, j with i ^ j . Since Z K does not have any zero-divisor, then, either 
a = 0 or a is a root of unity. • 

4. The pattern transformation 

The following construction of a kind of Fourier-transformation of a function 
A: Z K -> Z is analogous to the pattern transformation of [22] (see also [4]). 

Let {/?, J\f} be a CNS on Z K . If 0(x) is the index-function with respect to 
{13, M}, then 0 is a bijection from 7LK to N. Thus, there exists an isomorphism 
between the group M = ({A : 7LK -> Z } , + ) and the group (Z N ,+ ) of all 
integer sequences under termwise addition. 

Let A G M and let 

v(A) = min{n > 0 : A(0" 1 (n)) ^ 0} . 

Then M becomes a metric group with distance function 

S(A,B)=2-^A~Bl 
Let P be a pattern, i.e., a finite sequence of digits from V. 

We will denote the set of all patterns by V. Thus V = V*. Let ep(Q) be 
the pattern-function which counts the number of occurrences of the pattern P 
in the word Q. We assume that the pattern Q has as many leading zeros at the 
left hand side as the pattern P has. Furthermore let aP(Q) = (—l)ep(Q). 

Let ~ : ZK —> V: rr(x) = (dL_1dL_2 ... d0) , be the /^-expansion of x. Then 
we can prove the following. 

THEOREM 4 . 1 . Le£ {(3, AT} be a CNS in ZK. Let A: ZK -> Z . T/ien tfiere 
exists a function A: ZK —> Z , sitc/z £/m£ 

4 0 ) = A(0) + £ i(7r-1(P))ep(7r(a:)) . 
P G P 

The set {eP(7i(x))} is dense in M. 

P r o o f . By subtracting ^4(0) from A(x), we can assume that ,4(0) = 0. 
Find min{n : yl(0 _ 1(n)) / 0} =: n1 and let yl = 0 _ 1 ( n 1 ) . Then 

A(x) = A(y1)en{yi)(7T(x)) for all x with (/>(x) < r^ . 
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Thus 
5{A(x),A(yi)e<yi)(n(x))) <2~^^ . 

Define A(7r~1(y1)) = A(yx) and A(7r-1(y)) = 0 for (f>(y) < n1. 
We can repeat this procedure with A(x) - A(y1)e^yi)(^(x)) instead of A(x) 

to find an y2, such that 

A(x) - A(yi)eAyi)(-(x)) - [A(y2) - -4(2/1)e7r(3/i)(7r(2/2))]e7r(l/2)(7r(x)) = A(x) 

for all x with </>(x) < </)(y2) = n2 . By induction, we can find a sequence nx < 
n2 < ... such that 

A{x)- Y, A(n-1(y))e7r{y){n(x))=0 
y:<j)(y)<nj 

for all x with (j)(x) < n-. In other words 

6(A{x)t Y i (^" 1 (2 / ) )^ ) (^ ) ) )<2- K + 1 ) . 
y-<i>{y)<nj 

Since n • -» co as j —> oo we obtain the claimed formula. 

The uniqueness of the pattern-transform A(ir~1(y)) easily follows from 
c*(*) (*(*)) = 1 a n d 

e<*{x) Wi / ) ) = o f o r <t>(y) < ^x) • 
D 

THEOREM 4.2. The function ep(7r(x)) is /3-regular for any pattern P. 

P r o o f . Let us introduce the following notation: if w = w1w2 . . . wk is any 
string and j < k, then 

take(j, w) = wx... w •. 

CLAIM. Each element of the /? -kernel can be written as a linear combination 
of the functions ep(-(/3fx + a)), with 0 < / < |P | , and a G Z K j , and the 
constant function 1. 

Proof . Consider an element of the /3-kernel ep(7r(/^x + a)), with a G ZK , . 
Then if / < \P\ — 1, this function already is in the above list. 

Consider now f >\P\. Then -(fi^x + a) can be written as 7r(x)7r(a). Then 
ep(7r(/3/x + a)) = ep(7r(/3lpl-1x + c)) + ep(7r(a)) , 

where c = c/)-1 (take(|P|,7r(a))). 
Now the first term on the right is in the list above, and the second term 

is a constant multiple of the constant function 1. Hence ep(7r(/5^x + a)) is a 
Z-linear combination of elements in the list. D 

Remark. The function ep(ir(ax + b)) is /3-regular for a,b G ZK . 
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5. Linear recurring bases 

5.1 The (u\b) numeration. 
The notion of numeration systems based on linear recurrent sequences was 

introduced by F r a e n k e l in [11]. We will follow here the notations of S h a l l i t 
in [27]. Let (un)n be a linear recurrent sequence over Z satisfying the following 
properties: 

(i) u0 = l\ 
(ii) (un)n is strictly increasing; 

(iii) there exist K > 1, M > 1 and K coefficients in N, 1 < b1 = 1, 
6 2 , . . . , bK < M such that, for all n > M, one has 

Un = E ^n-bi ' 
l<i<K 

The M + K integers (u\b) = (uQ,ux,... ,uM_1\b1,b2,... ,bK) suffice to char­
acterize the sequence (un)n. Note that some of the 6^'s can be equal, actually 
allowing positive integers as coefficients. 

Now any integer N is represented in base (u\ b) as follows: 

• if IV < uM_1, then use any algorithm (for instance the greedy one) to 
express jV as a sum of ui 's for 0 < i < M — 1, 

• otherwise, by induction, let j be the unique integer such that u • l < 
N <u-, then there exists a unique k G [1,K] such that: 

E ^-6 i<
i V< E " j -* . -

l<i<k-l l<i<k 

then the representation of jV is __ uj-bi p l u s the representation of 
l < 2 < f e - l 

N~ E «j-bi-
l<i<k-l 

Still following S h a 11 i t we note that this algorithm eventually writes N > 0 
as IV = ^ niui, where only finitely many ni 's are different from zero and that 

the digits n • satisfy n • < K for i > M and n- < T = K -f max 1L--1 for 
b l J l ~ ~ l ~ \<i<M-l u*-i 

0 < i < M - 1. 
As S h a l l i t notes in [27], this representation generalizes many numeration 

systems in N and has two important properties: the set of all possible rep­
resentations is regular and the total ordering on N defined by lexicographical 
comparison (starting with the most significant digit) coincides with the ordi­
nary order. S h a 11 i t also notes that if the b% 's are increasing and the number 
of occurrences of any integer among the bz 's is decreasing, then the above rep­
resentation coincides with the one given by the greedy algorithm. 
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5.2 T h e set of (H; b)-regular sequences . 
Let (Hn)7? be a sequence of integers satisfying (i), (ii), (iii) and let V be the 

set of all (u\ b)-representations. S h a l l i t [27] proved that V is a regular set. 
Let T = K + max **=± and S = { 0 , 1 , . . . , T - l } . For each word s e E* 

l < i < A / - l Ui~i l J 

let TVs = {x G E* | sx G V}. Since V is regular, there is only a finite 
number of different sets Ws. It is easy to prove that Ws is either empty or is 
an infinite set. For each s with Ws ^ 0, let is(n) be the sequence such that 
{is(n) : n > 0} = Ws. (The elements of Ws are sorted in increasing order. For 
the empty word £, we have i£(n) = 0 . ) 

DEFINITION 5 .1 . Similarly to the last section we give the following definitions, 
where is has been defined above. 

• Let (A(n)) be any sequence. The subsequence of (A(n)) defined by 
// H-> A(i (n)) is called the subsequence of (A(n)) with least significant 
digits equal to s. 

• The set of all these subsequences when 5 belongs to E* is called the 
(u\b)-kernel of the sequence (A(n))n and is denoted by K^u.bAA). 

• Let A(n) be a sequence with values in R. We say that (A(n)) is 
(it] b)-regular if the i^-module generated by K,u.b)(A) is a finitely gen­
erated ii-module. 

• Let B(n) be a sequence with values in R. We say that (B(n)) is 
(?/; b) -automatic if B(n) is a finite state function of the (u; b)-represen­
tation of n. 

• Let 
k-l 

n = Y.n3uj-
j = 0 

Then 
\n\ = k 

is called the length of the digit representation of n. 

THEOREM 5.1 . The following statements are equivalent: 

(a) The sequence (S(n)) is (u;b)-regular, 
h) The R-moduie generated by K,.bJS) is generated by a finite number of 

sequences S(ik . (n)) . 
c There exists a positive integer E, such that for all e- > E, each sequenee 

S(i1 (n)) with \r-\ = e- can be expressed as an R-linear combination 

%,H = E5Mn))' 
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where \ktj\ < E. 
(d) There exist an integer r, and r sequences S = Sx,..., Sr , such that for 

1 <i <r the sequences Si(ia(n)) are R-linear combinations of the Si
 }s 

if the digit representation of a has one digit. 
(e) There exists an integer r, and r sequences S = Sx,..., Sr . and matrices 

J 5 0 , . . . , B in Rrxr , such that if 

(S_(n)\ 

V(n) = : j 

\Sr(n)J 
one has 

V(ia(n))=BaV(n) 

if the digit representation of a has one digit. 

P r o o f . We will only prove the direction (e) => (a): we need to see that 
S(ia(n)) is a linear combination of the S^s. Express a in base (u; b) as 

0<i<e 

then it is easy to see that 

V(i(n)) =Bn Bn "Bn V(n), 

and this expresses S(ia(n)) as a linear combination of the 57-'s. D 

THEOREM 5.2. A sequence is (u\ b) -automatic if and only if it is (u; b) -regular 
and takes only finitely many values. 

P r o o f . See Theorem 3.2. D 

THEOREM 5.3. If S(n) is a (w, b)-regular sequence, then there exists a con­
stant c such that \S(n)\ — 0(nc). 

P r o o f . Let 

n = ^2nzui-
i=0 

Since u- is generated by a linear recurring formula, there exists a A > 1 such 
that 

A J _ 1 < u-_x <n<u-

if \n\ = j . Thus 
Inn 

Theorem 5.1(e) gives 

V(n) = BnoBni---Bnj_V(0). 

See now Theorem 3.6. D 
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6. Computational results. 

ZJ 0 1 

CJ dJ CJ+1 dJ S + i 

0 0 0 0 0 0 - 2 - 1 

- 2 - 1 0 1 1 0 - 1 0 

1 1 1 1 0 1 - 1 - 1 

1 0 1 0 0 1 - 2 - 1 

- 1 - 1 1 1 1 1 - 1 0 

- 1 0 1 2 1 1 0 0 

2 1 0 - 1 - 1 0 - 3 - 2 

- 3 - 2 1 2 2 1 0 1 

2 2 0 0 - 1 0 - 2 - 2 

0 - 1 0 - 1 0 0 - 3 - 1 

- 3 - 1 1 3 2 1 1 1 

3 2 1 0 - 1 1 - 2 - 2 

- 2 - 2 0 0 1 0 - 2 0 

0 1 0 1 0 0 - 1 - 1 

- 2 0 0 2 1 0 0 0 

F I G U R E 1. The transducer for multiplication by 2 for ft — — 1 -f i. 

The second author has written a computer program that constructs finite 
automata for addition and multiplication by a fixed number in integral domains. 
It searches for all possible states of the automaton and stores them in a tree. 
The state of the automaton corresponds to the carry in the actual step. If u and 
v are fixed algebraic numbers, the automaton will compute the digits of uz -f v 
from the digits of z. If u = 1 and v = 1 the automaton is just the odometer. 

The automaton uses the following algorithm for multiplication by a fixed 
number: let 
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n - 1 

3=0 

Let c be the carry and d- be the output at the j ' t h step. 

(1) Let c0 = v be the initial carry. 
(2) For j = 0 , 1 , . . . do 

d- and c + 1 uniquely follow from uz- + c • = d • + /?Cy+1 • 

(U can be considered as initial carry when calculating uz + v. In case of pure 

multiplication we have v = 0.) 

E X A M P L E 6.1. Let mp(x) =x2 + 2x + 2. Thus (3= - l ± z and N((3) = 2. The 

automaton which multiplies a number by 2 is given in Figure 1. 

R e m a r k 6.1. Multiplication cannot be generally performed by a finite automa­
ton for linear recurring bases. Take for example the Fibonacci-base u0 = 1, 
ux = 2 , un = un_1 + un_2. This base satisfies the identity 

771 

^ 2 - / ^3/c ~ W 3 m + 2 ~ 1 * 
/e=0 

The (u; b)-representation of % m + 2

 — 1 1 S either (010 . . . 101) or (101. . . 101). 
This is dependent of m being even or odd. Thus the automaton has to store the 
whole („; ^-representation to compute the least significant digit of the product. 
This cannot be done by a finite automaton. 

This counterexample was given by G. Barat, during his visit in Graz in 1996. 
For related general results, see [12], [13]. 
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