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ABSTRACT. In this paper we define and characterize the statistically a -multi­
plicative matrices using the concepts of statistical convergence and invariant 
means. We further use these matrices to establish some inequalities involving 
sublinear functionals. 

1. Invariant mean 

Let l^ and c denote the Banach spaces of bounded and convergent sequences 
x = (xk) respectively. Let a be an injection of the set of positive integers 
N into itself having no finite orbits, and T be the operator defined on i^ by 
T((Xn)n=l) = (Xa(n))n=l' 

A positive linear functional </>, with ||</>|| = 1, is called a a-mean or an 
invariant mean if 0(x) = (f)(Tx) for all x G ^ . 

A sequence x is said to be a -convergent, denoted by x G Va, if </>(x) takes 
the same value, called cr-limx, for all a-means (f). We have (see S c h a e f e r 
[16]) 

Va \= < x G l^ : lim t (x) = L uniformly in n , L = a- limx \ , 

where for p > 0, n > 0 

, ( , Xn+Xa(n)~^ •" XaP(n) , , n . . . . 
tpn(X) = ~^+l — ' a i l d * - l , n = ° - (!) 

Throughout this paper we assume that cr-7' (n) ^ n for all n > 0, j > 1, where 
ap(n) denotes the pth iterate of a at n. In particular, if a is the translation, a 
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a-mean is often called a Banach limit and Va reduces to / , the set of almost-
convergent sequences (see L o r e n t z [10]). 

An infinite matrix A = (anA.)n°fc:=:1 is said to be a-regular if Ax G Va for 
all x £ c and cr-limAx = l imx. The matrix A is a -regular if and only if (see 
S c h a e f e r [16]) 

oo 

(1.1) ||A|| = sup £ |anfc| < o o , 
n G N / c = l 

(1.2) 3/j.N = (Onk)^! G Va with t7-limit zero for each k G N, 

and 

( OO x OO 

-C ank) e va w i t h ^-limit 1. 
k=l / n = l 

A matrix A is called a-coercive (see [16]) if Ax G Va for all x G ^o c . The 
matrix A is cr-coercive if and only if (1.1), (1.4) and (1.5) hold, where 

(1.4) a{k) G VG for each fc G N, 
oo 

(1.5) lim Y2 Mn> ^>P)"~ uk\ = ® uniformly in n where uk = cr-lim a m , and 
p-*°°k=i 

i p 

j = 0 

A matrix A is said to be a-multiplicative if Ax G V̂ . for all x G c and 
a- lim Ax = s l imx, where s is any non-negative real number. We denote this 
by A G (c,Va)3. The matrix A is a -multiplicative if and only if (see [1]) (1.1), 
(1.2) and (1.6) hold, where 

/ OO x OO 

(1.6) a = £ ank) eVa with a-limit 5. 
H= l /n=l 

A sublinear functional Q generates a-means if 0 is a continuous linear 
functional on E^ and (j> < Q implies <j> is a cr-mean. We say that Q domi­
nates a-means if every a -mean <j> is less than Q. If a sublinear functional 
(J both generates and dominates cr-means, then we define the a-core of x as 
j - Q ( - x ) , Q ( x ) ] (see [11] and [13]). 

Let Q: ^ -» .R be defined by 

Q(x) = l imsupsup t p n (x ) , (2) 
p->oo nGN 

where t (x) is defined by (1). Then Q generates and dominates a -means. 
If a is a translation, then cr-core is reduced to the Banach core (or B-core) 

(see O r h a n [14]). Recall that the Knopp core (or K-core) for real x is the 
closed interval [-?(x),L(x)], where 

£(x) = lim inf x and L(x) = lim sup x . 

282 



STATISTICALLY o--MULTIPLICATIVE MATRICES AND SOME INEQUALITIES 

It can be noted that a a-mean extends the limit functional on c in the sense 
that 0(x) = limx for all x G c if and only if a has no finite orbits, that is 
<ji(n) ̂  n for all n > 0, j > 1 (see M u r s a l e e n [12]). Consequently c C Va, 
and it follows that cr-core{x} C K-core{x}. 

2. Statistical core 

The notion of statistical convergence was first introduced by F a s t [5] and 
further studied by S a l a t [15], F r i d y [6], C o n n o r [2], K o l k [9], F r i d y 
and O r h a n [7], [8] and many others. 

Let N be the set of natural numbers and E C N. Then the natural density 
of E is denoted by 

6(E) := lim n'l\{k<n: k G E}\, 
n—i»oo 

where the vertical bars denote the cardinality of the enclosed set. 
The sequence x is said to be statistically convergent to the number L, if 

for every e > 0, the set [k : \xk — L\ > e} has natural density zero, and we 
write L = st - lim x. By st we will denote the set of all statistically convergent 
sequences. 

For a real number sequence x, let 

Bx := {b G R : 5({k : xk > b}) ^ 0} 

and 

Then 

Ax := {a G R : 5({k : xk < a}) -.- 0} . 

sup£ x i f £ x ^ 0 , 

—oo if Bx = 

iniAx if Ax ^ 

st - lim sup x : 
1 -oo if Bү = 0 . 

st - lim inf x . 
-foo if Aү = 0 . = - { . . .... 

The real number sequence x is said to be statistically bounded if there is a 
constant M such that 

6({k: | x f c | > M } ) = 0 . 

If x is a statistically bounded sequence, then the statistical core of x is the 
closed interval [st-liminf x,st-limsupx]. It is noted that 

lim inf x < st - lim inf x < st - lim sup x < lim sup x 

and so 
st - core{x} C K- core{x} . 
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For an arbitrary index set B C N the sequence x^ l = (yn)n
<

=1, where 

ne E, 4:: y 
otherwise 

is called the E-section of x. By A-̂ 7- we denote the E-column section of the 
matrix A = (a n f c)~ f c = 1 , i.e. A ^ = (dn f c)~ f c = 1 , where 

nk ~ \ 0 
k if k G E , 

otherwise. 

3. Statistically a -multiplicative matrices 

DEFINITION 3 .1 . Let 5 > 0 and A = (ank)™k=1 be an infinite matrix . A 
is said to be statistically a -multiplicative if Ax G Va for x G st Di^ with 
(7- lim Ax = s (st - lim x ) . We denote the class of such matrices by (st n ^ , Va) . 
For (j(n) = n -f- 1, this class is reduced to ( s t n ^ , / ) of statistically almost 
multiplicative matrices. 

v 
For typographical convenience, we write £(n, k,p) for —j-y ]T aGuns k . 

j=o 

The following theorem characterizes the class (st n ^ , Va) . 

THEOREM 3 .1 . A G ( s tn^ 0 0 ,V a ) s if and only if 

(i) A G ( c , U ; 

and 

(ii) lim ]T |£(n,k ,p) | = 0 uniformly in n for every E C N iuz£/& 5(E) = 0. 

P r o o f . 

Necessity. Let A G (s tn£ o c ,V a ) 5 and 

s(st - lim x) = a- lim Ax = £, 

say. Since c C st, we have A G (c, Vcr)s, i.e. (i) holds. 
Let E C N with 5(E) = 0 and let x G l^. Then the ^-section y of x 

converges statistically to zero, and y G ^ . Hence y G st n ^ and so Ay G Va 

with s(s t - l imy) = 0 = a- lim Ay. Also 

A\f\x) = An(y), n = l ,2, . . . , 

which implies that A^(x) = (4[f l (x))~= 1 G VCT and o - l i m A ^ x ) = 0. Thus 
AIB1 e (^oo, Va) for every index set E with (5(£) = 0 and so, by condition (1.5) 
with uk = 0 (for each fc), we must have (ii). 
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Sufficiency. Suppose that conditions (i) and (ii) hold and x G st n ^ with 
s t - l imx = i. Write E := [k : \xk-£\ > e} for a given e> 0, so that 5(E) = 0. 

CO 

Since A G (c, V ) , a- lim Yl a
nk

 = s- We n a v e 

n~>°°k=l 

(
CO CO x 

Yl^k^k-^+^^k) 
/ c = l k=l ' 

oo = <J-1™0.E
a«fe(xfe~^) + ̂ -

(*) 

k=l 

Since 

E a n f c K - ^ ) | < l l X l l E l a ^ l + £ l l A H ' 
fc=l ' k£E 

applying condition (ii), we have 
oo 

^ n
1 i s o E°»*( a : *- / ) = 0-

k=i 

Hence, by (*), cr-limAx = is = s ( s t - l imx) ; i.e. A G (st n ^ , Va) . 
This completes the proof of the theorem. • 

For a(n) = n -f- 1, we have the following: 

COROLLARY 3.2. A G (s tD-f^, / ) z/and On/u if 

(i) - 4 € ( c , / ) „ 
and 

(ii) lim Yl ^+T zC ai+n k ~ ® uniformly in n for every E C N ufzt/i 
P^°°fceE j=o ' 
5(E) = 0. 

Remark 1. For a(n) = n + 1, and 5 = 1, the class (st n ^ , 1 .̂) is re­
duced to the class of statistically almost regular matrices, which we denote by 
( s t n C . / ) r e g (see [4]). 

4. Main result 

THEOREM 4 .1 . Q(Ax) < sS(x) for all x e l^ if and only if 

(4.1.1) A e ( s t n ^ 0 0 , y C T ) 5 ; 

and 
oo 

(4.1.2) l imsupsup Y, |t(n, fc,p)| = s, 
p-+oo n G N f c = l 

where S(x) = s t - l i m s u p x . and Q is defined by (2). 
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P r o o f . 

Necessity. Suppose that Q(Ax) < sS(x) for all x G ^ . Then 

s(-S(-x)) < - Q ( - A x ) < Q(Ax) < s S(x), 

or 

s(st-liminf x) < -Q(-Ax) < Q(Ax) < s ( s t - l i m s u p x ) . (4.1.3) 

If x G st Dl^ , then we have (see F r i d y and 0 r h a n [7]) 

st - lim inf x = st - lim sup x = st - lim x . 

Thus (4.1.3) implies 

- Q ( - A x ) = Q(Ax) = s(st-l imx) 

or 
a- lim Ax = «s(st - lim x ) . 

Hence A G (st D ^ , Va)s, i.e. (4.1.1) holds. 

Since, by (4.1.1), A G (c, Va)s, we have 

CO oo 

lim sup sup 2_. K(n> k,p)\ > lim sup sup > J t(n, k,p) = s . 
p-»oo neN k = 1 p-»oo n G N ^ = 1 

Hence 
oo 

lim sup sup ^ \t(n,k,p)\ > s . (4.1.4) 
p—ЮO n б 

4 = 1 

By Lemma 2 of D a s [3], for y G l^ with | |y| | < 1, we have 

oo oo 

l imsupsup \^t(n,k,p)yk = limsupsup V^ \t(n,k,p)\. (4.1.5) 
p-»co n G N , _ 1 p-»oo n G N , = 1 

Also by the hypothesis 

Q(Ay) < sS(y) < sL(y) = s\\y\\ < s, 

that is 
oo 

lim sup sup 2_\ ^(n5 k, p)yk < s . 
p->oo n6N£_"J 

Therefore by (4.1.5) we get 

oo 

l imsupsup Y^ \t(n, k,p)\ < s , (4.1.6) 
p->oo n€N£_"J 

which together with (4.1.4) gives (4.1.2). 
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Sufficiency. Let the conditions (4.1.1) and (4.1.2) hold and x G ̂ OQ. Then 
S(x) is finite. For given e > 0, let E := {k : xk> S(x) + e}. Thus 5(E) = 0, 
and if k £ E, then xk < S(x) + e. Now for a fixed positive integer ra, 

*pn(Ax) < ||x|| Yl l*("> k>P)\ + ( 5 W + £) E l^n' fc'^)l 
k<m k>m,k£E 

+ | |x | |^( | i(n,A;,p) | - i(n,fc,p)) + ||x|| £ \t{n,k,p)\. 

k>m k>m,k&E 

Applying (4.1.1) and (4.1.2) we have 

lim sup sup tpn(/Kx) < sS(x) + e. 
p—>-co nGN 

Since e is arbitrary, we conclude that 

Q(Ax) < sS(x) 

for all x G ^ . 

This completes the proof of the theorem. • 

Remark. Similarly we can show that 

s(st-liminf x) = -sS(-x) < - Q ( - A x ) . 

Hence, finally we have 

a- core{Ax} C st - core{8x} for all x G ^ 

if and only if (4.1.1) and (4.1.2) hold. 

5. Consequences of Theorem 4.1 

From Theorem 4.1 we deduce the following results. 
For s = 1, we get: 

THEOREM 5.1. Q(Ax) < S(x) for all x G ^ if and only if 

(5.1.1) AG ( s t n ^ , O r e g > 
and 

oo 

(5.1.2) limsupsup £) \t(n, k,p)\ -= 1. 
p->oo n£N k=l 

For cr(n) = n + 1, we get: 
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THEOREM 5.2. F*(Ax) < sS(x) for all x E ^ if and only if 

(5.2.1) A e ( s t n £ 0 O , / ) s , 

and 

(5.2.2) l imsupsup E j4г Ê aj+n,k 
p-»oo ?гЄN k = l 

P 
= 5 . 

= 1. 

1 j = 0 

For a(n) = n + 1 and 5 = 1, we get: 

THEOREM 5.3. (see [4]) L*(Ax) < S(x) for all x E ^ if and only if 

(5.3A) A e ( s t n ^ , / ) r e g ; 

and 
oo p 

(5.3.2) l imsupsup E ^ j E ^ . A 
p->oo 72GNA;=1 j = 0 

wAere 
1 P 

L* (x) = lim sup sup — — ] T xj+n 

p->oo n G N P + l j ^ J 

is a bounded linear functional on £ . 
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