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ABSTRACT. In this paper we define and characterize the statistically o-multi-
plicative matrices using the concepts of statistical convergence and invariant
means. We further use these matrices to establish some inequalities involving
sublinear functionals.

1. Invariant mean

Let £, and c denote the Banach spaces of bounded and convergent sequences

o0 . P . ey .
x = (mk)kzl respectively. Let o be an injection of the set of positive integers
N into itself having no finite orbits, and T' be the operator defined on £_ by

T((xn)z,il) = (xa(n)):o_-—_l‘

A positive linear functional ¢, with ||¢|| = 1, is called a o-mean or an
invariant mean if ¢(x) = ¢(T'x) for all x € £ .

A sequence x is said to be o-convergent, denoted by x € V_, if ¢(x) takes
the same value, called o-lim x, for all o-means ¢. We have (see Schaefer

[16])

V = {x €l lim tpn(x) = L uniformly in n, L = o- limx} ,

o p— 00
where for p >0, n >0

by T e T o
pais p+1

, and t =0. (1)

Throughout this paper we assume that ¢’(n) # n foralln > 0, j > 1, where
oP(n) denotes the pth iterate of o at m. In particular, if o is the translation, a
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o-mean is often called a Banach limit and V reduces to f, the set of almost-
convergent sequences (see Lorentz [10]).

An infinite matrix A = (a,,;)5 =, is said to be o-regular if Ax € V, for
all x € ¢ and o-limAx = lim x. The matrix A is o-regular if and only if (see
Schaefer [16])

o0
(1.1) JJAl = sup Z |apk] <00,

(1.2) ag) = (a,)5%, €V, with o-limit zero for each k € N,
and
o0 (e o)
(13) a= (3 a,) _ €V, with o-limit 1.
k=1 n=1
A matrix A is called o-coercive (see [16]) if Ax € V_ for all x € £_. The
matrix A is o-coercive if and only if (1.1), (1.4) and (1. ) hold, where

(1.4) ay, €V, foreach k €N,

(1.5) lim " |t(n,k,p) —u,| = 0 uniformly in n where u; = o-lim a, and

t(n, k,p) = zp:ag,

J=0

A matrix A is said to be o-multiplicative if Ax € V_ for all x € ¢ and
o-limAx = slim x, where s is any non-negative real number. We denote this
by A € (¢,V,),. The matrix A is o-multiplicative if and only if (see [1]) (1.1),
(1.2) and (1.6) hold, where

o0 o0
(1.6) a= ( > ank) € V_ with o-limit s.
k=1 n=1

A sublinear functional @ generates o-means if ¢ is a continuous linear
functional on ¢ and ¢ < @ implies ¢ is a o-mean. We say that @ domi-
nates o-means if every o-mean ¢ is less than Q. If a sublinear functional
@ both generates and dominates o-means, then we define the o-core of x as
[-Q(-x),Q(x)] (see [11] and [13]).

Let Q: £, — R be defined by

Q(x) = limsupsupt,.(x), (2)

p—oo neN

where ¢, (x) is defined by (1). Then @ generates and dominates o-means.

If o is a translation, then o-core is reduced to the Banach core (or B-core)
(see Orhan [14]). Recall that the Knopp core (or K-core) for real x is the
closed interval [£(x), L(x)], where

£(x) = lim inf x and L(x) =limsupx.
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It can be noted that a o-mean extends the limit functional on ¢ in the sense
that ¢(x) = limx for all x € ¢ if and only if ¢ has no finite orbits, that is
o/(n)#nforalln >0, j>1 (see Mursaleen [12]). Consequently ¢ C V_,
and it follows that o-core{x} C K- core{x}.

2. Statistical core

The notion of statistical convergence was first introduced by Fast [5] and
further studied by Salat [15], Fridy [6], Connor [2], Kolk [9], Fridy
and Orhan [7], [8] and many others.

Let N be the set of natural numbers and £ C N. Then the natural density
of E is denoted by

0(E) := nli_)r{.lon—1|{k <n: keE},

where the vertical bars denote the cardinality of the enclosed set.

The sequence x is said to be statistically convergent to the number L, if
for every € > 0, the set {k Doz, =L} > 5} has natural density zero, and we
write L = st-limx. By st we will denote the set of all statistically convergent
sequences.

For a real number sequence x, let

By :={beR: §({k:z, >b}) #0}
and

Ay:={aeR: §({k: z, <a}) #0}.
Then
supB, if By #0,
—00 if By =0.
infA, if A, #0,
400 if A, =0.

st-limsup x := {

st-liminf x :={

The real number sequence x is said to be statistically bounded if there is a
constant M such that
5({k Lz > M}) =0.

If x is a statistically bounded sequence, then the statistical core of x is the
closed interval [st-lim inf x, st - lim sup x]. It is noted that

liminf x < st-liminf x < st-limsup x < lim sup x
and so

st - core{x} C K- core{x}.
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For an arbitrary index set E C N the sequence x(l = (y )2, , where

Y = z,, neEk,
" 0, otherwise

is called the E-section of x. By AlE] we denote the E-column section of the
matrix A = (ank)z.ik:1> le A[E] = (dnk)?lc,)kZI’ Where

{ a,, ifkekE,
dnk = " :
0 otherwise.

3. Statistically o-multiplicative matrices

DEFINITION 3.1. Let s > 0 and A = (a,,)3°~, be an infinite matrix. A
is said to be statistically o-multiplicative if Ax € V for x € stnl_ with
o-lim Ax = s(st-lim x). We denote the class of such matrices by (st Né_, Va)s.
For o(n) = n+ 1, this class is reduced to (stN€, f), of statistically almost
multiplicative matrices.

P
For typographical convenience, we write t(n, k,p) for 171? ]Z-:o Qi () k-
The following theorem characterizes the class (st N, Va)s.
THEOREM 3.1. A€ (st neé, Va)s if and only if
(i) A e (C, Vo—)g?
and
(i) lim Y |t(n,k,p)| = 0 uniformly in n for every E C N with §(E) =0.
PP keE
Proof.

Necessity. Let A € (st HEOO,VU) and

s(st-limx) = o-limAx = £,

say. Since ¢ C st, we have A € (¢, V,),, i.e. (i) holds.

Let £ C N with 6(F) = 0 and let x € £_ . Then the E-section y of x
converges statistically to zero, and y € £__. Hence y € stNf__ and so Ay € V
with s(st-limy) =0 = o-limAy. Also

Alfl(x) = A, (y), n=12...

)

which implies that Al#)(x) = (AlF)(x))*” €V, and o-limAlP}(x) = 0. Thus
AlEl ¢ (¢ V) for every index set E with §(E) = 0 and so, by condition (1.5)
with u, =0 (for each k), we must have (ii).
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Sufficiency. Suppose that conditions (i) and (ii) hold and x € stNf_ with
st-limx = £. Write E:= {k: |z, —¢| > ¢} foragiven ¢ > 0, so that §(F) = 0.

Since A € (¢,V,),, o- lim Y a,, =s. We have

o-limAx = ¢- lim (Zank(a@k - ) +€Zank>
TN = k=1 (%)
=o0- nl:n;oZank(Ik —0)+Us.

k=1
Since

o

5 (o, = O] < I lo] +<lAL
k=1 keE

applying condition (ii), we have

o0
a-nl'l)ngoZank(zk -0)=0.

k=1
Hence, by (x), o-lim Ax = s = s(st-limx); i.e. A € (stNl,, Vo)s.
This completes the proof of the theorem. O

For o(n) =n + 1, we have the following:
COROLLARY 3.2. A€ (stnl,, f), if and only if
(i) A€ (cf),,

and
P
. . 1 — . . .
(i1) plgrolo k‘é} —”“‘Eo Qi i 0 uniformly in n for every E C N with
J(E)=0.

Remark 1. For o(n) = n+ 1, and s = 1, the class (stﬂfoo,V) is re-

o2
duced to the class of statistically almost regular matrices, which we denote by

(stNly,, f)reg (see [4]).
4. Main result

THEOREM 4.1. Q(Ax) < sS(x) for all x € £ if and only if
(41.1) A€ (stnl,V,)
and
o0
(4.1.2) limsupsup Y. |t(n,k,p)| = s,
p—oo neENk=1

where S(x) = st -limsup x, and Q is defined by (2).

S 7
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Proof.
Necessity. Suppose that Q(Ax) < sS(x) for all x € £ . Then

5(~5(~x)) < ~Q(~Ax) < Q(Ax) < 5 5(x),

or
s(st-liminfx) < —Q(—Ax) < Q(Ax) < s(st-limsup x) . (4.1.3)

If x € stN{, , then we have (see Fridy and Orhan (7))
st-liminfx = st-limsup x = st-lim x.
Thus (4.1.3) implies
—Q(—Ax) = Q(Ax) = s(st-limx)

or
o-lim Ax = s(st-limx) .

Hence A € (stnl_,,V,),, i.e. (4.1.1) holds.

o’ "o

Since, by (4.1.1), A € (¢, V,),, we have
o ¢] [ e]
lim sup sup Z |t(n, k,p)| > lim sup sup Z t(n,k,p) =s.
P00 "ENk=1 p—0o0 nGNk:_l

Hence

o0
limsupsup )~ |¢(n, k,p)| > 5. (4.1.4)
p—o© neN k=1

By Lemma 2 of Das [3], for y € £ with |ly|| <1, we have
(e o] o0
lim sup sup Z t(n, k,p)y, = limsup sup z [t(n, k,p)]|. (4.1.5)
p—oo neN k=1 p—o0 "ENkzL
Also by the hypothesis
Q(Ay) < sS(y) < sL(y) = sllyll < s,
that is

oo
lim sup sup Zt(n,k,p)yk <s.
p—00 "ENk=1

Therefore by (4.1.5) we get

[e.e]
limsupsupZIt(n,k,p)[ <s, (4.1.6)
p—00 neNk___1

which together with (4.1.4) gives (4.1.2).
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Sufficiency. Let the conditions (4.1.1) and (4.1.2) hold and x € £_ . Then
S(x) is finite. For given € > 0, let E := {k: z, > S(x) +¢}. Thus §(E) =0,
and if £ ¢ E, then z, < S(x) + €. Now for a fixed positive integer m,

ton(AX) <|Ix|| D [t(n, k,p)| + (S(x)+¢€) D> |t(n,k,p)|

k<m k>m,k¢E
+lxll S (1t k, p)| — tn, K, p)) + lIxll > t(n, K, D).
k>m k>m,k€EE

Applying (4.1.1) and (4.1.2) we have

limsupsupt,, (Ax) < sS(x) +¢.

p—o0 neN
Since ¢ is arbitrary, we conclude that
Q(Ax) < s5(x)

forall xel .
This completes the proof of the theorem. O

Remark. Similarly we can show that
s(st-liminf x) = —sS5(—x) < —Q(—Ax).
Hence, finally we have
o-core{Ax} C st-core{sx}  forall xe

if and only if (4.1.1) and (4.1.2) hold.

5. Consequences of Theorem 4.1

From Theorem 4.1 we deduce the following results.

For s =1, we get:
THEOREM 5.1. Q(Ax) < S(x) for all x € £ if and only if
(5.1.1) A€ (stNy,V, ), g
and

oo
(5.1.2) limsupsup Y |t(n,k,p)| =1.
p—o0 neENkg=1

For o(n) =n+1, we get:
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THEOREM 5.2. L*(Ax) < sS(x) for all x € £ if and only if

(5.2.1) A€ (stnl,f)
and

. N .
(5.2.2) limsupsup Y. plﬁ' ZOaHn,k
]:

s’

=S.

p—o0 neEN k=1

For o(n) =n+1 and s =1, we get:

THEOREM 5.3. (see [4]) L*(Ax) < S(x) for all x € £ if and only if

(5.3.1) A€ (stnl,f)

and

0 P
(56.3.2) limsupsup > #’ > Qiink

reg’

p—o0 neENg=1 j=0

where

1 &L
L*(x) = lim sup sup T,
() = limsupsup =5 325

is a bounded linear functional on £_ .
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