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Abstract

We prove that an orthomodular lattice can be considered as a groupoid
with a distinguished element satisfying simple identities.
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A bounded lattice is called an ortholattice if there is a unary operation
x �→ x⊥ called orthocomplementation such that

x ∨ x⊥ = 1 and x ∧ x⊥ = 0 (i.e. x⊥ is a complement of x)
x⊥⊥ = x (it is an involution)
x ≤ y implies y⊥ ≤ x⊥ (it is antitone).

An ortholattice is thus considered as an algebra L = (L;∨,∧,⊥, 0, 1) of type
(2, 2, 1, 0, 0). Due to the above mentioned properties of orthocomplementation,
it satisfies the De Morgan laws, i.e.

(x ∨ y)⊥ = x⊥ ∧ y⊥ and (x ∧ y)⊥ = x⊥ ∨ y⊥.
Hence, it can be considered also in the signature (∨,⊥, 0) of type (2, 1, 0) because
∧ can be expressed by De Morgan laws as a term function in ∨ and ⊥ and 1 = 0⊥.
An ortholattice L = (L;∨,∧,⊥, 0, 1) is called orthomodular if it satisfies the

implication
x ≤ y ⇒ x ∨ (x⊥ ∧ y) = y (the orthomodular law)

which is equivalent to x ≤ y ⇒ y ∧ (y⊥ ∨ x) = x.
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The orthomodular law is apparently equivalent to the following identity

x ∨ (x⊥ ∧ (x ∨ y)) = x ∨ y (OMI)

or, equivalently,
(x ∨ y) ∧ ((x ∨ y)⊥ ∨ x) = x.

In what follows we will show that an orthomodular lattice can be discern as
an algebra of type (2, 0) in the signature (◦, 0), i.e. as a groupoid with a distin-
gushed element. Let us note that Boolean algebras were characterized in this
way already by the author in [4].

Definition 1 An algebra A = (A; ◦, 0) of type (2, 0) is called an OI-algebra if
it satisfies the following identities

(I0) 0 ◦ x = 1, where 1, denotes 0 ◦ 0

(I1) (x ◦ y) ◦ x = x

(I2) (x ◦ y) ◦ y = (y ◦ x) ◦ x

The proofs of the following lemmas are taken from [1].

Lemma 1 Every OI-algebra satisfies the following identities

(a) x ◦ (x ◦ y) = x ◦ y

(b) x ◦ x = (x ◦ y) ◦ (x ◦ y)

Proof Applying (I1) twice, we obtain x ◦ (x ◦ y) = ((x ◦ y) ◦x) ◦ (x ◦ y) = x ◦ y,
proving (a). For (b), we apply (I1), (I2) and (a):

x ◦ x = ((x ◦ y) ◦ x) ◦ x = (x ◦ (x ◦ y)) ◦ (x ◦ y) = (x ◦ y) ◦ (x ◦ y). �

Lemma 2 Every OI-algebra satisfies the identities

x ◦ x = 1, 1 ◦ x = x, x ◦ 1 = 1.

Proof By Lemma 1(b) used twice we conclude x ◦ x = (x ◦ y) ◦ (x ◦ y) =
((x ◦ y) ◦ y) ◦ ((x ◦ y) ◦ y) = ((y ◦ x) ◦ x) ◦ ((y ◦ x) ◦ x)(y ◦ x) ◦ (y ◦ x) = y ◦ y.
For y = 0 we obtain x ◦ x = 0 ◦ 0 = 1.
Now, 1 ◦ x = (x ◦ x) ◦ x = x by (I1) and x ◦ 1 = x ◦ (x ◦ x) = x ◦ x = 1 by

Lemma 1 and the firstly proved identity. �

Definition 2 An OI-algebra A = (A; ◦, 0) is called antitone if it satisfies the
identity

(I3) (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = 1 (where 1 = 0 ◦ 0).
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Lemma 3 Let A = (A; ◦, 0) be an antitone OI-algebra. Define a binary relation
≤ on A as follows

x ≤ y if and only if x ◦ y = 1.

Then ≤ is an order on A such that 0 ≤ x ≤ 1 for each x ∈ A and

x ≤ y implies y ◦ z ≤ x ◦ z for all x, y, z ∈ A.

Proof Due to Lemma 2, ≤ is reflexive.
Suppose x ≤ y and y ≤ x. Then x ◦ y = 1 and y ◦ x = 1 thus, by (I2),

y = 1 ◦ y = (x ◦ y) ◦ y = (y ◦ x) ◦ x = 1 ◦ x = x, i.e. ≤ is antisymmetric. Prove
transitivity of ≤. Let x ≤ y and y ≤ z. Then x ◦ y = 1, y ◦ z = 1 and, by (I3),

1 = (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = ((1 ◦ y) ◦ z) ◦ (x ◦ z)
= (y ◦ z) ◦ (x ◦ z) = 1 ◦ (x ◦ z) = x ◦ z

thus x ≤ z. Hence, ≤ is an order on A. Due to (I0), 0 ≤ x and, by Lemma 2,
x ≤ 1 for each x ∈ A.
Suppose x ≤ y. Then x ◦ y = 1 and, by (I3),

(y ◦ z) ◦ (x ◦ z) = (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = 1,

whence y ◦ z ≤ x ◦ z. �

In spite of Lemma 3, the relation ≤ on an antitone OI-algebra A will be
called the induced order of A.

Theorem 1 Let A = (A; ◦, 0) be an antitone OI-algebra, ≤ the induced order
on A. Then (A;≤) is a bounded lattice where x∨y = (x◦y)◦y, and the mapping
x �→ x ◦ 0, is an antitone involution on (A;≤).

Proof Since y ≤ 1 for each y ∈ A, Lemma 3 yields x = 1 ◦ x ≤ y ◦ x, i.e. A
satisfies the identity

x ◦ (y ◦ x) = 1. (B)

Suppose now a, b ∈ A. Then, by (B), b ◦ ((a ◦ b) ◦ b) = 1 and, by (B) and (I2),
a ◦ ((a ◦ b) ◦ b) = a ◦ ((b ◦ a) ◦ a) = 1, i.e. a ≤ (a ◦ b) ◦ b and b ≤ (a ◦ b) ◦ b.
Suppose further a ≤ c and b ≤ c. Then b◦c = 1 and, by Lemma 3, c◦b ≤ a◦b.

Hence
(a ◦ b) ◦ b ≤ (c ◦ b) ◦ b = (b ◦ c) ◦ c = 1 ◦ c = c.

We have shown that (a ◦ b) ◦ b is the least common upper bound of a, b, i.e.

a ∨ b = (a ◦ b) ◦ b

and (A;∨) is a ∨-semilattice.
Consider the mapping x �→ x ◦ 0. Then (x ◦ 0) ◦ 0 = x ∨ 0 = x, i.e. it is

an involution on A. By Lemma 3, this involution is antitone. Hence, we can
apply De Morgan law to prove a∧ b = ((a ◦ 0)∨ (b ◦ 0)) ◦ 0 for each a, b ∈ A, i.e.
(A;∨,∧) is a bounded lattice. �
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Definition 3 An antitone OI-algebra is called an OML-algebra if it satisfies
the identity

(I4) (x ◦ y) ◦ y = (((x ◦ y) ◦ y) ◦ 0) ◦ x.

Remark 1 By Theorem 1, (I4) can be read as

x ∨ y = ((x ∨ y) ◦ 0) ◦ x (C)

which being equivalent to

x ≤ y ⇒ y = (y ◦ 0) ◦ x. (D)

Let A be an antitone OI-algebra, ≤ its induced order. By Theorem 1, (A;≤) is
a bounded lattice. Denote this lattice by L(A) and call it the assigned lattice
of A.

Theorem 2 Let A = (A; ◦, 0) be an OML-algebra. Then its assigned lattice
L(A) is an orthomodular lattice where the orthocomplement of x ∈ A is

x⊥ = x ◦ 0.

Proof Take y = 0 in (I4). We obtain

x = (x ◦ 0) ◦ 0 = (((x ◦ 0) ◦ 0) ◦ 0) ◦ x = (x ◦ 0) ◦ x,

thus
1 = x ◦ x = ((x ◦ 0) ◦ x) ◦ x = (x ◦ 0) ∨ x.

By Theorem 1, x �→ x ◦ 0 is an antitone involution, thus, due to De Morgan
laws,

0 = (x ◦ 0) ∧ x

and hence x⊥ = x ◦ 0 is an orthocomplement of x ∈ A.
By Theorem 1, we obtain immediately

x ◦ y = ((x ◦ y) ◦ y) ◦ y. (E)

It remains to prove the orthomodular law. Let x ≤ y. Then x ◦ y = 1 and,
by (I4), (I2) and (E), we derive

y = (y ◦ 0) ◦ x = (((y ◦ 0) ◦ x) ◦ x) ◦ x = ((x ◦ (y ◦ 0)) ◦ (y ◦ 0)) ◦ x

= ((((x ◦ (y ◦ 0)) ◦ (y ◦ 0)) ◦ 0) ◦ x) ◦ x = (((((y ◦ 0) ◦ x) ◦ x) ◦ 0) ◦ x) ◦ x

= (y⊥ ∨ x)⊥ ∨ x = (y ∧ x⊥) ∨ x.

Thus the assigned lattice L(A) is an orthomodular lattice. �

Also, conversely, to every orthomodular lattice L = (L;∨,∧,⊥, 0, 1) an OML-
algebra can be assigned as follows.
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Theorem 3 Let L = (L;∨,∧,⊥, 0, 1) be an orthomodular lattice. Consider the
term function

x ◦ y = (x ∨ y)⊥ ∨ y.

Then A(L) = (L; ◦, 0) is an OML-algebra.

Proof Of course, 0 ◦ 0 = 0⊥ ∨ 0 = 1 ∨ 0 = 1. Further,

0 ◦ x = (0 ∨ x)⊥ ∨ x = x⊥ ∨ x = 1

proving (I0). To prove (I2), we use the identity (OMI) equivalent to the ortho-
modular law:

(x ◦ y) ◦ y = (((x ∨ y)⊥ ∨ y) ∨ y)⊥ ∨ y = ((x ∨ y)⊥ ∨ y)⊥ ∨ y

= ((x ∨ y) ∧ y⊥) ∨ y = x ∨ y,

i.e. also (y ◦ x) ◦ x = y ∨ x = x ∨ y = (x ◦ y) ◦ y. We prove (I1):

(x ◦ y) ◦ x = (((x ∨ y)⊥ ∨ y) ∨ x)⊥ ∨ x = 1⊥ ∨ x = 0 ∨ x = x.

For (I3), we firstly prove the following

Claim: x ≤ y if and only if x ◦ y = 1.

Proof: If x ≤ y then x ◦ y = (x ∨ y)⊥ ∨ y = y⊥ ∨ y = 1. Conversely, suppose
x ◦ y = 1. Then (x ∨ y)⊥ ∨ y = 1, hence by the orthomodular law

x ∨ y = (x ∨ y) ∧ ((x ∨ y)⊥ ∨ y) = y,

i.e. x ≤ y. �

Due to the previous part and the Claim, (I3) can be rewritten as

(x ∨ y) ◦ z ≤ x ◦ z.

However,

(x ∨ y) ◦ z = (x ∨ y ∨ z)⊥ ∨ z ≤ (x ∨ z)⊥ ∨ z = x ◦ z

thus (I3) is valid in A(L).
It remains to prove (I4). We have by (OMI)

(x ◦ y) ◦ y = x ∨ y = ((x ∨ y) ∧ x⊥) ∨ x = ((x ∨ y)⊥ ∨ x)⊥ ∨ x

= ((x ∨ y) ◦ 0) ◦ x = (((x ◦ y) ◦ y) ◦ 0) ◦ x. �

Remark 2 Since ◦ is a term function in ∨ and ⊥ and ∨,∧,⊥ are term func-
tions in ◦ and 0, one can easily verify that the assigning of an OML-algebra
to an orthomodular lattice and conversely are mutual inverse correspondences,
hence we have

L(A(L)) = L and A(L(A)) = A.
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