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Abstract. For subspaces, X and Y, of the space, D, of all derivatives M(X,Y’) denotes
the set of all g € D such that fg € Y for all f € X. Subspaces of D are defined depending
on a parameter p € [0, 00]. In Section 6, M (X, D) is determined for each of these subspaces
and in Section 7, M(X,Y) is found for X and Y any of these subspaces. In Section 3,
M(X, D) is determined for other spaces of functions on [0, 1] related to continuity and
higher order differentiation.
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1. INTRODUCTION

A derivative is a function, f, that is everywhere the derivative of another function,
F. At the close of the 19th century it was observed that the product of two derivatives
need not be a derivative (see [7]). In fact if f is a derivative, f? need not be a
derivative. (For a treatment of this topic see [1].) Yet it is easy to see that the product
of a derivative with a continuously differentiable function is a derivative. However,
we must not drop the word, “continuously”. For example if p(z) = 2% cosz™3 and
(x) = 22 sinz~3 for x # 0 and ¢(0) = 1(0) = 0, then ¢ and 1) are both everywhere
differentiable. Setting w = ¢'¢b — oy, a simple calculation shows that w(0) = 0
while w(z) = 3 for all x # 0. Thus w is not a derivative because derivatives have
the Darboux property. Since @'t + 1)’ is a derivative (of pi)) and ¢'¢) — 1)’ is not,
neither ¢'¢ nor ¢y’ can be derivatives. These observations lead naturally to the
problem of describing the system, W, of all functions, g, such that fg is a derivative
for every derivative, f. As was mentioned above, not every derivative, nor even every
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differentiable function belongs to W. On the other hand it can be shown that W
contains some discontinuous functions as can be seen from the characterization of the
class W given by Fleissner in [2] (also see [3]). In Theorem 6.4 a simpler description
of W is given.

In [3] Fleissner posed the similar problem of finding the system of all functions
g such that fg is a summable derivative for each summable derivative f. (This
question was answered in [4].) It seems natural to investigate the following more
general problem. Let X and Y be classes of derivatives. Describe the class of all
functions g such that fg € Y for each f € X. This task is accomplished here for
several subspaces of the space of all derivatives; some of which are familiar while
others are introduced for the first time in this paper.

In the next section we introduce some of the notation and terminology to be used
and prove several auxiliary results which will be employed throughout the remainder
of the work. Section 3 deals with the spaces of derivatives, continuous functions and
Peano differentiable functions. In Section 4 a continuum of new spaces of derivatives
is introduced and several preliminary results are established. Section 5 contains
additional auxiliary results which will be used in Section 6 to obtain the first set
of main results of the article; namely, characterizing the multipliers of the spaces
introduced in Section 4 into the space of all derivatives. In the final section the
multipliers between the spaces of Section 4 are found. The results of Section 6 are
used there.

2. NOTATION AND AUXILIARY RESULTS

Throughout, N will denote the natural number, R will denote the real line, and
R™ = {z € R: > 0}. The interval [0,1] is denoted by I. The major space of
functions dealt with, the derivatives, is denoted by D and defined by

D={f: I - R; thereisan F: I — R such that F'(xz) = f(z) for each x € I}

where differentiation at the endpoints of I is in the unilateral sense. Clearly D is a
vector space. The symbols A, C, C,, denote respectively the space of all differen-
tiable, continuous and approximately continuous functions on I. Thus D = {F’; F €
A}. The space Cap plays a major role in Section 7. For any class S of functions, bS
and St denote respectively the bounded and nonnegative function in S. It is easy
to verify that bC,p C D. For an open interval J C R, C(J) and C(J) will denote
respectively the continuous functions and the infinitely differentiable functions on J
with the convention that Coo = C (R).
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Measure and measurable refer to the Lebesgue concepts. The measure of a measur-
able set S will be denoted by |S|. On the other hand, integrable means Denjoy-Perron
integrable and summable means absolutely (i.e., Lebesgue) integrable. The symbols
J ; f and f: f will denote the Denjoy-Perron integral of f (or the Lebesgue integral
in case f is summable). As usual f; f=—Jifb<aandif [, f exists. The reader
is reminded that f € D need not be summable (that is, Lebesgue integrable) on I
but is (Denjoy-Perron) integrable on I. Indeed if F(z) = [ f, then F'(z) = f(z)
for each z € I.

Let J be a compact subinterval of R and f: J — R. Then osc(J, f) and Var(J, f)
denote respectively the oscillation and variation of f on J. If a and b are the
endpoints of J, then we write osc(a, b, f) and Var(a, b, f) even if b < a.

Now the second major concept of this article, multiplier, is defined and elementary
properties stated. Let X, Y C D. Then

M(X,Y)={g€ D; fgeY foreach f € X}.

In case Y = D we write M(X); that is, M(X) = M(X, D). In Section 6, M(X)
is characterized for the continuum of subspaces of D that will be introduced in
Section 4, and in Section 7 M (X,Y) is found where X and Y are any of these same
subspaces. The proofs of the first six assertions about M (X,Y) are easy and left to
the reader.

Proposition 2.1. Let X,Y C D with Y a vector space. Then M(X,Y) is a
vector space.

Proposition 2.2. Let X,Y C D with 1 € X. (That is, the function f(xz) =1 for
all z € I belongs to X.) Then M(X,Y)CY.

Proposition 2.3. Let X1 C X C DandY C Yy € D. Then M(X,Y) C
M(X1,Y1).

Proposition 2.4. Let X C D be a vector space. Then M (X, X) is an algebra.

Proposition 2.5. Let 1 € X C D with X closed under multiplication. Then
M(X, X)=X.

Proposition 2.6. Let X,Y C D and for each o € Q let X,,Y, C D. Then

M(QLEJQ Xa,Y) = 0 M(Xa,Y) and M(X, n Ya) = N MY
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Proposition 2.7. Let X C D. Then M(M(M(X))) = M(X).

Proof. Obviously X C M(M (X)) and consequently M (X) C M(M(M(X))).
By Proposition 2.3 the first containment implies M (X) D M(M (M (X))). O

Fundamental to many of the remaining results of this and later sections is the
Second Mean Value Theorem for the Denjoy-Perron integral the proof of which can
be found on page 246 of Saks’ book [8]. For the remainder of the section let a,b € R
with @ < b and let J = [a, b].

Theorem 2.8. Let f: J — R be monotone and g J — R be integrable. Then
there is a £ € J such that [, fg = f( fg—i—f f&

Lemma 2.9. Let e,7 € R", let p € (0,1) and let g: (0,7) — R be integrable.
Suppose hm 1 [ g =0. Then there is an f € CJ, such that f =0 on R\ (0,7),

Ja f 1,fpr<5and|f0 fgl <e.

Proof. Thereis a § € (0,7) such that 376'"? < ¢ and | [ g| < jew for
each z € (0,0]. Let v = 3. There is an h € Co such that h = 0 on R \ (0,9),
h =1 on (vy,2y) and h is monotone on (0,7) as well as on (v, ). Clearly fo h > .
By Theorem 2.8 there are o € [0,7] and 8 € [y,] such that [ hg = []g and

é &
Jyhg = [g. Hence | [{hgl = | [[al < |J5 ol +1J5 ol < fe(v+8) = ev. Set
f=hn/ f06 h. Since f < 1/7, we have [ f? < 6(3/0)P = 3P6'"P < e and | [ fg| =

& 8
| Jg hal/ Jo h <e. O

Proposition 2.10. Let ¢ > 0, let p € (0,1) and let G: J — R be integrable.
Suppose hm L ["G=G(a )and lim Lbe: G(b). Then thereisan f € Cy

r—a
suchthatf—OonR\J fJf—O fJ|f|—2 -1 < [ f <0 for each z € J,
J;|fIP < e and

1) ’G(b) — G(a) —/JfG’ <e.

Proof. Let c € (a,b), let J| = [a,¢] and Jo = [¢,b]. By Lemma 2.9 for

i = 1,2 there is f; € C+ such that fz =0on R\ J;, [,fi =1, [,fF < 3¢ and

~ [, hGl=1|/,(G G il < 36, 1G(b) = [, foG| < §. Take [ = fo— f1. O

The proof of the next lemma is complicated due to the lack of absolute integrability
for the Denjoy-Perron integral.
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Lemma 2.11. Let g: J — R be integrable and let ¢ > 0. Then there is an
F € Cy such that

(2) F=0onR\J, 0<F<lonlJ

(3) ‘Lg_LF4<&

Proof. TFor each z € J let G(z) = [’g. Then G is continuous on J; so
G satisfies the hypotheses of Proposition 2.10. Let f be as in the conclusion of
Proposition 2.10 and put F(z) = — f; f. Then (2) is obvious. From integration by
parts [, Fg = [, fG which combined with (1) yields (3). O

The lack of absolute integrability means that in the next assertion its possible for
S5 lgl = +oc.

Proposition 2.12. Let g: J — R be integrable and let Q € R with @ < fJ lg|.
Then there are f1, fo € Cy such that fori = 1,2, |fi| € Coo, fi =00n R\ J, |fi] <1
OHJ7 f]flg>Q’ f]f2:03ndef2g>%(Q_|‘/‘Jg|)'

Proof. As is well known fJ |g| is the variation of any indefinite integral of g.
Consequently there is a partition a = xg < 21 < ... < @, = b of [a,b] such that

n
S=Y1["F gl >Q Fork=1,..nletJ, = [zs1,2] and let ap = [; g.
k=1 "= '

Let € = % By Lemma 2.11, for each k = 1,...,n there is ¢, € CL such that
wr =00n R\ Jg, 0 < ¢ < 1on Jandif g :fjkgakg, then |ay — Bi| < e. Let

K={1,....,n}, Kp={k€ K; a, >0}, K = K\Ky. Fori =0,11et S; = Y |axl,
keK;
hi = 3 ¢r and B; = [, h;. Clearly So+ S; = S and Sp — S1 = [, g. Replacing g
keK;
by —g if necessary it may be assumed that By < B;. There is an r € [0, 1] such that

BO = TBl. Set f1 = ho - h1 and f2 = ho - Thl. Then

/Jf1g= Zﬁk— Zﬁk> Zak_ Zak—n€=S—n€=S;Q>Q

keKy ke K, keKy ke K1
and
[ 9= 6= 0> S ar—r Y an—ne > 50— ne
J keKo kK, keKo ke,
S+l Q@+l Q-lf
2 2 2 '
Clearly fJ fo = By — rB; = 0 and the rest is obvious. O
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Corollary 2.13. Let g: J — R be integrable, let p: (a,b) — RT be continuous
and let Q € R with Q < [, p|g|. Then there is an f € Cu such that |f| € Coo, f =0
on R\ J, |f| < ¢ on(ab)and [, fg> Q.

Proof. Since ¢ is continuous on (a,b), there is an n € N and zj € [a,b] for
k=0,1,...,n with a =29 < 21 < ... <z, = bsuch that for k = 1,...,n there is

a ¢ € [0,00) with ¢, < ¢ on Ji = [zr_1,zk] such that > ka cklg] > Q. For each
k=1

k=1,...,n there is a Q) < ka ¢k|g| such that kéle >Q. Ifc, =0,1et fr =0
on R. If ¢, > 0, by Proposition 2.12 there is an f; € Cy such that |fx| € Cu,
fe = 0on R\ J, |fx] < 1 on J; and kafkg > % Set f = kﬁ:lckfk. Then
ka fg = ka ckfrg > Qy for each k = 1,...,n (even if ¢, = 0 since then Q) < 0).
Thus [, fg > Q. Obviously |f| € Co and |f]| < ¢ on (a,b). O

k

3. MULTIPLIERS OF CONTINUOUS FUNCTIONS AND
PEANO DIFFERENTIABLE FUNCTIONS

Let Ay = {f: I — R; f is twice differentiable on I} (Recall I = [0,1].) and let
f € As. Then f’ € C and using integration by parts it follows that fg € D for each
g € D. Thus M(A3) = D. Now set Pp = C and forn € Nlet P, = {f: I = R; f
is n-times Peano differentiable on I}. (A function, f, is n-times Peano differentiable
at y € I means there is a polynomial, F', (of degree < n) with F(y) = f(y) such
that f(z) — F(z) = of|y — [").) It is well known that P, = A and that A G P,
ifn e N\ {1}. In fact if n € N, n # 1, there are functions f € P, with f’
discontinuous. Consequently finding M (P;) is more difficult than finding M (As).
Corollary 3.6 characterizes M (P,,) for n € NU{0}. Theorem 3.9 is a modification of
Corollary 3.6 for n = 1. In the assertions to follow the reader will notice a duality
which is a recurring theme in this article. It is between a certain limit being zero and
an associated limit superior being finite. One of these conditions will appear in the
assumption and the other in the conclusion. For the first occurrence of this duality
compare Lemmas 3.1 and 3.3.

Lemma 3.1. Let p: (0,1] — R* be continuous and let g: I — R. Suppose
hI(I)l+ 1 [ fg =0 for each f € (Coo(R"))T such that limsup f(z)/¢(z) < co. Then
T— r—0t

lim L fox vlg| = 0.

z—0+ ¥
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Proof. It is easy to construct a strictly positive h € Co (RT) such that h <
n (0,1]. By assumption hm 1 [ hg=0. It follows that fo hg exists for some

b e (0,1). Because h is strlctly positive, fa g exists for each a € (0,b).

For each n € NU{0}, let z,, = & and Jn = [xn,xn 1] Letn e N If [} olg| =
set A, = 1. Otherwise set A,, = f 7, #lgl — Z=. By applying Corollary 2. 13 to J,, for
each n € N, it follows that there is an f € C (R) such that |f| € Coo(RT), | f| <
on (0,1] and [, fg> A, foreachn € N. Let f; = L2lf| + f) and f2 = £(2|f] - f)
Clearly for j = 1,2, f; € (Coo(RT))T and £ < f; < :2)’90 on (0,1]. By assumption

lim = fo fig=0 for j =1,2 and consequently hm = fo fg=0. It follows that

z—0t+ T

the set of numbers n € N for which A4, = 1, that 1s, for which fJ ©lg] = oo, is
finite. Hence there is an N € N such that n > N implies [, ¢lg| < [, fg+ %=
Let € (0,2n). Then there is an n > N such that z € J,,, and using the prev1ous

inequality
1 T 1 Tp—1 1 oo b 1 Tn—1
- <= _— -9 z
T /0 #lg| T /0 s NIy ; 2 (mnl /0 fg) *
Since hm = fo g = 0, it follows easily that hm = fo vlgl = 0. d
xr—

Lemma 3.2. Let G: (0,1) — R be nonnegative and measurable. Suppose
limsup - fo G < oo for each strictly increasing function 3 € Cy(R") such that

z—0t

lim ((z) = 0. Then limsup 2 [ G < .

r—0+ r—0+

Proof. Suppose to the contrary that lim sup % fgf G = oo. Define two sequences

z—0

{z,} and {y,} as follows. Let y; = 1 and 1 = 3. Given z,,_1 by assumption there
is a yn € (0,2p—1) with [" G > n?y,. Let z, € (0,%) with fj G > n2y,. Itis
easy to construct a strictly increasing 8 € Coo (R") such that 5 > % on (zn,yn) with
xli%l+ f(x) = 0. Then n € N implies [/ G > %ff: G > nyy,; or ifo "G > n.

Thus lim sup % fox G = oo contrary to hypothesis. O

Lemma 3.3. Let ¢: (0,1] — R* be continuous and let g: I — R. Suppose

xlir(l)l+ L[ fg =0 for each f € (Coo(RT))T such that hm % = 0. Then

1 x
(4) lim sup —/ ¢lg| < oo.
T Jo

z—07t

Proof. Let 3 € Co(RT)" be strictly increasing with lim B(z) = 0. Let
1 = @fB. Then 9 is continuous on (0, 1]. Let f € (Coo(RT))T Wlth hmsup /(2 )) < 00.
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. . o . fz) . . 1 [ o _
Since xli%l Blz) = (),Ilgg+ @) = 0. By assumption Illr(r)l+ = fo fg=0. By Lem

ma 3.1, lim 1[5 ¢Blgl = 0. By Lemma 3.2 with G = ¢|g|, (4) follows. O
xr—
The duality alluded to earlier is connected to multipliers as is exhibited in the
Yy p

following two assertions.

Theorem 3.4. Let ¢: (0,1] — R be continuous with lhg+ o(x) =0 and let P
be a class of functions with C C P C W. Let

—{féD; for each y € I there is a F' € P with F(y) = f(y)

—F
such that lim sup M < oo}.
ey |z —yl)

Let

1 x
T= {gED; y € I implies lim—y <p(|t—y|)|g(t)|dt=0}.
Iy

Ty T
Then M(S) =

Proof. Let g € T. To show that g € M(S) let f € S and let y € I.
Let F' be the function in P from the definition of S and set f; = f — F. Since

g e T, hrr;rf fig= hm fx f;’at Z(‘g)gp(|t—y|)g(t)dt=0. Since ¢ € D and
since F € P C W, Fg € D and consequently lim ﬁf; Fg=F(y)g(y). Hence
T—y

lim o7 f fa=Fy)gly) = f(y)g(y). Therefore fg € D. Thus g € M(S).
Now let g € M(S). By definition g € D. Let y € [0,1) and let fo € (Coxo(R1))T

with lim sup f(’((x)) < oo.Set f =00n[0,y] and f(t) = fo(t—y) for t € (y,1]. Because
—0t

11%1+<p( 2) =0, f € C. Toshow that f € S,let z€ 1. If z <y,set F=0.1If z >y,
xr—

let F' = f. Because fo € Co, FF € C C P. Hence f € S. Since g € M(S), fg € D
so that

y+x
lim —/ fo)g(y +¢)dt = lim l/ fg=f(ygly) =0.
Y

r—0+ z—0+t T

By Lemma 3.1, hm 117 e)]g(y +t)| dt = 0. Similarly if y € (0, 1], it can be shown
that hm 1 |t| lg(y +t))|dt = 0. It follows that g € T. O
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Theorem 3.5. Let ¢: (0,1] — R be continuous with lim ¢(z) = 0 and let
z—0
CcPCW. Let

:{f: € D; foreachy € I thereisa F € P with F(y) = f(y)

such that lim w = O}.
w—y  o(lz —yl)

Let

T = {g € D; y € I implies hmsup

T—y

! y/;go<|t—y|>|g<t>|dt<oo}.

Then T = M(S).

Proof. The proof parallels that of the previous one except that Lemma 3.3 is
used in place of Lemma, 3.1. O

Corollary 3.6. Let n € NU {0}. Then

1 xr
M(P,) = {gGD; y € I implies lim sup / |t—y|”|g(t)|dt<oo}.
z—y Y —& Yy

Proof. In Theorem 3.5 let p(x) = 2™ and choose P to be the set of all
polynomials of degree no more than n. The reader can easily verify that S = P,, and
the assertion follows immediately from Theorem 3.5. d

The next lemma is used in the proofs of remaining two theorems of this section.
The first of these theorems characterizes the multipliers of the locally Lipschitz func-
tions while the second characterizes M (A).

Lemma 3.7. Let ¢: (0,1) — R be nonnegative and measurable. Suppose there
is a K > 0 such that for all z € (0, }) and for all t € [2,22] 7¢(2) < ¢(t) < Kp(2).
Let f: (0,1) — R be nonnegative and measurable. Then

(a) ;clir(r)h @ ff”ﬁ f =0 if and only if ;clg(r)l+ Lrof=0
and

(b) lim sup £+ fzm f < oo if and only 1f11msup Jo ef < oo

z—07t

Proof. = (for both (a) and (b)). Let e > 0 and ¢ > 0 such that # fjr f<e
for all x € (0,9). Let = € (0,0). For each n € N let z, = 5. Then

2zn 2%n
/‘Pf Z/ ZKSOZn fSKZezn:Kea:.
0

neN neN neN
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<« (for both (a) and (b)). Let e > 0 and § > 0 such that L [Fof < e for all
z € (0,6). Let = € (0, g) Then for t € [z, 2z],

2z 2z 2x
gp(x)/ ng/ SOfSK/ pf < Ke2x.
T T 0

Theorem 3.8. Let

Lipjoc = {f: I — R; for eachy € I there is a K € (0,00) such that
F(2) = f(u)| < Klo — y] for all o € T}.

Then

y+2h
M(Liploc):{geD; for eachy € 1 lim/ |g|:0}.
h—0 y+h
Proof. For each x € (0,1] let ¢(x) = . Then Lip,,, is the class S for the
function ¢ where for f € Lip,,, and for y € I let F' be the constant function f(y).
Then Theorem 3.4 gives one form for M (Lipioc). By part (a) of Lemma 3.7 this form
of M (Lipy..) is equivalent to that in the conclusion of Theorem 3.8. g

Theorem 3.9. M(A) = {g € D; for each y € I limsup | ;jjh lg]| < oo}
h—0

The proof is the same as that of Theorem 3.8 except that Theorem 3.5 and part
(b) of Lemma 3.7 are used in place of Theorem 3.4 and part (a) of Lemma 3.7.

4. NORMS AND PRODUCTS OF DERIVATIVES

In this section the spaces that are the main focus of this article are introduced
and some elementary properties are established. The main results of this section
are contained in the last two assertions which establish a connection between these

spaces and powers of derivatives.

Notation 4.1. Throughout this section J C R will denote a compact interval
with |J| > 0. Let f: J — R be measurable and let p € (0,00). Put

1 » 1/17
f|J,p(m/J|f|> .

(If fJ|f|p = o0, we set ||f|lrp = 00.) We set ||f|lj00 = esssup{|f(z)|: x € J}.
Moreover if a and b are the endpoints of J, then we also write || f|la,5,p for ||f]lsp
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even if b < a. If the meaning of J is clear from the context, we will write | f||,, for
[I£1l7,p- The essential fact to remember is that the function identically 1 has norm
1 for any p and any J. Of course the triangle inequality holds if p € [1,00]. For
p € (0,1) we will use the following substitute.

Lemma 4.2. Let f,g: J — R be measurable and let p € (0,1). Then

1F + gllop < 2P max{[|f ]l 15, gl 1.}

Proof. Let Q= max{| fllsp, 9]

Jpt- Since p € (0,1),

IJIHf+g||,’§:/|f+g|”</|f|”+/lg|”<2lJlQP
J J J

from which the assertion follows easily. O

Notation 4.3. In Section 7 of the paper we will often have three exponents, p, q
and r € (0, 00] with ¢ < p satisfying zl) + % = é. We adopt the standard conventions

that é = 0. In case ¢ = 1, then p > 1 and we denote the corresponding exponent r

as usual by p’ so that zl) + z% = 1.

The following useful fact is a consequence of Holders inequality.
Lemma 4.4. Let f, g and J be as in Lemma 4.2 and let p, q,r € (0,00] with ¢ < p
and L+ 1= L. Then || fgll sy < I/l 0llg] -

Proof. Suppose g € (0,00). By Hélders inequality

A9 < WA gp7a N 191 /-

The assertion then follows easily. If ¢ = oo, then p,7 = oo and the assertion is
clear. 0

Proposition 4.5. Let f and J be as in Lemma 4.2 and let p,q € (0, 00| with
q <p. Then ||f|lsq <[ f]lsp-

Proof. Let r € (0,00] satisfy zl)—’_% = é. Then by Lemma 4.4 || f|ljq, =
- rg < 1FplL]

g =l fllsp- (]
The following theorem can be obtained using standard techniques of functional
analysis.
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Theorem 4.6. Let p € [1,00) and let g: J — R be measurable. Then
1
lgll» = Sup{m/]fg; fECR), f=0o0nR\J and |f|y < 1}.

In the following definition and in the remainder of the paper the variable z will
always be assumed to lie in the domain of function in question.

In the next definition we introduce the subspaces of D that will be central to the
rest of the paper.

Definition 4.7.  For each p € (0,00) let
Sp={f€D; ;Lmy If = fW)llzyp = 0 for each y € I}

and
T, ={f € D; limsup || f||+,y,p < oo for each y € I}.

T—y

For each p € [0, 00) let
S, =1{f € D; for each y € I there is a q € (p, c0) with ;Lmy |f — fW ey, =0}
and let

T,={f¢€ D; for each y € I there is a ¢ € (p,o0) with limsup || f||zy,q < o0}

r—yY

For each p € (0,00] let S, = (] S, and let T, = () T,. Finally, let Sy =
a<(0,p) a€(0,p)
DNCyp, To =D, Soc = M(T) and Too, = bD.

The reader might think that a more logical choice for S,, would be, C, the con-
tinuous functions on I and indeed from the interpretation given to || - ||s,, such a
choice would seem to correspond to the case p = co. The definition of T, certainly
corresponds to the definition of 7}, when p = co. However according to Corollary 3.6
M(C) = Ty, but M(T1) contains discontinuous functions. The selection of M (T})
for S will be justified in Theorem 6.5.

Note that S is the class of all Lebesgue function. Moreover if f: I — R is
such that for each y € I there is a ¢ € [1,00) with ;gn If — f(W)llyz,q = 0, then
by Proposition 4.5, ¢ may be replaced by 1; that is, f iys a Lebesgue function and
consequently f € D. Thus the condition f € D in the definition of S, for p > 1 is
redundant. Also note that all of the classes introduced in Definition 4.7 are vector
spaces.

The proof of the next assertion uses Proposition 4.5 and standard arguments.
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Proposition 4.8. Let p1,p2 € (0,00) with p1 < pa. Then the following contain-
ments hold.

To CT .cl,, cT),cTy,C...cT, CcT, cTy, C...CT,CTy
@] @] @] @] @] @] @] @] @]
S .CS8,,C8py C8p,C...CS, C8p CSp, C...C8,CSo.

The missing containments; namely, Soo C Soo and S, C Ts are established in
Section 6. The first is part of Theorem 6.7 while the second can be found early in
the proof of Proposition 6.10.

The next lemma is used here and again in the proof of Theorem 6.12.

Lemma 4.9. Let h: (0,1) — R be measurable with h(z) > 0 for each x € (0,1)
and let p € (1,00). Suppose limap, o+ h(z) = 0 and limsup % fgf h? < oco. Then
o+

hm 1 fo

Proof. Lete >0. Set ¢ =min{h,}. If h(x) > L, then e?~'hP(x) > h(z). So
LTh< L[y go <eP 1L [T hP. Since ¢ is bounded and since lim apxﬁm o(z) =0,

we have hm 1 = O Consequently limsup 2 [“h < eP~!lim sup L [ h? from
z—0 r—0t r—
which the desued conclusion follows at once. O

The following two assertions are used frequently in Section 7.

Proposition 4.10. Forp € [0,0), S, = T,NCayp. Forp € (0, ], Sp=TpNChap.

Proof. By Proposition 4.8 for p € [0,00), S, C T}, N Cyp, and for p € (0, oc],
Sy, C TpN Cap. Now let f € T, N Cyyp and let y € I. By definition there is an
€ (p,00) such that lim sup | flly,z,r < c0. By Lemma 4.2 if p < 1 or by the triangle

inequality if 1 < p, lim sup ||f F(W)lly,er <oo. Let ry € (p,7). Then by Lemma 4.9,

r—yY

lim || f = f(¥)lly,e.r, =0. Thus by definition f € S,. Then T, N Cy, C S,,. The
T—Y

remaining containment is proved similarly. O

The assertion obtained from Proposition 4.10 by omitting the underlines (or
overlines) is false. It is standard to construct a function f: [0,1] — R, contin-
uous on (0, 1], with f(0) = 0 which is approximately continuous at 0 such that
lim L1 [ f =0 but xlir{)l-f-%ng':l' So f € (Thi N Cap) \ Si.

z—0*t

193



Theorem 4.11. Let p,q € [0, 00] with ¢ < p and define r by % +1= %.
(i) Ifp< oo, if f € Sp and if g € T, N Cyp, then fg € S,.

(i) Ifp < 00, if fes, a_nd ifges,, tfen fg€s,

(iii) If f € Sy and if g € S, then fg € 9.

Proof of (i). Let y € I and write

fa—FWaly) = (f = fW)g+ fw)(g—9(y))-

By Lemma 4.4

i [|(f = f()glle,y.q < Hm [|f = f(y)la,yplimsup [|g]lz,y,» = 0.

r—Y rT—Y Ty

The second term is dealt with in two cases. First assume p = ¢q. Then r = o

and hence g € bChp. Clearly lim ||f(y)(9 — 9(¥))|lz,y,g = 0. Now assume ¢ < p.
T—yY

Apply Lemma 4.9 with h(z) = |g(y + =) — g(y)|? and with exponent { to obtain
1im [l{g = 9(4))llay.r = 0. Thus lim [[£(y)(g = 9(4))llz.s.q = O-

Proof of (ii). As above write

fa—rfwaly) = (f = fy)g+ f(y)g—9(y))-

Since f € S, there is a t € (p,00) such that lim |f — f(y)||l+,,+ = 0. Because
T—Yy

1,1 1,1 _ 1 . 1,1 _ 1 1,1 _ 1 a
;+;<E—i—;—E,therelsav<rsuchthat;—i—;—5<5—1—;—5. Since

g €Sy, lim ||g — g(y)||z.y.0 = 0. As in the proof of (i), with p,r, ¢ replaced by t,v, u
T—Y
respectively, lim || fg — f(y)9(y)|z.y.« = 0. Because u > ¢, fg € S,,.
T—Y

Proof of (iii). It is shown that (ii) implies (iii). Let f € S, and let g € S,..

Chooseu<q.Then%>%:%—i—%.Therearet<pandv<rsuchthat%—i—%:%.

Since f € S, f € S, and because g € S,, g € S,. By (ii) with p, g, replaced by
t,u,v respectively, fg € S,, C Sy. By definition fg € S,,. O

The restriction p < oo is essential for (i) while (ii) makes no sense for p = co.

Corollary 4.12. Let p,q and r be as in Theorem 4.11 with p < oco. Suppose
feS,andge S,. Then fg e S,.

Proof. Because g € S;, by Proposition 4.8, g € T, N Cyp. Now apply Theo-
rem 4.11 (i). O
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Corollary 4.13. The space S is an algebra.

Proof. As was already noted, S, is a vector space. Let f,g € So and let
q € (1,00). Then f,g € Sa, and by Corollary 4.12, fg € S,. By definition of S,
fg € S O

The remainder of this section is devoted to characterizing the algebra S, from
which it is concluded that S is the largest algebra contained in D. We begin by
stating two results that can be found elsewhere.

Lemma 4.14. Let f € D. Suppose there is a strictly convex p: R — R such
that the composition g o f € D. Then f € S;.

For the proof see [6] Lemma 4.4, page 811.

Lemma 4.15. Let f,g € Cap with |g| < f € D. Then g € S4.
For the proof see [5], 1.8, page 121.
Lemma 4.16. Let x,y € [0,00) and let p € (1,00). Then

(i) (z +y)P < 2P max{zP,yP}
(i) [27 —y?| < 2P max{|o — yly"~", |2 — y[P}.

Proof. Assertion (i) is obvious. In fact it holds for p € [0, 00). To prove (ii) let

ptP~l if t=y.

@(t):{zg if ¢ € [0,00) \ {4}

Since the function t? is strictly convex, ¢ is an increasing function. Thus if ¢ < 2y,
then [tP — yP| < |t — y|p(2y) < |t — y[2PyP~ L. If t > 2y, then t < 2(t — y) and hence
P — P <P < 2P(t — y)P. O

Proposition 4.17. Let p € (1,00) and let f € S,. Then |f|P € S;.

Proof. Letye€ I and set g=|f|”. By Lemma 4.16 (ii),

lg — g)| < 2Pmax{|f — FW)IIf )P~ |f = fFW)P}.

Since p > 1, Proposition 4.5, implies lim || f — f(y)||z,4,1 = 0. It then follows easily
T—Yy
that lim lg = g()lly,e.1 = 0- =
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Proposition 4.18. Let p € (1,00), let f € Cyp and let |f|P € D. Then f € S,.

Proof. Lety eI andset g=|f— f(y)|P. By Lemma 4.16 (i),

g <2P(Lf17 +[F»)IP)-

By Lemma 4.15, g € S; C D, so that lim || f — f(y)|ly,z.p = 9(y) = 0. O
T—Y

Proposition 4.19. Let p € (1,00). Then f € S, if and only if f,|f|? € D.

Proof. Let f € S,. By Proposition 4.17, |f|? € S C D. By Proposition 4.8,
fes, cD.

Suppose f,|f|? € D. By Lemma 4.14, f € S; C Cyp and by Proposition 4.18,
fesS O

The above assertion for p = 1 is false. For example take

fa) 1+sin% ifx#0
xTr) =
1 ifx=0.

Then |f| = f € D but f ¢ S;.

Proposition 4.20. Let n € N withn > 1, let p € [n,00) and let f € S,. Then
fre s

Proof. Since S, C Cap, f € Cap and hence f € Cyp,. Moreover |f7] < 1+ f|P.
By Proposition 4.17, |f|? € S1 C D and hence Lemma 4.15 implies f™ € S;. O

Theorem 4.21. S, = {f; f™ € D for each n € N}.

Proof. By Corollary 4.13, S, is an algebra and hence S, C {f: f" €
D for each n € N}. Suppose f™ € D for each n € N and let p € (1,00). Choose
n € N so that 2n > p. Then f € D and |f|?" = f?" € D. By Proposition 4.19,
f € Sa,. Since 2n > p, Sa, C Sp. Thus f € S, completing the proof. a

The final result of this section is an immediate consequence of the preceding the-

orem.
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Theorem 4.22. Let A C D be an algebra. Then A C S

5. PRELIMINARY RESULTS

In this section we present the assertions that are used in Section 6 to find M (X)
where X is any of the spaces introduced in the previous section. In addition, other
resutls are proved that are employed in Section 7 to find M(X,Y) where X and YV
are any of the same subpaces of D. We begin with some technical lemmas whose
proofs depend on the propositions of Section 2.

Lemma 5.1. Let J =[a,b] C R, let g: J — R be summable, let a € (0, 00) with
|fL g| < « for each subinterval L C J, and let m € N. Then there is an f € Cy, such
that|f|€Coo,ff00n[R\J, lfl<lonJ, [,f=0, |f;f|<|—i|foreachx€J
and [, fg > 5(J, o] -

Proof. Foreach k=0,1,2,...,mlet zp = a+ % and let Jy = [zr_1, zk] for
k=1,...,m. By Proposition 2.12 applied to each J; with Q = ka lg| + | ka gl—a
there is a function fj, € C (the f2 of Proposition 2. 12) such that |fx| € Coo, fr =0
on R\ Jx, |fx] < 1on R, fJ kaandeAfkg> fJA|g|—a) It is easy to see

that f = > fi is the desired function. O
k=1

Lemma 5.2. Let J = [a,b] C R, let g: J — R be integrable with [, |g| = oo and
let €,T € (0,00). Then there is an f € Co such that |f| € Cx, f =0 on R\ J,
\flI<lond, [,f=0,|[fl<eforeachz € J and [, fg> P.

Proof. Let m € N with m > ‘Eﬂ Define zj and Ji as in the preceding proof.
There is an £ € {1,2,...,m} such that fJ( |g| = oo. Applying Proposition 2.12 to
Jo with Q = 2T + | [, g| we obtain an f € Cs (again the fo of Proposition 2.12)
such that |f| € C, f =00n R\ Jy, |f|<1on J, [, f=0and [, fg >T. Clearly
|f;f|<%<5foreachx€l O

Proposition 5.3. Let g: (0,1) — R be a derivative with lim sup Var(z, 2z, g)

z—0*t

= oco. Then there is an f € Co(RT) such that hm L r=0, hm LITIfP=0
for each p € (0,1) but lirg+ L fg=0 doesn’t hold.
r—
Proof. Foreachk € N there is an x, € (0,1) with 2xk+1 < xy and Var(Jy, g) >
k+ 1 where Ji = [zk, 2xy]. For each k € Nset pp, =1 — k+1 Let k‘ € N. Then there
is a partition x; = to < t1 < ... <ty = 2z, of [zk, 2x] such that Z lg(t:) — g(ti—1)|

j=1
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> k+1. By Proposition 2.10 there are p; € Cs, such that, setting L; = [t;_1,1;], we
x Pk .
havegoj:OonR\Lj,ijgpj:O,|f0<pj|<1foreachx€ (0,1] fL |@j|kg%

and |ij w9l > |g(t;) —g(tj—1)| — . Set o; = sgn(fL ©;9) and fr = Z Tjpj.

Then f € Coo, f = 0 0n R\ Jg, ka =0, |f0 fk| < 1 for each x € (O 1] and
ka |fk|pk < xp. Consequently for each k € N

(5) [ fellsnpr <1 and frg > k.
Jk

Set f = Z T Is and let p € (0,1). There is an m € N such that p,, > p. Let

n € N with n > m and let & € (2, zn—1]. Then [J[f|P < 3 ka |f|P. Let k = n
k=n

Then p < p, || fellsep < |l fellspp < 1 and hence ﬁfh |fx|? < 1. By definition
of f, [, IfIP = (%)pfjk |fiP. Since k > n and since z, < 1, [, [f|P < L|J;€|.

Therefore [ |f[P < & Z |Jk| < 22. Thus hm L [T 1fIP = 0. Using | [ fil <
k=

similar argument proves that hm = fo = 0. However by (5) we have [ T fg > xx

for each k£ € N so that lim sup = fo fg > 1 and hence lirg+ %fox fg =10 can’t hold.
x—07t r—
O

Proposition 5.4. Let g: (0,1) — R be a derivative with limsup g(z) = co and
z—0F

let p € [1,00). Then there is an f € (Coo(RT))* such that lir(r)l+

ap =0,
limsup || fgllo,z,p = 00 but hm fo fg =0 doesn’t hold.

z—0t

Proof. Let ap = 1. For each n € N there is an a, € (0,1) such that

2

2a, < anp—1 and g(a,) > n?. Because g is the derivative of its indefinite inte-

gral, for each n € N there is a b, € (an,a2,) such that, setting J,, = [an, bn],
vields [, g > n?|J,|. Let v, = (nfj‘)l/” and set L, = [an,an-1]. It is
easy to comstruct a function f € (Cx(R'))" such that f = v, on J, (so

that [, f? = vB|Jy]) and [, fP < 2%, Let # € L,. Because a, < 5,
oo oo

JE< kz Jo, [P <23 ap < 4% < 4% Thus lim,
=n

k=n
Then 7 [, 91" = llgll%, , = llgll5, . = (77 [, 9) = n**. Hence

2an
/ [f9l” > / lfgl" = vi/ 9P > vE | |n? = n*a,.
0

Jn JIn

ap=0. Let n € N\.
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Consequently limsup || fgllo,z,p = 0. If p = 1, then also fJ fg > van?|J,| = na,

z—0+t
which together with 1 < Z—n < 2 implies that both lim —fa" fg = 0 and
lim + fo fg =0 can’t hold. Thus hm L[ fg =0 can’t hold O

n—00

Proposition 5.5. Let g: (0,1) — R with hm 1 [ 9 =0 and suppose that
hm fo fg =0 for each f € bCo(RT) sat1sfy1ng hm+ L |5 f=0. Then we have
z—0

Proof. Thereisad € R™ such that foég exists. For each n € N set x,, = 2 and

o
JIn = [Tn,22n] = [Tn, Tn—1]. For each n € N, there is an 7, > 0 with |f0xg| < Npx
for each = € J, such that lim 7, = 0. For each n € N choose m,, € N such that

n—oo

lim m, = oo and lim n,m, = 0. Let n € N. Iffj |g| = oo, then by Lemma 5.2

n—oo n—oo
Ty

there is an f,, € Cy such that f,, = 0 on R\ J,, fR n =0, |fx Inl m

each z € J, and [, fng > 1. If [, |g| < co, then by Lemma 5.1 with o = 4,2,

and m = m,, there is an f € C satisfying all of the above properties except
oo

fJ" fng > % fJ lg| = 2mpnnzn. Put f = > f, on RT. Clearly f € bCs(R™). Using

n=1
an argument similar to the one employed in the proof of Proposition 5.3 it can be

shown that hm 1 [ f =0. By assumption lim+ L[y fg=0.Hence [, fng>1
z—0 "

can hold for only finitely many n € N; ie., [ J |g| = oo holds for only finitely many
n € N. Thus there is an Ny € N such that n > No implies [, |g| < co and, by the
choice of f, in that case, [, |g| <2 [, fg+ 4mun,2,. For x € J,,

1 /[® 1 1 2%n
—/ gl <—> [ lgl< —(2/ fg+ 8sup{muni; k> n}xn)
T Jo T st T In A Jo

. . 1 [z _
from which xlg{)lJr = [y lgl = 0 follows. d

Proposition 5.6. Let g € D with g(0) # 0 and let p € [0,00). Then there is an

f € C(R") such that lim L7 f=0,limap, o+ f(0)=0,limsup ["[fg|? = o0
z—0t
foreachq>pand1fp>0 then hm —fo [fIP = 0.

Proof. We may suppose that g(0) > 1. Let S = {z; g(z) > 1}. Since g € D,
|S N (0,6)] > 0 for each § € (0,1) and hence for each n € N there is an x,, € (0,1)
such that z,, is a point of density of S and 2z,41 < z,. For each n € N there is a
Yn € (Tn,2x,) such that if J, = (zn,yn), |Jn \ S| < % and |J,| < . Let vy,

isf o _ np+1 o n
satisfy |J,|vn, * = xp,. Then n <vp ", o0r n"™ < v,
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For each n € N there is an fn € C(R) such that f, = 0on R\ Jy,, |fn| < v, on
I, fJ n=0,0< fo fn < 22 for each z € T and |B,| < ‘3”| where B, = {z €

In; |fu(x)| < v,}. Set f = Z fn on RT. Clearly f € C(RT). For = € [z, Tn_1),
fof=Jfh<E< Because 0 < [y fs hm 11 f=0.Set p, =p+ 2 and

Ay = (SN Jy)\ Bn. Then |A,| > Znl.
Let ¢ > p. There is an n € N with p,, < ¢. For any such n

/yn | fg[P >/ |fg|Pm = o2 | Al > Upwﬂ _ x_nvpn—(p+%) > M > nYn
0 An 3 3" 6 6

Hence || fgllo.yng = [1£9ll0.ynp. > (2)'/P". Because pi > 2 for n > 2, we have

lim inf = oo.
iminf {| fgllo.e.q = 0

e}
Let V = U1 Jn. Since |[Jp|n"Ptt < z,, p > 0 implies |J,| < Z=. Let z €

M8

(n;xp—1]. Then |V N (0,z)] < |Jk] < & Z 29; < 2 Tt follows that

k

n
lim AP0+ f((E) =0.
Finally assume p > 0. If = € (x,,, x,,—1], then

oo

x 0 1
[ < St =Yt <!
0 k=n k=n

. 1 rx _
Thus, gclir(r)jl+ < fo IfIP = 0. (]

N
S
i

Proposition 5.7. Let g be as in Proposition 5.6 and let p € (0,00). There is an

f € C(R") such that lim L1 [¥f=0,limsup2 [ |fg|’ = o0 and lim 1 [|f|7 =
z—0+ % z—0t " z—0t 7

0 for each q € (0,p).

Proof. As before assume g(0) > 1. Let S,z,,y, and J, be as before. For

1

n < % set w, = v, and for n > % define w,, by |Jn|w£ " = x,. In either case
wy, = vy, > n". For each n € N there is an f, € C(R) such that f,, = 0on R\ J,,
|fn| < wy, on Jy, fJ n=0,0 < fomfn < = for each z and |B;| < M where

B ={z € Jo; |fu(z)] < wp}. Set f = Z fnoon RY. Clearly f € C(RT) and a

now-familiar argument shows that hm fo

Let A* = (SN.J,)\ B:. Then |A;| > §|Jn| and for n > 1,

1
Jn|§wn > —nyp.

Yn 1
/ Fal? > / 1l > wh |45 > Wl
0

Hence limsup £ [ [fg[P = oo
o+

xTr—
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Let g € (0,p) and set ¢, = p— % There is an m € N with m > % such that ¢,, > ¢.
Then n > m implies || fulls,,q < anllmw < wy. Hence [; [f|7 = [Jalllfall], , <
“1/n
[ Tn|wd < |Jp|win = |Jn|wg'1/1n < £n. Once again it follows that hm LT Ifle=0.
wy,
O

Lemma 5.8. Let {a,} be a decreasing sequence with lim a, = 0 and for each

n € N, let b, € RT. Then there is an f € (C(R'))" such that n € N implies
f(an) = b, and hm 1 [ f? =0 for each p € (0,00).

Proof. TFor each n € N, set 3, = max{bn,i—n} and 8, = e P, Choose
d,, € (0, min {5n, e }) with apq1 +dpyr < an —dy, and set J, = (an — dp, an + dp).
There is an f € (C(R"))" such that for each n € N, f(a,) = by, f < b, on J,

and f =0 on R*\ |J Jn. Let p € (0,00) and set u = max{zPTle *; z € (0,00)}.
n=1
(o]
Then z € (an, — dy, an—1 — dp_1] implies fox fP < Z ka < > 2dib}. Note that
k=n

dr < 0 < ”,BA ﬁp < pgk bp and x > an Thus

ﬁp‘f’l
2ua =1 4dpa opx
k n
RIS ST S8 X
k=n
from which again 111514r J. gf fP = 0 follows. O

Proposition 5.9. Let g be as in Propositions 5.6 and 5.7. Then there is an
f € (C(R"))™ such that lir(r)l+ 1 [ f7 =0 for each p € (0,00) and limsup|(fg)(z)]|
T— x—0t

= Q.

Proof. Again assume g(0) > 1. There is a decreasing sequence {a,} in (0,1)

with lim a, = 0 such that n € N implies g(a,) > 1. Now apply Lemma 5.8 with
n—oo

b, = n. O

The next series of results leads to the two assertions at the end of this section

which will provide the basis for the proofs of two of the major theorems in the next

section.
Lemma 5.10. Let g: (0,1) — R be measurable and nonnegative, let A € (0, c0)
and let a € (0,1]. Suppose ;' g > aA. Then thereisb € (0, %] such that szbg > bA.
Proof. For each n € N set a, = 5. If ff“"gg apA for each n € N,

o0
then fag < A Y an, = Aa which is a contradiction. So there is an n € N with
0 n=1

fza" g > a, A and we let b = a,. O

Qn
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Proposition 5.11. For each n € N let r,, € (0,00) and let g: (0,1) — R be
., =00 for each n € N. Then for each n € N

z—0t
there is an a,, € (0, 1] such that 2a,41 < a,, and ||g| a, 24, . > n* for each n € N.

Proof. Set ap = 1. Let n € N and suppose a,,_1 has been defined. Since
limsup [|gllo,z,r, = o0, there is a ¢ € (0,an—1) such that L [’[g]™ > n?». By
+

z—0
2a,

Lemma 5.10, there is an a, € (0, %] such that ai fa g|™ > n? which is the

desired result. O

Theorem 5.12. For each n € N, let s, € (1,00) with s1 < so < ... and let
rn = s,,. Let g: (0,1) — R be integrable such that limsup ||g||o,z.r, = oo for each

z—0t

n € N. Then there is an f € C(R") such that Illrél+ I fllo,z,s, =0 for each n € N and
limsup 2 [ fg = +o0.
z—0F

Proof. For each n let a, satisfy the conclusion of Proposition 5.11 and set
Jn = lan,2a,]). Let n € N. Since ||g||s, r, > n?, by Theorem 4.6 there is an
fn € C( ) with f, = 0 on R\ J, such that | fulls,.s, <1 and [, fog > aun®.

Set f= Z f". Let n € N. For z € (0,ay] choose k € N so that « € (ax,ar—1].
Torsn < [ fmll

mosm S L

Then k > n. So for m

n

k Proposition 4.5 implies || fp]
a

>
< ay,. Thus

Consequently [, |fm|®
‘ S ]- = s 1 i 2ak 2$
/ < Z/m ksnmz_:k/JmLfm gk's"mz::kamgﬁ<ksn.
Thus 3}3{# % fo |f|*» = 0. On the other hand for x = 2a,y,,

1amm2 m
g gt

and hence limsup 2 [’ fg = +oo0. O
0+

Tr—

Theorem 5.13. For each n € N, let s, € (0,00) and let t € (0,00) with t <
$1 < S < .... For each n € N define r, by%—i—% = % Suppose g: (0,1) — R is
measurable with lim sup ||g||0,z,r, = oo for each n € N. Then there is an f € C(RT)

—0t

such that lim sup ||fg||0 @t = 00 and hm | fllo.z,s, =0 for each n € N.

z—0+
Proof. As before let a,, satisfy the conclusion of Proposition 5.11 and set J,, =
[an,2an]. Let n € N. Set p = %=, Then p’ = . Since [||g]*||7,» = llgll, .., > n?t
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by Theorem 4.6 there is an f,, = C(R) (f, = |f|7) with f, = 0 on R\ .J, such that
o0

1 .
1fellgn.sn = | |fn|t|\f]mp, < 1 and fJn |frglt > ann®. Set f= Y % Proceeding as
n=1
in the previous proof it follows that lim+ % /i Ox |f|*» =0 for each n € N. Also as
z—0
before for # = 2a,, we have 1 [*[fg|* > 2 and hence limsup 1 [* fg = +o0. O
z—0t

Theorem 5.14. For eachn € N let s € (0,00) and let t,, € (s,00) with t; <
to < ... < s. For each n € N define r,, by % + % = % Suppose g: (0,1) — R is
measurable and lim sup ||g|0.z,r, = +00 for each n € N. Then there is an f € C(RT)

+

xr—
such that lim+ I fllo.z,s = 0 and limsup || f¢|o,5,t, = +o0 for each n € N.
z—0 z—0t

Proof. Proceed as in the proof of Theorem 5.13. d

6. MULTIPLIERS OF VARIOUS SPACES

The main results of this paper are contained in the next two sections. In this
section we find M (X) where X is any of the spaces introduced in Section 4: S, S,
Sy, Ty, Ty, or T, with the appropriate limitations on p. We begin with M (X) for
any X with S; C X.

Definition 6.1. Let

W ={g € D: limsup Var(z + h,x + 2h, g) < oo for each = € I}.
h—0

The space W is what is referred to in [2] as the space of functions of distant
bounded variation. It was shown there that M (D) = W. First we present a new
proof of that result and somewhat more, beginning with two lemmas.

Lemma 6.2. Let 6,C € (0,00) with § < 1 and let g: (0,1) — R be integrable
such that lilgl+ %foxg = (. For eachn € N set z, = 27" and J,, = [zp,22,]. Let
r—

V = limsup osc(Jy, g). Then

n—oo

C —V < liminf g(z) < limsupg(z) < C+ V.

z—0%+ z—0+

Proof. Let z € (0,1). Then there is an n € N such that € J,. Clearly

g < g(x) + osc(Jn, g) on J,. Hence g(z) > = [, g—o0sc(Jn,g). Since lim L [, ¢

=C,C—-V <lim irifg(x). The other inequality has a similar proof. O
z—0
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Lemma 6.3. Let f,g: (0,1) — R be measurable such that hm —fo =
lim sup |g(z)| < oo and lim sup Var(z, 2z, g) < co. Then hm L0 g = 0
x—0t x—0t

Proof. Let ey € (0,00). By assumption there are dg, B,C € (0,00) such that
lg(x)] < B and Var(z,2z,g) x< C for each z € (0,dp). Put ¢ = S@nroy. There
is a0 € (0,00) such that | [ f| < ex for each z € (0,d]. Let xo € (0,0]. We
first must show that fg is integrable on [0, z(] a task made more difficult because
we are dealing with the Denjoy-Perron integral. For each n € N let x, = 27 "xq
For n € N and for x € [zy,22,] = [vn,2n-1] let G(z) = Var(x,,z,9), g1(z) =
L(G(@) + g(2) - g(,)) and ga(w) = L(G(x) — g(a) + g(x,)). Then gy and gz are
nondecreasing on [z, 22, ] with g1 (2,) = g2(z,,) = 0. So fg; is integrable on [x,,, 2x,,]
for i = 1,2 and consequently fg is integable on [z, 22,]. Moreover by Theorem 2.8

fg| =

2% ‘ 2z

< 4(C + 2B)exy,.

‘xn

2z, 2z,
f(91—92)<‘ o +‘/ [z
x Tn
Hence for any n € N

[l [l 2] L7

n
< (C+2B)4e Z Tm < (C 4 2B)4exo2 = epxp.
m=1

m=1

By the theory of the Denjoy-Perron integral, f06 fg exists and | foé fal < eod. O

Theorem 6.4. Let S; C X C D. Then M(X) = M(D) = W.

Proof. By Proposition 2.3, M(D) C M(X) C M(S;). Consequently it suffices
to prove W C M (D) and M(S;) C W. To prove the former, first note that for
any interval J and any h: J — R we have osc(J, h) < Var(J,h). Consequently if
g € W, then according to Lemma 6.2 ¢ is bounded. Then Lemma 6.3 easily proves
that if g € W and if f € D, then fg € D. For the second containment suppose
g € D\ W. We may assume limsup Var(z, 2z, g) = co. By Proposition 5.3 there is

z—0t

an f € Coo(RT) such that 11161+%f0xf =0, hm L[ 1fIP =0 for each p € (0,1)
but 111(1)1+ % fox fg = 0doesn’t hold. The first two condltlons imply f € S;. The third
says fg & D. Thus g & M(S}). O

By Proposition 4.8 for each p € (0,1) we have S, C S,C S, C gp and S; C T,c
T, CTp. Also S; C S, C Sp and S1 C Ty C Tp. Thus for each of these spaces,
X, we have M(X) = W. We now deal with the remaining spaces. The next theorem
sets the pattern for the second major theorem of this section, Theorem 6.13.
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Theorem 6.5. M(Sl) = To<>7 M(Too) = Sl, M(Soo) = Tl, M(Tl) = Soo

Proof. It follows from Proposition 5.4 with p = 1 that M (S;) C Te. That
every bounded derivative (that is, an element of T) is in M (S) is easy and is left
to the reader.

Proposition 5.5 implies M (T ) C 57 and again the opposite containment is easy.
By Corollary 3.6 with n = 0, M(C) = Ty. By Proposition 2.7, Ty = M(C) =
M(M(M(C))) = M(M(T1)) = M(Sx). The last equality is just the definition of
Soo- O

Remark 6.6. The relation M(S;) = T is also proved in [5]. The equality
M(Tx) = S1 was stated without proof in [1].

Theorem 6.7. M (D) C Soo C bCap C Seo-

Proof. Since T4 C D, by Proposition 2.3 M(D) C M(T1) = S. Since
T N S1 C T1, Theorem 6.5 implies Soo = M(T1) C M(S1) "M (Ts) =T NS1 =
bCap. It is easy to see that bCy, C S, for each p € [0, 00). Thus bCap C Soo- O

Remark 6.8. Let f € M(D). Then by the preceding theorem f is approximately
continuous. Consequently f is continuous on any interval on which it is of bounded
variation. That M (D) = W implies that there are many such intervals. In fact it
implies that the union of all open intervals (a,b) C I such that f is continuous and
of bounded variation on each [c,d] with a < ¢ < d < b is all of I except for a finite
set.

The next lemma is used here and extensively in Section 7.
Lemma 6.9. Let p,q € (0,00] with ¢ < p. Define r € (0,00] by % +1= %.
Suppose f,g, fg € D.
(i) If f € T, and if g € T}, then fg € T,
(ii) pr<io, if fel, a_ndifgeTT, tﬁen fgel,
(ii) If f €T, and if g € T, then fg e T,.

Proof. (i) follows immediately from Lemma 4.4. For (ii) let y € I. Since

[ €T, thereisa s € (p, 00) such that limsup || f|y,s < co. Since 1+ic Il)+% = é,
Ty

there is ¢1 > ¢ and r; < r such that % + L = L. By definition g € T,,. Thus

T1 q1 _
Lemma 4.4 implies limsup || fg||z,y,¢ < 00. By definition fg € T;. The proof of (iii)
T—Y
is easy and hence is omitted. |
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Proposition 6.10. Let p € [1,00]. Suppose one of the following holds.
(i) feSpandgeTy.
i) p>1,fe s, andgezﬁ,.
(iii) p<oo,f €S, and g € Tyy.
Then fg € Ty.

Proof. If f € Si and if g € Ty, then since Soo = M(T1), fg € D. Since S1 C
Ty, Seo = M(Th) C M(S1) = T by Theorem 6.5. (This inclusion is one of those
missing from Proposition 4.8.) Consequently f is bounded and since g € T4, it follows
that fg € T1. In each of the remaining cases it is easy to prove, using Lemma 4.4,

that for each y € I, lim [|(f — f(y))gllzy.1 = 0. Since fg = (f = f(y))g + ()9, it
follows that fg € D. Now apply Lemma 6.9 with r = 1. O

Lemma 6.11. Let p € [1,00) and let f: Rt — R be measurable. Suppose
limsup L ["|f|P < co. Then there is an h € Coo(R") with hm LI1f=hP=o0.
o+

Proof. For each n € N, let J, = [27",27""1]. For each n € N with
J; IfIP < oo since p € [1,00), there is an h, € Coo(R") such that h, = 0 on
R\ Jn and [|f — hnlls,p < 2. If J; 1fIP =00, set h, = 0. Let h = 3 hy. Since

n=1

hmsup Jo 1fIP < oo, there is an m € N such that fJ |f|P < oo for each n > m.
xTr—

Letn m and let x € J,,. Then

[ir-np< Z/|f hk|p<2"]’“'\z'i—p'<i—f

k=n

from which the desired result follows immediately. O

Theorem 6.12. Let p € [1,00]. Then M(S,) =T, and M(T},) = Sp.

Proof. By Theorem 6.5 we may assume p € (1,00). Let g € M(S,). By
Theorem 5.12 with s,, = p for each n € N, g € T,,. Hence M(S,) C T,y. The
opposite containment follows from Proposition 6.10 (i).

Let g € M(T},). Since T}, D T U Sy, by Propositions 2.3 and 2.6 g € M (T) N
M(Sp) = S1NM(S,) C CopNTy. Let y € I, set g1 = g — g(y) and set f =
lg1?" " sgn g1. Since p(p/ — 1) =1/, |f|? = |g1|”". Thus

1 z /
(6) limsup /|f|p limsup ——— /|g1|p < 0.
oy | =yl Jy

T—Y
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By Lemma 6.11 there is an h € Coo(R \ {y}) such that

(1) lim — /x|f—h|p—0.
Y

Let h(y) = 0. Then for each x € I'\{y} we have ||h|ly zp < [[h—flly,zpF | flly.5,p- By
(6) and (7) limsup ﬁ f; |n|P < oo. It follows from (7) that limap,_,,(f —h)(z) =
T—Y

0. Since g1 € C,p and since g1(y) = 0, limap,,_,, f(z) = 0. Thus limap,_,, h(z) = 0.
By Lemma 4.9, lim xlTy f; |h| = 0 and consequently h € D. Therefore h € T),. Since
T—Y

g € M(T,), hg1 € D. Hence lim ﬁ fyx hgi = 0. Furthermore by (6) and (7) we have
T—Yy

1 x
1 — <l — r = 0.
}clgz iz —y| /y I(f = h)g1| < }fli% 1f = hllay.pllgrlleyp =0
Thus
. 1 x , . 1 x
lim —— [ lg— gl = lim —— [ fg =0
T—Yy T — y y T—Yy T — y y

Therefore g € S,. Hence M(T,) C S,. Again the opposite containment follows
from Proposition 6.10 (i). O

Theorem 6.13. For p € [1,00), M(S,,) =T and M(T,) = S, For p € (1,00,

p
M(S,) =T, and M(T,) =S

D p/.
Proof. Assume p € [1,00). Let ¢’ € (1,p'). Then g € (p,o0). By Proposi-
tion 4.8 S; C S,. By Proposition 2.6 and Theorem 6.12, M(S,) C M(S,) = Ty .
Thus M(S,) € () Ty =Tp. That T,y C M(S,) follows from Proposition 6.10

q'€(1,p)
iii). Since T, O S, U Tso, by Proposition 2.6, Theorem 6.5, the above and Propo-
p p

sition 4.10, M(T,,) C M(S,) N M(T) = Ty NSy CTyNCyp = S,. By Proposi-
tion 6.10 (ii) S,y C M(T,).

Now assume p € (1,00] and let g € M(S,). For each n € Nlet p,, € (1,p) such that
nhj& prn = p. Then for each n € N, p/, > p/. Let y € I. By Theorem 5.12 it follows

that limsup ||g||.y,p, < oo for some n € N. Hence g € T,,. So M(S,) C T,,. The

T—y
opposite containment follows from Proposition 6.10 (ii). The proof that M (T,) = S,
is similar to that of M(T,) = Sy and is omitted. O

It is finally possible to fill in the final missing containment from Proposition 4.8.
Because T; C Ty, by Proposition 2.3, Soe = M(T1) C M(T;) = Sco.

This section is concluded with a theorem whose significance is explained in the
subsequent remark.
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Theorem 6.14. Let X C D. Then X C Sy if and only if X C M (X).

Proof. If X C Sy, then X C Tp = M(S2) C M(X). Let X C M(X) and let
f € X. Then f? € D; so by Proposition 4.19 f € S. (|

Remark 6.15. Let X C D. Using Proposition 4.18 as in the preceding proof it
is easy to see that M (X) C X implies M (X) C Sy. However M (X) C Sz can hold
even if X does not contain the zero function in which case M (X) C X is impossible.
At the same time the equality M (X) = X can never hold. For if there were such an
X, then by the previous theorem X C S3 and hence To = M (S2) C M(X) =X C S,
which is false. (There are bounded derivatives; that is, elements of To, C T that
are not approximately continuous; that is, not in Sy D Ss.)

7. MULTIPLIERS FROM ONE SPACE TO ANOTHER

In this section we find the spaces of multipliers M (X,Y) where X and Y are any
of the spaces of derivatives investigated in the previous three sections. To carry out
the campaign the following notation will be useful.

Notation 7.1. For p € (0,00) let
Sp = {ﬁpvspvgp} and 7, ={T
Also let
So = {80, S0}, o ={Ty,To}, Soc = {S0, S0} and Too = {To, T }-

Finallylet S= |J Spand7 = |J 7,. Generic elements of S will be denoted
p€E[0,00] p€E[0,00]

by S and S while T and T will denote generic elements of 7. Also X and Y will
denote elements of SU 7.

The problem of determining M (X,Y") is decomposed into four parts: M(T,S),
M(S,T), M(T,T) and M (S, S). We take them up in that order.

Theorem 7.2. Let X, Y € SUT with T, C X andY C So. Then M(X,Y) =
{0}.
Proof. Let g € M(X,Y) and let y € I. Then there is an f € T, = bD such

that f is not approximately continuous at y. By assumption fg € Y C Sy = Cyp.
It is easy to see that if g(y) # 0, then fg is not approximately continuous. Thus

g9(y) = 0. 0
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As a consequence of Theorem 7.2, M(T,S) = {0} for each T € 7 and S € S.
Next the multipliers of the second type, M(S,T), are computed from which the
spaces M(T,T) and M (S, S) will be deduced. The results for M(S,T) can best be
displayed by a matrix-type chart with the S-spaces corresponding to the rows and

the T-spaces, the columns. The intersection of row S and column T being the space

M(S,T), see Figure 1. The next two theorems combine to show that below the main

diagonal each entry is {0}.

SIS S S S e SIS =B
Sl S S d]l S S S S B B E R B
) ]S S a] S S S S E S

S| ]S S S| S ] B B

S~ - . | % Y IR I | st R I

S NSNS e 2 E =

it el ] PR =Y RS Y EE B 1 RS e~ I B

NN RSN NN RN

== o % % A . K £ I A

ARSI T R

Il Il I Y Y R A N~ I~ T~ I A

N R SIS TSI N RS

SIS IS I RN N 3 3

ISESES) SEISHS I~ |1~ | I~

S 1551 S IR Tl Rl )RR P P

o o o “ [N S ?

S NN RS

= DS ERrNrSs

S 1% P R P

o o of | 8

SIRSIEsS] I~

A NEINE

[ ™S

Sl 8

s 8 a & o o = | S| 3| = ol o
g(’”"? | || W@ || | @l @] | Wl | n nl| A

Figure 1. The M(S,T) chart.
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Theorem 7.3. Let p € (0,00]. Then M(S,,T,) = {0}.

Proof. Letp € (0,00), let g € M(S,,T,) and let y € I. Show g(y) = 0.
Suppose to the contrary that g(y) # 0. Then by Proposition 5.7 there is an f € S,
with fg & T}, contrary to g € M(S,,T},). Thus g(y) = 0. The case p = oo follow the
same procedure except using Proposition 5.9 in place of Proposition 5.7. (Il

Theorem 7.4. Let p € [0,00). Then M(S,,T,) = {0}.

Proof. Proceed as in the proof of Theorem 7.3 using Proposition 5.6 in place
of Proposition 5.7. (]

From Theorems 7.3 and 7.4 and Proposition 2.3 for X,Y € SU7T if S, C X and
Y C T, forp € (0,00 orif S, C X and Y C T, for p € [0,00), then M(X,Y) = {0}.
It follows that all entries in the chart for M (.S, T') below the main diagonal are {0}. In
addition the corresponding conclusion holds for the charts for M (T, T) and M (S, S).
These entries are also denoted by leaving the corresponding space blank.

The next two assertions combine to complete the lower right hand corner of the
M(S,T) chart.

Theorem 7.5. Let X € SUT. Then W = M(D) C M(X,X).

Proof. Let g € W. By Theorem 6.6, g € bC,,. Let f € X. Then fg € D.
If X = Ty, then M(D) = M(D,D) = M(X,X) by choice of Ty. If X = Sy,
then fg € DN Cyp = So. Thus g € M(So, Sp). Next assume p € (0,00] and
X =T, Lety € I. By definition limsup ||f|zy,p < 00. Because ||g]lcc < o0,

T—Yy
limsup || fgllz,yp < 00. So g € M(T},,Tp). Similarly if X =T, and if y € I, then by

T—Y

definition there is ¢ € (0,p) with limsup || f]|z,y,q < co. Thus limsup || fg|+,y,q < 0.

T—y T—y
So fg € T,. It is just as easy to prove that M (D) C M(T,,T,) for p € [0,0).
Again assume p € (0, 00] but now assume X = S,. Let f € S, and let y € I. By
definition lim || f — f(y)|lz,y,p = 0. If p < 00, then
Ty

1f9 = FW)gW)llzyp <IIf = FW)lzypllgllo + 1F @I — 9@z

and lim ||g — g(y)||z,y,p = 0 because g € bCyy. For p = oo, let f € S,. To show
T—yY

that fg € Seo = M(T1), let h € T1. By the previous case for X = Ty, gh € T1. So
f € Soo = M(T1) implies (fg)h € Ty. Thus fg € M(T1) = Se.
Continuing with p € (0,00] let X = S, let f € S, and let y € I. By definition
there is a ¢ € (0,p) with lim ||f — f(y)|/z,y,q = 0. By the first argument of the pre-
T—Y
ceding paragraph, lim ||fg — f(y)9(y)|/z,y,q = 0. By definition fg € S,,. Finally for
T—yY

p € [0,00) the proof that M (D) C M(S,,S,) is similar. O
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Theorem 7.6. Let X,Y € SUT with S C X C Y. Then M(X,Y) =
M(D)=W.

Proof. By Theorem 6.4, M(S;) = M(D) = W. So by Theorem 7.5 and by
Proposition 2.3

M(D) c M(X,X)C M(X,Y)C M(8;,D) = M(8,) = M(D).

As a consequence of Theorem 7.6. in the M (S, T) chart all entries on and below
the S; row, on and to the right of the T'; column and on or above the main diagonal
are W. It says the same about the M (T, T) and M(S, S) charts.

The next theorem spells out the part of the M (S, T') chart on and to the right of
the 77 column.

Theorem 7.7. Let X, Y € SUT with X C Ty C Y. Then M(X,Y) =
M(X,D) = M(X).

Proof. Because Y C D, Proposition 2.3 implies M (X,Y) C M(X). So let

g € M(X) and let f € X. By definition fg € D. The possibilities for X are X =T,
X =8 o0or XeSUT,for pe (1,00]. In either of the first two cases, f € T'; and
g € M(X) C Too. So by Lemma 6.9 (ii), with ¢ = p = 1, fg € T1 C Y. In the
remaining cases Lemma 6.9 (i) or (ii) implies fg € T7. So in any case g € M(X,Y).
O

Theorem 7.7 shows that all columns from 73 to its right and on or above the S}
row agree with that of the Ty column. But because Ty = D, this column is known
by the results of Section 6. Note that the corresponding assertion is valid for the
M(T,T) chart, but not to the M (S, S) chart.

The next four assertions combine to determine the remainder of the M (S, T) chart.

Theorem 7.8. Let p,q € [1,00] with ¢ < p and define r € [1,00] by % + % = %.
Then M(S,,Ty) = T).

Proof. First it is shown that M(Sp,T;) C T,. Begin by assuming ¢ < p < oo.
Let g € D\ T,. Then g € D and there is y € I such that limsup | g|

T—Y

Theorem 5.13 with s,, = p for each n € N, there is an f € S, such that fg & T,.
Thus g & M(S,,T,). If ¢ = p < o0, proceed as above except using Proposition 5.4
instead of Theorem 5.13. Lastly, assume p = co. Then r = ¢ and M (S, T,) C T,
by Proposition 2.2.

z,y,r = 00. By
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Now T, C M(S,,T,) is proved. First note that because ¢ > 1, % +1= % <1=
% + z% Thus % < %, or p' < r. (This observation is used here and in the proofs
of the next three theorems as well.) Let f € S, and g € T, C Ty = M(S,). Thus

fg € D. Because S, C T}, Lemma 6.9 (i) implies T,, C M (S,, T,). O

Theorem 7.9. Let p,q and r be as in Theorem 7.8, except that p < co. Then
M(S,,T,) = M(S,,T,) = M(S,,T,) = T, and if 1 < q, then M(S,,T,) =
M(S,,T,) =T,

Proof. First M(ﬁp,Tq) C T, is proved. Let t € (p,00). Then S; C S,,.
By Propositions 2.3 and 2.6, M(ﬁp,Tq) CM(S, N Tu.)= N M(S,T,). By

u€(0,9) u€(0,9)
Theorem 7.8, M(S;,T,) = T,, where % + % = % Because u € (0, q), % = % — % >
% —-1= % Hence 7y < 5. It follows that M(S,,T,) C Q )Trl =T,,. Because
r1€(0,72
t>p, ro <r. It follows that M(S,,Tq) C () Tu=T,.

u€e(0,r)

Let f € S, and g € T, C Ty = M(S,). Thus fg € D. Because S, C
T,, Lemma 6.9 (ii) implies 7). C M(S,,T,). By Proposition 2.3, M(S,,T,) C
M(S,,Ty) € M(S,,Ty). So by the previous paragraph M(S,,,T,) = M(S,,Ty)
= M(S,,T,) =T, Nowlet 1 <gq. Thenp' <r. Let fe€ S, andgeT, CT, =
M(S,). Thus fg € D. Since S, C T, Lemma 6.9 (iii) implies T, C M(S,,T,). By
Proposition 2.3, M(S,,T,) C M(S,,T,) € M(S,,T,). O

Note that the case ¢ = 1 of the preceding theorem was dealt with in Theorem 7.7.
Also the inclusion T, C M(S,,T,) is valid if p = co. Recall in that case r = gq.
Thus Ty C M (Soo,Ty) C M (S, Ty) C T, again by Propositions 2.3 and 2.2. Thus

M(Soo,Ty) = M(Seo, Ty) = Ty

Theorem 7.10. Let p,q € [1, 0] with ¢ < p and define r € [1,00) by % + % = %'
Then M(gp,lq) = M(gp’Tq) =T,.

Proof. First it is shown that M(S,,T,) C T,. To that end let g € D\ T,.

Then g € D and there is a y € I such that for each u > r, limsup||g||z,yu = 0.
T—Y
For each n € N, let s, € (g,00) with s3 < s3 < ... and lim s, =p. For each
n—oo

neN,deﬁnernbyS%—Frlf

each n € N, limsup||g||s,y,r, = 00. By Theorem 5.13 there is a function f such that

z—y

f €8s, for all n € N and hence f € S, because {s,} increases to p, while fg & T}.
Thus g ¢ M (S,, T,).

Now let f € S, and g € T,.. Because ¢ < p, p’ < r and hence T, C T, = M(S,).

Thus fg € D. Since S, C T, Lemma 6.9 (ii) (with the roles of p and r reversed)

= %. Then the sequence {r,} decreases to r. Thus for
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implies T',. C M(gp,zq). (Because ¢ < p, r < co. Thus Lemma 6.9 (ii) applies.) By
Proposition 2.3, M(S,,T,) C M(Sy,T,). Thus T, = M(S,,T,) = M(S,,T,). O

Theorem 7.11. Let p,q and 7 be as in Theorem 7.10. Then M(S,,T,) =T

re

Proof. The proof that M(S,,T,,) C T, parallels the first part of the proof of
Theorem 7.10 except that an increasing sequence {t, } is selected converging to ¢ and
Theorem 5.14 is applied instead of Theorem 5.13. By the second part of the proof of
Theorem 7.10, T',. € M(S,,T,). By Proposition 2.3, M(S,,T,) C M(S,,T,). Thus
T, = M(Spvzq)' U

With Theorem 7.11 the M (S, T) chart is complete. The chart appears on Figure 1.
The remaining three theorems indicate how the M (T, T) and M(S, S) charts can
be obtained from the M(S,T) chart. The following notation is useful in the state-

ments of the remaining two theorems.

Notation 7.12. Let S € S. Then 7(S) denotes the corresponding member of
T. For example 7(5,) = T, Similarly for 7" € 7, o(T') denotes the corresponding
member of S.

Theorem 7.13. Let S € {S;}U U SpandletT € {T,}U U 7, with
pE(1,00] q€(1,00]
q < p. Then M(7(S),T) = M(S,T) N Cap.

Proof. Because S C 7(S5) and because Tx C 7(5), Proposition 2.3 implies
M(7(S),T) ¢ M(S,T) and M(7(S),T) C M(Te,D) = S1 C Sy C Cyp. Thus
M(7(S),T) C M(S,T)N Cyp.

To prove the opposite containment, first assume either (S = S, and T' € 7;) or

(S €1{S,,S,} and T =T,). In each of these cases, M(S,T) = T, where, as before
%—i— % = %. By Proposition 4.10, M(S,T) N Cap = T N Cap = S;. Let g € S,
If g =1, thenr = p’ and T'= T;. Thus S = S,,. Let f € 7(S) = T,. Then
g €S, =8y =M(L,) implies fg € D. If ¢ > 1 and if p = ¢, then r = oo and
hence g € M(T;). Thus for f € 7(S) C T, fg € D.If ¢ > 1 and if ¢ < p, then
p < r. Hence g € S, C S, = M(T,). Thus for f € 7(S) € T, fg € D. Thus
in any case Lemma 6.9 can be applied. If S = S, then p < co and by Lemma 6.9
(ii), fg € T, C T. Hence g € M(7(S),T). If S € {Sp, Sp}, then by Lemma 6.9 (iii),
fgel,

Now consider all cases resulting in M(S,T) = T,.. Note that in all such cases,
r < oo. That is, assume either (S = S, and T' = T,) or (S = S, and T' €
{L,,Ty})- By choice, in all cases M (S, T') = T, and hence again by Proposition 4.10,
M(S,T)NCap =T, NCyap =8,. Let g € S,.. Because p’ < r, S, C S, = M(T)).
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Thus fg € D. So again Lemma 6.9 can be employed. By Lemma 6.9 (ii) with the
roles of f and g reversed, fg € T',. Thus g € M(7(5),T).

Finally assume S = S, and T' = T};. Then M (S,,T,;) = T,. Because T =T, ¢ > 1
and hence p’ < r. Thus T, C T}r. So M(S,,T,) N Cyp C T, NCap =28, CSy=
M(T,). Thus g € M(S,,T,) N Cap and f € T, implies fg € D. So by Lemma 6.9 (i),
fg € T,. Hence g € M(T,,T,). O

The results of the preceding theorem are displayed in Figure 2, X NCY}, is denoted
by X.

The final two theorems will complete the M (.S, S ) chart. Recall that Theorem 7.3,
7.4 and 7.6 fill in part of that chart. But in this case, Theorem 7.7 doesn’t apply.
The next theorem deals with the remaining part of the chart except for the S, row.

Theorem 7.14. Let S € {51,58,,8.,JU U SpandletT € | 7, with
p€e(1,00) g€[0,00)

q < p. Then M(S,0(T)) = M(S,T)N Cap.

Proof. Because o(T) C T, M(S,0(T)) C M(S,T). Moreover M(S,o(T)) C
o(T) C Cap. Thus M(S,0(T)) C M(S,T) N Cap.

First that part of the chart including and to the right of the column headed S; and
above and including the row labeled S7, but excluding S, is handled. So assume
Ty C T. Each row is dealt with separately. First let S = S,. Then p € [1,00] and
M(S,,T)N Cap =Ty N Cap = Sy by Proposition 4.10. Let g € Sy and let f € S,,.
By Theorem 4.11 (ii) (with the “¢” of that theorem equal 1), fg € S; C o(T)
because 71 C T. Thus M(S,,,0(T)) = Sy Next let S = S,. Then p € [1,00) and
M(Sp, T)NCap =Ty NCup. Let g € Ty NCyp and f € S,. By Theorem 4.11 (i),
fg € S1 C o(T). Thus M(Sp,0(T)) = Ty N Cap. The last case for this part of the
chart is S = S,,. In this case p € (1,00) so that p’ < oo and M(S,,T) N Cap =
T,n Cap = ﬁp,. Let g € §p/ and let f € §p, By Theorem 4.11 (ii) (with the roles of
p and r = p’ reversed), fg € S; C o(T). Thus M(S,,o(T)) =S,
Now for the remainder of the chart except for the S row, let T € {T,}U U 7,

q€(1,00]

and let S € {S;}U U S,. First consider all cases resulting in M(S,T) = T,.
pe(1,00]
Specifically assume either (S = S, and T € T) or (S € {S,,S,} and T'=T). Then
in all of these cases M (S,T) = T, where as always % + % = %. By Proposition 4.10,
M(S,T)NCap =T, NCap = S,. Let g € S, and first suppose f € §p. By Theo-
rem 4.11 (ii), fg € S, C o(T). Hence M(S,,c(T)) = S,. Next suppose S = .5,. Then
T =T, Let g€ S, and let f € S,. By Theorem 4.11 (iii), fg € S; = o(T). Thus
M(Sp,0(Tq)) = S,. The remaining case is S = S,. Because S, C S, C S, by Propo-
sition 2.3, S, = M(S),5,) C M(S,,S,) C M(S,,S5,) = Sr. Hence M(S,,S,) = S..
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Figure 2. The M (T, T) Chart.

Next consider all cases resulting in M (S,T) = T,.. Specifically assume either (S =
SpandT =T ,) or (S =S, and T € {T,,T,}). Note that in all of these cases, r < co.
Let g€ S,. Let f € S € {Sp, Sp}. Then f € S,. By Theorem 4.11 (ii) (with the roles
of p and r reversed), fg € S, C o(T). Thus in all three cases, M(S,0(T)) = S,..

The final case is S = S, and T' = T,. Then M (S,,Ty) N Cap = T N Cap. Let
g€ T, NCyp and let f € Sp. If p < 00, then by Theorem 4.11 (i), fg € S, = o(Ty).
So assume p = co. By Proposition 2.2 M (S, Sq) C 5. Now assume f € S, and

215



g € Sq. Show that fg € S; = M(Ty). Let h € Ty. Then gh € D. By Lemma 6.9

(i), gh € Ty. Because f € Soo = M(T1), fgh € D completing the proof. |
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Figure 3. The M(S, S) chart.

Theorem 7.15. If T € {T:}uU |J 7, then M(Soo,0(T)) = T1 N Cyp. If
g€l0,1)
Te{T,,i}tu U 7 then M(Ss,o(T)) =0o(T).

g€(1,00]
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Proof. Firstassume T € {T1}U |J 7,. By Proposition 2.2, M (Se,c(T)) C
q€[0,1)

o(T) C Cap and by Proposition 2.3 M(Se,0(T)) C M(Ss) = Ti. Therefore
M(Ss,0(T)) C Th N Cap. Let f € Se and g € Ty N Cyp. Because Soo C Chap,
fg € Cap. Because f € Se, by Proposition 6.10 (i), fg € Ty C T;. Thus
fg€T1NCap =51 Co(T). Therefore g € M(Swo,c(T)).

Finally assume T € {I;, 71} U |J 7,. By Proposition 2.2, M(Se,0(T)) C

q€(1,00]

o(T). Let f € So and g € o(T). Show that fg € o(T). Suppose T = T,. Then
q € [1,00) and o(T) = S, = M(Ty). Let h € Ty By Proposition 6.10 (iii), gh € T1.

Because So, = M(T1), fgh € D. So fg € M(Ty) = S,. The remaining two cases,
T=T,and T = Tq, proceed in an analogous manner. (|
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