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Abstract. We prove that a set of weak solutions of the nonlinear Volterra integral equa-
tion has the Kneser property. The main condition in our result is formulated in terms of
axiomatic measures of weak noncompactness.
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1. Introduction

The notion of the measure of weak noncompactness was introduced by De Blasi

in 1977 ([6]). This index has found applications in fixed point theorems (cf. [7]) and
many existence results for weak solutions of differential and integral equations in
Banach spaces (cf. [3], [4], [5] and other). Recall that weak solutions of the Cauchy

problem in reflexive Banach spaces were investigated by Szép ([11]) and weak solu-
tions of nonlinear integral equations in these spaces by O’Regan ([10]). But, it is not

easy to construct some formulas which allow to express the measure of weak non-
compactness in a convenient form. This was the reason for introducing the notion of

axiomatic measures of weak noncompactness, see [2]. In that paper several examples
of axiomatic measures of weak noncompactness in Banach spaces were constructed.

The aim of this paper is to investigate weak solutions (more precisely: weakly

continuous solutions) of the nonlinear Volterra integral equation by using this ax-
iomatic index. Our method of proving is more sophisticated then in the case when

one applies the classical measure of weak noncompactness. As a corollary of our
main theorem we obtain a similar result for the Cauchy problem.
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2. Preliminaries

Denote byME the family of all bounded subsets of a given Banach space E, and

by WE the family of all weakly relatively compact subsets of E (shortly: M and W ,
respectively).

Definition 1 ([2]). A function γ : M → [0,+∞) is said to be an axiomatic
measure of weak noncompactness if it satisfies the following conditions:
1◦ the family kerγ = {X ∈ M : γ(X) = 0} is nonempty and kerγ ⊂ W ;
2◦ X ⊂ Y ⇒ γ(X) � γ(Y );
3◦ γ(convX) = γ(X), where convX denotes the closed convex hull of X ;

4◦ γ(λX + (1− λ)Y ) � λγ(X) + (1− λ)γ(Y ) for λ ∈ [0, 1];
5◦ if Xn ∈Mwc, whereMwc denotes the family of all weakly closed subsets of E,

Xn+1 ⊂ Xn, n = 1, 2, . . ., and lim
n→∞

γ(Xn) = 0, then

X∞ =
∞⋂

n=1

Xn �= ∅.

The family kerγ described in 1◦ is called the kernel of the measure γ. It can be

easily verified that the measure γ satisfies

γ(X
w
) = γ(X),

where X
w
denotes the weak closure of X .

Definition 2. If
6◦ γ(X ∪ Y ) = max{γ(X), γ(Y )} for any X, Y ∈ M, then we say that γ has the
maximum property.

Notice that if γ : M→ [0,+∞) satisfies
1◦, 2◦, 6◦ and γ({x}) = 0 for any x ∈ E, then γ satisfies 5◦ (see [2]).

By using similar arguments as in [1] and by Th. 3 ([2]) one can prove the following
Ambrosetti’s type lemma which will be useful in the sequel.

Lemma. Assume that γ has the maximum property and V is a uniformly

bounded and strongly uniformly equicontinuous subset of the space Cw(A, E), where
A is a compact interval in �n and Cw(A, E) denotes the space of all weakly contin-

uous functions A → E with the topology of weak uniform convergence. Then for

every compact subset T ⊂ A we have

γ(V (T )) = sup
t∈T

γ(V (t)),
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where V (t) = {x(t) : x ∈ V }, V (T ) = {x(t) : x ∈ V, t ∈ T }.

3. Main result

In this section we investigate topological structure of the set of weakly continuous

solutions of the nonlinear Volterra integral equation

(1) x(t) = g(t) +
∫

A(t)

f(t, s, x(s)) ds, t ∈ A,

where A = [0, a1] × [0, a2]× . . .× [0, an] (ai > 0, i = 1, . . . , n), A(t) = {s ∈ �
n : 0 �

si � ti, i = 1, . . . , n} and the symbol “
∫
” stands for the weak Riemann integral.

Assume that E is a weakly sequentially complete Banach space and

1) g : A → E is a weakly continuous function;

2) f : A2 × E → E

is a weakly-weakly continuous function such that

i) for every r > 0 there exists mr > 0 such that ‖f(t, s, x)‖ � mr for all t, s ∈ A

and ‖x‖ � r;

ii) for every ε > 0 there exists δ > 0 such that for all t, τ ∈ A, ‖t − τ‖ < δ ⇒
‖f(t, s, x)− f(τ, s, x)‖ < ε whenever (s, x) ∈ A× E.

The main result of our paper is given by the following Kneser type

Theorem. Suppose that 1), 2) are satisfied. If the measure γ has the maximum

property and

7◦ γ(Y ) �diam Y for every Y ∈ M,
8◦ γ(g(T ) + Y ) � γ(Y ) for every compact subset T ⊂ A and every Y ∈M,
9◦ γ(X + Y ) � γ(Y ) for all X ∈ kerγ and Y ∈M,
and there exists a continuous function h : I × �+ → �+ which is nondecreasing in

the second variable and such that the function identically equal to zero is the unique

continuous solution of the inequality

u(t) �
∫

A(t)

h(s, u(s)) ds, t ∈ A,

and

(2) γ(f(t, T ×X)) � h(t, γ(X))
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for t ∈ A and for all bounded subsets T ⊂ A and X ⊂ E, then there exists a set

J = [0, d1] × [0, d2] × . . . × [0, dn] ⊂ A such that the set S of all weakly continuous

solutions of (1), defined on J , is nonempty, compact and connected in Cw(J, E).

�����. Let c = sup
t∈A

‖g(t)‖ and � = sup
r>0

r−c
mr
. Choose positive numbers e < � and

b in such a way that c+mbe < b. Then choose numbers di, i = 1, . . . , n, such that 0 <

di � ai, i = 1, . . . , n and d1d2 . . . dn < min(e, 1). Set J = [0, d1]×[0, d2]×. . .×[0, dn].
In the space �n we introduce a norm defined by the formula

‖t‖ = max
(
|t1|,

d1
d2
|t2|, . . . ,

d1
dn
|tn|

)
for t = (t1, t2, . . . , tn).

Then J = {t ∈ �
n : t � 0 and ‖t‖ � d1}. Denote by B̃ the set of all weakly

continuous functions J → Bb, where Bb = {z ∈ E : ‖z‖ � b}. We shall consider B̃

as a topological subspace of Cw(J, E). Define G(x)(t) = g(t) + F (x)(t), where

F (x)(t) =
∫

A(t)

f(t, s, x(s)) ds, t ∈ J, x ∈ B̃.

It is clear from the inequalities

‖F (x)(t) − F (x)(τ)‖ �
∫

A(t)

‖f(t, s, x(s))− f(τ, s, x(s))‖ ds+mbd2d3 . . . dn‖t− τ‖,

‖F (x)(t)‖ � mbd2d3 . . . dn‖t‖ (x ∈ B̃, t, τ ∈ J)

that G(B̃) ⊂ B̃ and F (B̃) is strongly equiuniformly continuous. In view of a

Krasnosel’skij-Krein-type lemma (cf. [9]), we infer that G is continuous.
Further, for any number η > 0 put Jη = {t ∈ J : ‖t‖ � η}. For any positive

integer k define

rk(t) =

{
0, if t ∈ J1/k,

(1− 1
k‖t‖ )t, if t ∈ J\J1/k.

It can be easily verified that ‖rk(t)− t‖ � 1/k, ‖rk(t)‖ � t (t ∈ J) and rk(J(i+1)/k) ⊂
Ji/k for i = 0, 1, . . . , k − 1. Next, for any positive integer k define Gk(x)(t) =

g(t) + Fk(x)(t), where

Fk(x)(t) =
∫

A(rk(t))

f(t, s, x(s)) ds, x ∈ B̃, t ∈ J.

Analogously to the case of G, the mappings Gk map continuously B̃ into itself.

Moreover,

(3) ‖Gk(x)(t) −G(x)(t)‖ � 1
k

mbnd2d3 . . . dn, x ∈ B̃, t ∈ J.
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Further, it can be easily verified that there exists a unique element xk ∈ B̃ such that

xk = Gk(xk). From the above it is clear that there exists a sequence (un) such that
un ∈ B̃ for n ∈ � and

(4) lim
n→∞

sup
t∈J

‖un(t)−G(un)(t)‖ = 0.

Let V = {un : n ∈ �}, W = F (V ) and w(t) = γ(W (t)) for t ∈ J . We have

un = Gn(un) = g + Fn(un), n ∈ � and therefore, by (4),

lim
n→∞

sup
t∈J

‖un(t)−G(un)(t)‖ = lim
n→∞

‖Fn(un)− F (un)‖c = 0,

where ‖ · ‖c denotes the supremum norm in the classical space C(J, E) of all contin-
uous functions J → E with the topology of uniform convergence. Hence the family

(I −G)(V ), where I denotes the identity map, is strongly relatively compact.

Now, we prove that

(5) γ((I −G)(V )(T )) = 0 for every compact subset T ⊂ J.

Fix t ∈ J and ε > 0. By (4) there exists k ∈ � such that ‖un(t) −G(un)(t)‖ < ε/2

for every k � n. In view of the property 6◦ and 7◦ we have

γ((I −G)(V )(t)) = γ((I −G)(Vk)(t)) � diam ‖(I −G)(Vk)(t)‖ < ε.

Since ε > 0 has been arbitrary, we obtain γ((I −G)(V )(t)) = 0. Because (I −G)(V )
is strongly uniformly equicontinuous, by Ambrosetti’s type lemma we infer that (5)
holds.

Since un(t) = (un(t) − G(un)(t)) + G(un)(t), V (t) ⊂ (I − G)(V )(t) + G(V )(t).
Now we verify that

(6) γ(V (t)) � γ(W (t)) for every t ∈ J.

Fix t ∈ J . By (5), 9◦ and 8◦ we have

γ(V (t)) � γ((I −G)(V )(t) +G(V )(t)) � γ(G(V )(t)) � γ(F (V )(t)) = γ(W (t)).

Analogously, we obtain

(7)
γ(V (T )) � γ((I −G)(V )(T ) +G(V )(T )) � γ(G(V )(T ))

= γ(g(T ) + F (V )(T )) � γ(F (V )(T )) = γ(W (T )).
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SinceW is strongly uniformly equicontinuous and uniformly bounded, the function

s → w(s) is continuous on J . Indeed, fix ε > 0 and choose δ > 0 in such a way that

‖F (un)(t)− F (un)(τ)‖ < ε

for t, τ ∈ J such that ‖t − τ‖ < δ and n ∈ �. Since W (t) ⊂ W (τ) + {F (un)(t) −
F (un)(τ) : n ∈ �}, in view of Th. 3 [2] we obtain

γ(W (t)) � γ(W (τ)) + sup
n∈�

‖F (un)(t)− F (un)(τ)‖γ(K(W (J), 1))

� γ(W (τ)) + εγ(K(W (J), 1)),

where K(W (J), 1) =
⋃

n∈�

⋃
t∈J

K(F (un)(t), 1) and K(F (un)(t), 1) denotes the open

ball centered at F (un)(t) and with radius 1. Hence

γ(W (t))− γ(W (τ)) � εγ(K(W (J), 1)),

and analogously

γ(W (τ))− γ(W (t)) � εγ(K(W (J), 1)).

This proves the continuity of w.

Fix t ∈ J and η > 0, and choose δ > 0 in such a way that

(8) |h(t, w(s)) − h(t, w(τ))| � η

for t, s ∈ J such that ‖s− τ‖ � δ.

Divide the rectangle A(t) into m rectangles P1, . . . , Pm such that A(t) =
m⋃

i=1
Pi,

diam Pi � δ and µ(Pi ∩ Pj) = 0 for i, j = 1, . . . , m, i �= j (here µ denotes the
Lebesgue measure in �n ). By Ambrosetti’s type lemma and by the continuity of w,

there exists τi ∈ Pi such that

(9) γ(W (Pi)) = w(τi), i = 1, . . . , m.

By the mean value theorem, we have

F (x)(t) =
m∑

i=1

∫

Pi

f(t, s, x(s)) ds ⊂
m∑

i=1

µ(Pi)conv(f(t, Pi × V (Pi))).
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Further, by the properties of γ, Th. 2 [2], (2), (7) and (9), we obtain

w(t) �
m∑

i=1

µ(Pi)γ(conv(f(t, Pi × V (Pi))))

�
m∑

i=1

µ(Pi)γ(f(t, Pi × V (Pi))) �
m∑

i=1

µ(Pi)h(t, γ(V (Pi)))

�
m∑

i=1

µ(Pi)h(t, γ(W (Pi))) =
m∑

i=1

µ(Pi)h(t, w(τi)).

On the other hand, (8) implies that

µ(Pi)h(t, w(τi)) �
∫

Pi

h(t, w(s)) ds+ ηµ(Pi).

Thus

w(t) �
∫

A(t)

h(t, w(s)) ds+ ηµ(A(t)).

Since the above inequality holds for every η > 0, we infer that

w(t) �
∫

A(t)

h(t, w(s)) ds, for t ∈ J.

By the assumption on h, it follows from the above inequality that w(t) = 0 for t ∈ J .
Hence, by (6), V (t) is weakly relatively compact for t ∈ J and therefore by Ascoli’s

theorem ([8], pp. 80–81) V is relatively compact in Cw(J, E). Hence the sequence
(un) has a limit point u. In view of (4) and the continuity of G it is clear that

u = G(u). This proves that the set S is nonempty.
Further, since G is continuous, S is closed. Because S = G(S), so w(S(t)) �

w(F (S)(t)). Hence, by similar arguments as above we can show that S is a compact
subset of Cw(J, E).

To prove that S is connected it is enough to apply a similar method as in Th. 3
[3]. The proof of our theorem is complete. �

Corollary. Let I = [t0, t0 + a] ⊂ � be a compact interval, E a sequentially

complete Banach space, and let f : I × E → E be a weakly-weakly continuous and

locally bounded function. Assume that a measure γ satisfies 6◦, 7◦, 9◦ and there
exists a continuous nondecreasing function h : �+ → �+ such that the function

identically equal to zero is the unique continuous solution of the inequality

u(t) �
∫ t

0
h(u(s)) ds, t ∈ I,
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and

γ(f(T ×X)) � h(γ(X))

for any bounded subsets T ⊂ I and X ⊂ E. Then there exists an interval J ⊂ I such

that the set of all weak solutions (see [11] for the definition) of the Cauchy problem

x′ = f(t, x), x(t0) = x0,

defined on J , is nonempty, compact and connected in Cw(J, E).

The above result with an axiomatic measure of weak noncompactness can be
illustrated by the main theorem from [5].
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[2] J.Banaś, J. Rivero: On measures of weak noncompactness. Ann. Mat. Pura Appl. 151
(1988), 213–224.

[3] D.Bugajewski: On the existence of weak solutions of integral equations in Banach spaces.
Comment. Math. Univ. Carolin. 35 (1994), 35–41.

[4] D.Bugajewski, S. Szufla: Kneser’s theorem for weak solutions of the Darboux problem
in Banach spaces. Nonlinear Anal. 20 (1993), 169–173.

[5] E.Cramer, V. Lakshmikantham, A.R.Mitchell: On the existence of weak solutions of
differential equations in nonreflexive Banach spaces. Nonlinear Anal. 2 (1978), 169–177.

[6] F. S. De Blasi: On a property of the unit sphere in Banach spaces. Bull. Math. Soc. Sci.
Math. Roum. 21 (1977), 259–262.

[7] G.Emanuelle: Measures of weak noncompactness and fixed point theorems. Bull. Math.
Soc. Sci. Math. Roum. 25 (1981), 353–358.

[8] J. L.Kelley, I.Namioka: Linear Topological Spaces. Van Nostrand, Princeton, 1963.
[9] M.A.Krasnosel’skij, S. G.Krein: To the theory of ordinary differential equations in
Banach spaces. Trudy Sem. Funk. Anal. Voronezh. Univ. 2 (1956), 3–23. (In Russian.)

[10] D.O’Regan: Integral equations in reflexive Banach spaces and weak topologies. Proc.
Amer. Math. Soc. 124 (1996), 607–614.

[11] A.Szép: Existence theorem for weak solutions of ordinary differential equations in re-
flexive Banach spaces. Studia Sci. Math. Hungarica 6 (1971), 197–203.

Author’s address: Dariusz Bugajewski, Faculty of Mathematics and Computer Sci-
ence, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland, e-mail: ddbb@
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