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Abstract. In this paper some simple conditions on f ′(z) and f ′′(z) which lead to some
subclasses of univalent functions will be considered.
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1. Introduction and preliminaries

Let A denote the class of analytic functions f(z) in the unit disc U = {z : |z| < 1}
and normalized so that f(0) = f ′(0)− 1 = 0.
A function f(z) ∈ A is said to be starlike of order α, i.e., to belong to S∗(α),

0 � α < 1, if and only if

Re
{zf ′(z)

f(z)

}
> α

for all z ∈ U . Then S∗ = S∗(0) is the class of starlike functions in the unit disc
U. Further, S̃∗(α), 0 < α � 1, is the class of strongly starlike functions of order α

defined by

S̃∗(α) =
{
f(z) ∈ A :

∣∣∣ arg zf ′(z)
f(z)

∣∣∣ <
α�

2
, z ∈ U

}
.

Also K(α), 0 � α < 1, is the class of convex functions of order α which consists of
functions f(z) ∈ A such that

Re
{
1 +

zf ′′(z)
f ′(z)

}
> α

for all z ∈ U, and K = K(0) is the class of convex functions on the unit disc U .
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In addition to these classes we will deal also with the following ones:

R(α) =
{
f(z) ∈ A : Re{f ′(z)} > α, z ∈ U

}
, 0 � α < 1;

Rα =
{

f(z) ∈ A : | arg f ′(z)| < α�

2
, z ∈ U

}
, 0 < α � 1.

All of the above mentioned classes are subclasses of univalent functions in U and

moreoverK ⊂ S∗ (see [1]). Further, S∗ does not contain R1 and R1 does not contain
S∗ ([2]).

Let f(z) and g(z) be analytic in the unit disc U . Then we say that f(z) is
subordinate to g(z), and we write f(z) ≺ g(z), if there exists a function ω(z) analytic

in U such that ω(0) = 0, |ω(z)| < 1 and f(z) = g(ω(z)) for all z ∈ U . If g(z) is
univalent in U , f(0) = g(0) and f(U) ⊆ g(U) then f(z) ≺ g(z).

The problem of finding λ > 0 such that the condition |f ′′(z)| � λ, z ∈ U , implies
f(z) ∈ S∗ was first considered by Mocanu in his paper [3] for λ = 2/3. Later,

Ponnusamy and Singh found a better constant λ = 2/
√
5, and recently Obradović in

[4] closed this problem with the constant λ = 1 by proving that this result is sharp.

In this paper, using similar techniques as Obradović did in [4] we will study λ such
that the condition |f ′′(z)| � λ, z ∈ U , implies that f(z) belongs to one of the classes
defined above.

We will also generalize the result that Mocanu gave in [5]: |f ′(z) − 1| < 2/
√
5,

z ∈ U , implies f(z) ∈ S∗.

For all of this we will need the following two lemmas.

Lemma 1 ([6]). Let G(z) be convex and univalent in U , G(0) = 1. Let F (z) be

analytic in U , F (0) = 1 and let F (z) ≺ G(z) in U . Then for all n ∈ �0 ,

(n+ 1)z−n−1
∫ z

0
tnF (t) dt ≺ (n+ 1)z−n−1

∫ z

0
tnG(t) dt.

Lemma 2 ([7]). Let F (z) and G(z) be analytic functions in the unit disc U and

F (0) = G(0). If H(z) = zG′(z) is a starlike function in U and zF ′(z) ≺ zG′(z) then

F (z) ≺ G(z) = G(0) +
∫ z

0

H(t)
t
dt.
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2. Conditions on f ′′(z)

Theorem 1. If f(z) ∈ A and |f ′′(z)| � k, z ∈ U , 0 < k � 1, then

(1)
zf ′(z)
f(z)

≺ 1 + k

2− k
z

�����. Noting that the condition of the theorem is equivalent to zf ′′(z) ≺ kz,
from lemma 1, choosing F (z) = zf ′′(z) + 1, G(z) = kz + 1 and n = 0, we get

f ′(z)− f(z)
z

≺ kz

2
,

which is equivalent to

(2) z
(f(z)

z

)′
≺ z

(
1 +

kz

2

)′

and to

(3)
f(z)

z

(zf ′(z)
f(z)

− 1
)
≺ k

2
z

for z ∈ U . Now, from (2) and lemma 2, taking F (z) = f(z)/z and G(z) = 1 + kz/2
we obtain f(z)/z ≺ 1 + kz/2, which implies 1 − k/2 < |f(z)/z| < 1 + k/2, z ∈ U .

From this relation and from (3) we can conclude that

(
1− k

2

)∣∣∣zf ′(z)
f(z)

− 1
∣∣∣ <

∣∣∣f(z)
z

∣∣∣
∣∣∣zf ′(z)

f(z)
− 1

∣∣∣ <
k

2
, z ∈ U,

i.e., ∣∣∣zf ′(z)
f(z)

− 1
∣∣∣ <

k

2− k
,

z ∈ U, and (1) follows. �

Corollary 1. If f(z) ∈ A and |f ′′(z)| � 2(1− α)/(2 − α) = k, z ∈ U , 0 � α < 1,

then f(z) ∈ S∗(α). The result is sharp.

�����. It is obvious that the conditions of Theorem 1 are satisfied, and so from
(1) we obtain that Re{zf ′(z)/f(z)} > 1 − k/(2− k) = α, z ∈ U , i.e., f(z) ∈ S∗(α).

Further, the function f(z) = z + (k + ε)z2/2, 0 < k � 1, 0 < ε < 1, proves that
the result is sharp, i.e., that k defined in the corollary is the biggest for a given α

because |f ′′(z)| = k + ε > k and

zf ′(z)
f(z)

=
2(1 + (k + ε)z)
2 + (k + ε)z

is smaller than α when z is real and close to −1. Hence f(z) /∈ S∗(α). �
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������ 1. For α = 0 (k = 1) in Corollary 1 we get Theorem 1 from [4].

Corollary 1.1. Let f(z) ∈ A. Then

(i) |f ′′(z)| � 4/5 implies f(z) ∈ S∗(1/3);
(ii) |f ′′(z)| � 2/3 implies f(z) ∈ S∗(1/2); and

(iii) |f ′′(z)| � 1/2 implies f(z) ∈ S∗(2/3).

Corollary 2. If f(z) ∈ A and |f ′′(z)| � 2 sin(α�/2)/(1 + sin(α�/2)) = k, z ∈ U ,

0 < α � 1, then f(z) ∈ S̃∗(α).

�����. Because the conditions from Theorem 1 are fulfilled, from the subordi-

nation (1) we get that | arg{zf ′(z)/f(z)}| < arcsin(k/(2 − k)) = α�/2, z ∈ U , i.e.,
f(z) ∈ S̃∗(α). �

������ 2. The question about the sharpness of the result from Corollary 2
is open. It can be subject to further investigation if for given α, 0 < α < 1, k =

2 sin(α�/2)/(1 + sin(α�/2)) is the biggest number for which |f ′′(z)| � k, z ∈ U ,
implies f(z) ∈ S̃∗(α) (in [4] Obradović showed that for α = 1, k = 1 is the biggest

number with this property). The function f(z) = z + (k + ε)z2/2, 0 < k < 1, ε > 0,
for which |f ′′(z)| = k+ ε > k cannot be used for proving sharpness because for each

k, 0 < k < 1, there exists an ε > 0 small enought such that f(z) ∈ S̃∗(α). This
follows from the fact that for z = reiθ

arg
zf ′(z)
f(z)

= arctan
r(k + ε) sin θ

2 + 3r(k + ε) cos θ + r2(k + ε)2

and

sup
z∈U

∣∣∣ arg zf ′(z)
f(z)

∣∣∣ = arcsin k + ε

2− (k + ε)2
,

which is smaller than arcsin(k/(2− k)) = α�/2 for ε > 0 small enought.

Corollary 2.1. Let f(z) ∈ A. Then

(i) |f ′′(z)| � 2/3 implies f(z) ∈ S̃∗(1/3);
(ii) |f ′′(z)| � 2(

√
2− 1) = 0, 8284 . . . implies f(z) ∈ S̃∗(1/2); and

(iii) |f ′′(z)| � 2(2
√
3− 3) = 0, 9282 . . . implies f(z) ∈ S̃∗(2/3).

Using the next theorem we will obtain some results on the classes K(α), R(α) and

Rα.

Theorem 2. If f(z) ∈ A and |f ′′(z)| � k, z ∈ U , 0 < k � 1, then

(4) f ′(z) ≺ 1 + kz.

232



�����. The condition |f ′′(z)| � k, z ∈ U , is equivalent to

(5) zf ′′(z) ≺ kz

z ∈ U , and again, using Lemma 2 for F (z) = f ′(z) and G(z) = 1 + kz, we get that

the subordination (4) is true. �

Corollary 3. If f(z) ∈ A and |f ′′(z)| � (1 − α)/(2 − α) = k, z ∈ U , 0 � α < 1,

then f(z) ∈ K(α). The result is sharp.

�����. Because the conditions from Theorem 2 are fulfilled we get that (4) and

(5) are true, and from (5) with p(z) = 1 + zf ′′(z)/f ′(z) we conclude

(6) (p(z)− 1)f ′(z) ≺ kz

for z ∈ U. Now, let us suppose that there exists z0 ∈ U such that p(z0) = α+ ix. So
from (4) and (6) it follows that

(7) 1− k < |f ′(z0)| < 1 + k

and

(8) |(p(z0)− 1)f ′(z0)| < k.

Further, using (7) we obtain

|(p(z0)− 1)f ′(z0)|2 = |α− 1 + ix|2|f ′(z0)|2

> [(α− 1)2 + x2](1 − k)2

= (α− 1)2(1− k)2 + x2(1− k)2

� (α− 1)2(1− k)2 = k2

for α = (1−2k)/(1−k) (⇔ k = (1−α)/(2−α)), which contradicts to (8). Therefore

we have proved that under the conditions of Corollary 3 Re{1+ zf ′(z)/f(z)} > α is
true for any z ∈ U , i.e., f(z) ∈ K(α).

The proof that the result is sharp is again done by the function f(z) = z+(k+ε)z2/2,
0 < k � 1/2 and ε > 0, for which |f ′′(z)| = k + ε > k and

Re
{
1 +

zf ′′(z)
f ′(z)

}
=
1 + 2z(k + ε)
1 + z(k + ε)

is smaller than α when z is real and close to −1, i.e., f(z) /∈ K(α). �
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������ 3. For α = 0, i.e., k = 1/2, Corollary 3 is equivalent to Theorem 3

from [4].

Corollary 3.1. Let f(z) ∈ A. Then

(i) |f ′′(z)| � 2/5 implies f(z) ∈ K(1/3);

(ii) |f ′′(z)| � 1/3 implies f(z) ∈ K(1/2); and

(iii) |f ′′(z)| � 1/4 implies f(z) ∈ K(2/3).

Corollary 4. If f(z) ∈ A and |f ′′(z)| � 1 − α = k, z ∈ U , 0 � α < 1, then

f(z) ∈ R(α). The result is sharp.

�����. Subordination (4) is true because the conditions from Theorem 2 are

fulfilled and hence we conclude that Re{f ′(z)} > 1− k = α for z ∈ U , f(z) ∈ R(α).
Once again, using the function f(z) = z + (k + ε)z2/2, 0 < k � 1 and ε > 0, for

which |f ′′(z)| = k + ε > k and f ′(z) = 1 + (k + ε)z is smaller than α when z is real
and close to −1, we prove that the result of the corollary is sharp. �

Corollary 4.1. Let f(z) ∈ A. Then

(i) |f ′′(z)| � 2/3 implies f(z) ∈ R(1/3);

(ii) |f ′′(z)| � 1/2 implies f(z) ∈ R(1/2);

(iii) |f ′′(z)| � 1/3 implies f(z) ∈ R(2/3).

Corollary 5. If f(z) ∈ A and |f ′′(z)| � sin(α�/2) = k, z ∈ U , 0 < α � 1, then
f(z) ∈ Rα. The result is sharp.

�����. From the subordination (4), which is true because the conditions of

Theorem 2 are fulfilled, we obtain that | arg f ′(z)| < arcsink = α�/2, z ∈ U , i.e.,
f(z) ∈ Rα. And in this case the proof that the result is sharp is done by considering

the function f(z) = z+(k+ε)z2/2, 0 < k � 1 and ε > 0, for which |f ′′(z)| = k+ε > k

and sup
z∈U

| arg f ′(z)| = arcsin(k + ε) > arcsink = α�/2 for ε > 0 small enought. �

Corollary 5.1. Let f(z) ∈ A. Then

(i) |f ′′(z)| � 1/2 implies f(z) ∈ R1/3;

(ii) |f ′′(z)| �
√
2/2 = 0, 7071 . . . implies f(z) ∈ R1/2; and

(iii) |f ′′(z)| �
√
3/2 = 0, 8660 . . . implies f(z) ∈ R2/3.
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3. Condition on f ′(z)

Theorem 3. Let f(z) ∈ A. If |f ′(z) − 1| < λ for some 0 < λ � 1 and for all
z ∈ U , then f(z) ∈ S̃∗(α), where

α =
2
�

arcsin
(
λ

√
1− λ2

4
+

λ

2

√
1− λ2

)
,

and |f(z)| < 1 + λ/2 for z ∈ U .

�����. From the condition f ′(z) ≺ 1 + λz it follows that

(9) | arg f ′(z)| < arcsinλ, z ∈ U.

From the same condition, using lemma 1 for F (z) = f ′(z), G(z) = 1+ λz and n = 0

we get that

(10)
f(z)

z
≺ 1 + λ

2
z.

Consequently,

(11)
∣∣∣ arg f(z)

z

∣∣∣ < arcsin
λ

2

for z ∈ U . Now from (9) and (11) we can conclude that

∣∣∣ arg zf ′(z)
f(z)

∣∣∣ =
∣∣∣ arg z

f(z)
+ arg f ′(z)

∣∣∣ �
∣∣∣ arg z

f(z)

∣∣∣+ | arg f ′(z)|

< arcsin
λ

2
+ arcsinλ = arcsin

(
λ

√
1− λ2

4
+

λ

2

√
1− λ2

)
,

i.e., f(z) ∈ S̃∗(α) for

(12) α =
2
�

arcsin
(
λ

√
1− λ2

4
+

λ

2

√
1− λ2

)
.

Further, from (10) it is easy to infer that for z ∈ U

|f(z)| <
∣∣∣f(z)

z

∣∣∣ < 1 +
λ

2
.

�
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We can rewrite Theorem 3 in the following way.

Theorem 3′. Let f(z) ∈ A, 0 < α � 1 and let

(13) |f ′(z)− 1| < 2a

√
5− 4

√
1− a2

16a2 + 9
= λ,

where a = sin(α�/2). Then f(z) ∈ S̃∗(α) and |f(z)| < 1 + λ/2 for z ∈ U .

�����. If we put λ from (13) to the right side of (12) we obtain α. �

Corollary 6. Let f(z) ∈ A and |f ′(z)− 1| < λ. Then

(i) if λ = 2
√
5/5 = 0, 8944 . . ., then f(z) ∈ S̃∗(1) = S∗ and |f(z)| < 1 +

√
5/5 =

1, 4472 . . ., for z ∈ U ;

(ii) if λ =
√
21/7 = 0, 6546 . . ., then f(z) ∈ S̃∗(2/3) and |f(z)| < 1 +

√
21/14 =

1, 3273 . . ., for z ∈ U ;

(iii) if λ =
√
(10− 4

√
2)/17 = 0, 5054 . . ., then f(z) ∈ S̃∗(1/2) and |f(z)| < 1 +

λ/2 = 1, 2527 . . ., for z ∈ U ;

(iv) if λ =
√
(5− 2

√
3)/13 = 0, 3437 . . ., then f(z) ∈ S̃∗(1/3) and |f(z)| < 1+λ/2 =

1, 1718 . . ., for z ∈ U ;

������ 4. The result from Corollary 6 (i) is the same as the result from

Theorem 2 from [5], but it is obtained by a different method.

[1] Goodman, A.W.: Univalent Functions, Vol. I and II. Tampa, Florida, 1983.
[2] Krzyz, J.: A counter example concerning univalent functions. Folia Societaties Scientar-
ium Lubliniensis Mat. Fiz. Chem. 2 (1962), 57–58.

[3] Mocanu, P.T.: Two simple conditions for starlikeness. Mathematica (Cluj) 34 (1992),
175–181.
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