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Abstract. If G is a simple graph of size n without isolated vertices and G is its comple-
ment, we show that the domination numbers of G and G satisfy

γ(G) + γ(G) �
{

n− δ + 2 if γ(G) > 3,

δ + 3 if γ(G) > 3,

where δ is the minimum degree of vertices in G.

Keywords: graphs, domination number, graph’s complement

MSC 2000 : 05C40

Introduction

Graphs, considered here, are finite and simple (without loops or multiple edges),

and [1,2] are followed for terminology and notation.

Let G = (V, E) be an undirected graph with the set of vertices V and the set of
edges E. The complement G of G is the graph with vertex set V , two vertices being

adjacent in G if and only if they are not adjacent in G.

For any vertex v of G, the neighbour set of v is the set of all vertices adjacent to v;
this set is denoted by N(v). A vertex is said to be isolated if its neighbour is empty.

Suppose that W is a nonempty subset of V . The subgraph of G, whose vertex set
is W and whose edge set is the set of those edges of G that have both ends in W , is

called the subgraph of G induced by W and is denoted by G[W ]. A set of vertices
in a graph is said to be dominating if every vertex not in the set is adjacent to one
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or more vertices in the set. A minimal dominating set is a dominating set such that

no proper subset of it is also a dominating set.
The domination number γ(G) of G is the size of the smallest minimal dominating

set.

The Main results

In the sequel, we will denote n = |V | and δ = min
v∈V

|N(v)|.

Theorem 1. If G = (V, E) is a graph without isolated vertices and γ(G) > 3,

then γ(G) + γ(G) � n− δ + 2.

�����. Let v ∈ V be such that δ = |N(v)| (obviously, since G has no isolated

vertices, we have δ � 1) and W = V − (N(v) ∪ {v}). If W is empty, then γ(G) = 1,
contradicting the hypothesis. Thus |W | � 1 and, by the choice of v, it follows that
|N(w)| � δ for each w ∈ W .
Consequently, if all vertices of W are isolated in G[W ], then (w, u) ∈ E for every

w ∈ W and u ∈ N(v), that is, {v, u} is a dominating set in G for each u ∈ N(v).
Thus, γ(G) = 2, contradicting the hypothesis. Let now Z ⊂ W (Z �= W ) be the set

of isolated vertices in G[W ] (Z can be empty or nonempty), and Z∗ = W − Z. Let
also D ⊆ Z∗ be a minimal dominating set in G[Z∗].

If Z is empty, then D ∪ {v} is a dominating set of G, and we have γ(G) �
|D ∪ {v}| = 1 + |D|. Hence, |D| � γ(G)− 1.
If Z is nonempty, then, since δ � |N(z)| for each z ∈ Z, we have (z, u) ∈ E for

every z ∈ Z and u ∈ N(v). Consequently, for each u ∈ N(v), D ∪ {v} ∪ {u} is a
dominating set of G and, therefore, we have γ(G) � |D∪{v}∪{u}| = 2+ |D|. Hence,
|D| � γ(G)− 2. Thus we always have

(1) |D| � γ(G)− 2.

By (1), since γ(G) > 3, we can choose B ⊆ D such that |B| = γ(G)− 3.
Let C ⊆ Z∗ be the set of vertices in G[Z∗] dominated by B, and C∗ = Z∗ − C.

Suppose Z to be empty. If there exists c ∈ C such that (c, c∗) ∈ E for each c∗ ∈ C∗,
then B ∪ {v} ∪ {c} is a dominating set in G, that is, γ(G) � |B ∪ {v} ∪ {c}| =
2 + |B| = γ(G)− 1; a contradiction. Thus for every c ∈ C there exists c∗ ∈ C∗ such
that (c, c∗) /∈ E. If there exists u ∈ N(v) such that (u, c∗) ∈ E for each c∗ ∈ C∗,

then B ∪ {v} ∪ {u} is a dominating set in G, that is, γ(G) � |B ∪ {v} ∪ {u}| =
2 + |B| = γ(G) − 1; a contradiction. Thus for every u ∈ N(v) there exists c∗ ∈ C∗

such that (u, c∗) /∈ E. On the other hand, by the choice of v, for each c∗ ∈ C∗ we
have (v, c∗) /∈ E. Consequently, C∗ = C∗ ∪ Z is a dominating set in G.
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Suppose Z to be nonempty. By the choice of v, we have (v, z) /∈ E for each z ∈ Z.

Also, (z, c) /∈ E for every z ∈ Z and c ∈ C. Suppose that there exists u ∈ N(v)
such that (u, c∗) ∈ E for each c∗ ∈ C∗. Since δ � |N(z)| for each z ∈ Z, we have
(t, z) ∈ E for every z ∈ Z and t ∈ N(v). Hence B ∪ {u} ∪ {v} is a dominating set in
G, that is, γ(G) � |B ∪ {u} ∪ {v}| = 2 + |B| = γ(G) − 1; a contradiction. Thus for
every u ∈ N(v) there exists c∗ ∈ C∗ such that (u, c∗) /∈ E. Consequently, C∗ ∪ Z is

a dominating set in G.
So we have

(2) γ(G) � |C∗ ∪Z| = |C∗|+ |Z| = |Z∗| − |C|+ |Z| = |W | − |C| = n− δ − 1− |C|.

However, because G[Z∗] does not contain isolated vertices, it follows that |B| � |C|
and, by (2), since |B| = γ(G)− 3, we obtain γ(G) + γ(G) � n− δ + 2. �

Theorem 2. If G = (V, E) is a graph without isolated vertices and γ(G) > 3,
then γ(G) + γ(G) � δ + 3.

�����. Let v ∈ V be such that δ = |N(v)| (obviously, since G has no isolated

vertices, we have δ � 1). Obviously, N(v) ∪ {v} is a dominating set in G, that is,
γ(G) � |N(v)∪ {v}| = 1+ δ. Thus δ � γ(G)− 1 and, since γ(G) > 3, we can choose

B ⊆ N(v) such that |B| = γ(G)−3. LetB∗ = N(v)−B andW = V −(N(v)∪{v}). If
W is empty, then the minimum degree of vertices in G is less than δ, contradicting the

choice of v. Hence |W | � 1. Let w ∈ W . We have |B∪{v}∪{w}| = 2+|B| = γ(G)−1,
that is, B∪{v}∪{w} is not a dominating set in G. Consequently, there exists x ∈ V

such that (x, v) ∈ E, (x, w) ∈ E and (x, b) ∈ E for each b ∈ B. Obviously, since

G does not contain loops, x ∈ B∗. So for every w ∈ W there exists b∗w ∈ B∗ such
that (b∗w, w) ∈ E, (b∗w, v) ∈ E and (b∗w, b) ∈ E for each b ∈ B. Hence B∗ is a

dominating set in G, that is, γ(G) � |B∗| = |N(v)| − |B| = δ − γ(G) + 3. Therefore,
γ(G) + γ(G) � δ + 3. �

Corollary. If G is a graph without isolated vertices such that γ(G) > 3 and
γ(G) > 3, then γ(G) + γ(G) � �(n + 5)/2� (we use �x� to denote the integer less
than or equal to x).

�����. It follows from the above theorems. �
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