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Abstract. Guy and Harary (1967) have shown that, for k > 3, the graph P [2k, k] is
homeomorphic to the Möbius ladder M2k, so that its crossing number is one; it is well
known that P [2k, 2] is planar. Exoo, Harary and Kabell (1981) have shown hat the crossing
number of P [2k + 1, 2] is three, for k > 2. Fiorini (1986) and Richter and Salazar (2002)
have shown that P [9, 3] has crossing number two and that P [3k, 3] has crossing number k,
provided k > 4. We extend this result by showing that P [3k, k] also has crossing number k
for all k > 4.
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uct

MSC 2000 : 05C10

1. Preliminaries

The theory of crossing numbers owes its birth to a problem posed by P.Turán
in 1952. The first graphs to be studied were the complete bipartite graphs. The

complete bipartite graph Kr,s is the graph of order (r + s) whose vertex-set can be
split into two disjoint sets A and B such that |A| = r and |B| = s, and in which

two vertices are joined by an edge if and only if they belong to different sets. From
Turán’s days, the problem of crossing numbers extended to other graphs, such as

the complete graphs, the Cartesian product of graphs, and the generalized Petersen
graphs. The complete graph Kt on t vertices is the graph in which every pair of
distinct vertices are joined by an edge. The Cartesian product of two graphs G and

H , denoted by G×H , has the vertexset V (G)× V (H) and the edgeset specified by
joining (u, v) to (u′, v′) by an edge if and only if
(i) u = u′ and (v, v′) ∈ e(H); or
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(ii) v = v′ and (u, u′) ∈ e(G)
for all u, u′ ∈ V (G) and v, v′ ∈ V (H).
The generalized Petersen graph P [m, q] is defined to be the graph of order 2m

whose vertexset is {u1, . . . , um, x1, . . . , xm} and edgeset is {uixi, uiui+1, xixi+q : i =
1, . . . , m; addition modulo m}.
A drawing of a graph G is a mapping of G into a surface, which in our case will be

the Euclidean plane. A good drawing is one in which no edge crosses itself, any two
edges have at most one point in common (which can either be a vertex or a crossing),

and no three edges have a common point other than a vertex. A good drawing D

exhibiting the least number of crossings is said to be an optimal drawing, and the

number of crossings in such a drawing is the crossing number of G, denoted by ν(G).
Two graphs G1 and G2 are said to be homeomorphic if there exists a graph which

can be obtained from each by successively contracting edges incident to vertices of
valency two. In this case, we write G1 = H(G2) and G2 = H(G1). The following
theorem follows.

Theorem 1.1. If two graphs G1 and G2 are homeomorphic, then ν(G1) = ν(G2).

One of the most researched results in graph theory dating to before the 1930s is
the characterization of planar graphs. One of the characterizations of these graphs
uses K5 and K3,3, and is given by Kuratowski’s theorem stated below.

Theorem 1.2 Kuratowski’s Theorem [5]. A graph G is planar if and only if G

contains no subgraph homeomorphic either to K5 or to K3,3.

In the sequel, it will be convenient to denote the graph G = H(K3,3) with partite
sets {x, y, z} and {a, b, c} by K〈x, y, z; a, b, c〉.

2. Cartesian products

We let S3 denote the star-graph K1,3 and Pn the path-graph with n + 1 vertices,
and consider the graph of the Cartesian product S3×Pn, denoting the vertices (0, i),
(1, i), (2, i) and (3, i) by hi, ai, bi and ci, respectively (for i = 0, . . . , n), where the
vertices hi represent the hubs of the stars. In the drawing of S3 × Pn, we delete

the path Γ = (h0, . . . , hn) which passes through the hubs of the stars. We let the
subgraph of ((S3 × Pn)− Γ) induced by the vertices hi, ai, bi and ci be denoted by

Si. Also, the subgraph induced by the vertices hi, ai, bi, ci, hi+1, ai+1, bi+1, and
ci+1 is denoted by H i, so that H i is made up of Si and Si+1 together with the three

edges connecting the two stars. It is easy to prove the result of Lemma 2.1 below,
since the upper bound follows from the drawings of Figure 1(a) and (b) for n odd
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(a) (b)
Figure 1

and even, respectively, while the proof of the lower bound follows the same lines as

that in Jendrol’ and Ščerbová [4].

Lemma 2.1. Let G denote the graph of the Cartesian product S3 × Pn (n > 1)
with the path Γ joining the hubs of the stars deleted, that is, G := ((S3 × Pn)− Γ).
If D is a good drawing of G in which no star Si (i = 0, . . . , n) has a crossed edge,
then νD(G) = n− 1.

3. The generalized Petersen graph P [3k, k]

The generalized Petersen graph P [3k, k] of order 6k is made up of an outer -circuit

uiui+1, the spokes uixi, and the 3-circuits on the vertices {xi, xi+k, xi+2k}, where
i = 1, . . . , 3k and addition is taken modulo 3k. A drawing of P [3k, k] is shown in
Figure 2. We note that by deleting an edge from each of the 3-circuits, we obtain the
graph H(Gk) where Gk is shown in Figure 3(a), such that Gk ⊇ H((S3 × Pk−1)− Γ)
and ν(P [3k, k]) > ν(Gk). We also note that to obtain P [3k, k] back from Gk we
simply expand the vertex hi of Gk into the 3-circuit xixi+kxi+2k , as illustrated in

Figure 3(b). Thus, to get a lower bound for the crossing number of P [3k, k] we can
simply consider the crossing number of the graph Gk .
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Theorem 3.1. The crossing number of Gk is equal to k, for k > 4.
����� �"!

. Figure 3 (a) sets the upper bound equal to k. To show that ν(Gk) > k,

we assume that t is the least value of k for which ν(Gt) 6 t − 1. As we will show
in Lemma 3.2, t is greater than 4. We also note that the deletion of the vertex

hi and the edges incident to it (for values of i between 1 and k) from Gk yields a
homeomorph to Gk−1. Therefore, since Gt contains Gt−1 as a subgraph, we have

ν(Gt) > ν(Gt−1) = t − 1, by minimality of t. Thus, we only need to show that
ν(Gt) 6= t− 1, by assuming, for contradiction, that it is equal to t− 1.
We now consider an optimal drawing D of Gt and assume that a staredge hjuj+αt,

for 1 6 j 6 t and α = 0, 1, 2, makes a positive contribution to the crossing number
of Gt. In this case, when we delete the hub hj we get an induced drawing D1 of a

homeomorph of Gt−1 such that

t− 1 = ν(Gt) > νD1(Gt−1) + 1

> (t− 1) + 1, by the inductive hypothesis,

= t, a contradiction.

Thus, we can assume that all the (t− 1) crossings of Gt are self-intersections of the
3t-circuit C made up of the edges uiui+1 for 1 6 i 6 3t, addition modulo 3t.

Therefore, there exists an optimal drawing D2 of Gt such that in D2 the edges of
the stars do not contribute to the crossing number. We now consider the following

two cases.
#%$'&�(

1. If there is an edge e in D2 which is crossed twice or more, then deleting

e together with the two other edges at distance t from e along C, we get a subgraph
homeomorphic to [(S3 × Pt−1)− Γ].
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Therefore, by Lemma 2.1 above:

t− 1 = ν(Gt) > ν([(S3 × Pt−1)− Γ]) + 2 = (t− 2) + 2 = t, a contradiction.

#%$'&�(
2. If there are two edges in D2 at distance t from each other which are

crossed but do not cross each other, then repeating the same procedure as in Case 1,

we get the same induced drawing, and the result follows similarly.
We can therefore assume hereafter that in D2 there is no edge which is crossed

twice and no two edges at distance t from each other giving a contribution of two to
the crossing number.

There remains to show that if in D2

(i) there are no two edges at a distance t which are not intersected, or

(ii) there are two edges at a distance t from each other which are pairwise intersect-
ing,

then in both cases we get a contradiction.
Let us first assume that no two edges at a distance t from each other can be found

such that they are both intersected. We divide the 3t-circuit C into three t-sectors
such that the number of crossed edges in each sector is p, q and r, respectively. This

implies that p + q + r = 2(t− 1). Since in Sector 1 there are p crossed edges which
cannot be matched to crossed edges in Sectors 2 and 3, hence in each of Sectors 2
and 3 there are p edges which are not intersected. Similarly for q and r. Thus, the

number of uncrossed edges is at least 2(p + q + r). However,
total number of edges > (number of crossed edges) + (number of uncrossed edges)
⇒ 3t > (p + q + r) + 2(p + q + r)
⇒ t > (p + q + r) = 2t− 2
⇒ t 6 2, a contradiction.

We now assume that there are two edges in D2 at a distance t from each other

that intersect each other. That is, if uiui+1 (1 6 i 6 t, addition taken modulo t) is
intersected by an edge e, then e ∈ {ui+tui+t+1, ui+2tui+2t+1}. Without loss of gen-
erality, we assume that e = ui+tui+1+t and consequently, that the edge ui+2tui+1+2t

is not intersected.

We consider the subgraph H induced by S(hi) ∪ S(hi+1) \ {hiui+t, hi+1ui+1+t}
(shown in Figure 4(a)). This is a 6-circuit none of whose edges is intersected, with the

sole exception of uiui+1 which is intersected once by ui+tui+1+t. Thus, H is planarly
embedded and, without loss of generality, we let ui+t ∈ Int (H) and ui+1+t ∈ Ext (H)
(since if these vertices are both in Int (H) or both in Ext (H), then the edge uiui+1

is crossed an even number of times). Therefore, we have the subgraph shown in

the drawing of Figure 4(b). Now, hi+2 either lies in Int (H) or in Ext (H), and
none of the edges of S(hi+2) can be crossed. Also, the edges of the subgraph in
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Figure 4(b) cannot be crossed (apart from the crossing shown), giving us the required

contradiction. Therefore, ν(Gt) 6= t− 1, implying that it is at least t. �
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(a)
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Figure 4

It remains to show that we can start induction with k = 4.

Lemma 3.2. The crossing number of G4 is four.

����� �"!
. Let α be the least number of edges in G4 whose deletion yields a

planar subgraph. We show that this graph G4 has crossing number at least four, by
assuming that α = 3 and get a contradiction. To do this, we consider all the possible
combinations in which the three crossed edges may appear. For definiteness, we
assume that the vertices are labelled as in Figure 5.
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#%$'&�(
1. All the three crossed edges are incident to the same vertex.

1.1. The three edges are incident to a star-hub.

In this case, deleting the star-hub yields a graph G1 = H(G3) = H(P [9, 3]) which
is not planar.

1.2. The three edges are incident to a circuit-vertex.

Without loss of generality, we can assume that it is the vertex 12. Deleting this

vertex, we get a subgraph containing the graph G2 shown in Figure 6, which contains
as a subgraph K〈a, b, c; 2, 6, 9〉, so that it is not planar.
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#%$'&�(*)
. Two of the crossed edges are incident to the same vertex x, while the

third edge e is not.

Since deleting two edges incident to a vertex x from a cubic graph yields a pendant
edge xy, whose presence or otherwise does not affect planarity, we will equivalently

consider deleting x and an edge e.

2.1. The vertex x is a star-hub.

2.1.1. The edge e is a circuit-edge.

By deleting the star-hub x, the edge e and every fourth circuit-edge from e, we
get a graph H((S3 × P2) − Γ). In this graph no edge is crossed, for, otherwise,
α > 3. Therefore, in particular, no star edge is crossed, and Lemma 2.1 implies that
ν((S3 × P2)− Γ) = 1, a contradiction.
2.1.2. The edge e is a star-edge.

Without loss of generality, we choose the star-hub to be d. We note that e can
belong to a successive star (either S(c) or S(a)), or else e belongs to the non-successive
star S(b). In case (i), without loss of generality, we let e be the edge (c, 11), while
in case (ii), without loss of generality, we let e be the edge (b, 10). It is readily
checked that the resulting graph G3 contains K〈a, b, 7; 3, 6, 9〉 or K〈a, c, 6; 1, 5, 9〉,
respectively, so that in either case, G3 is non-planar.

2.2. The vertex x is a circuit-vertex.

Without loss of generality, we choose x to be the vertex 12, which we delete to get

the graph G4 of Figure 7.
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2.2.1. The edge e is a star-edge.

If e is an edge of S(d), then by deleting what remains of S(d) we get a non-
planar subgraph containing G2 shown in Figure 6, giving a contradiction (as shown
in Case 1.2). If e is not an edge of S(d), then e is an edge of either S(a), S(b) or S(c).
This implies that we have two untouched stars and, thus, at least one of them must
have an edge adjacent to one of the deleted circuit-edges. Without loss of generality,

we let this star be S(a), and consider the subgraph containing the graph G5 shown
in Figure 8. Introducing either S(b) or S(c) yields another crossed edge.
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2.2.2. The edge e is a circuit-edge.

In this case we have three untouched stars S(a), S(b) and S(c). Now, to avoid a
contradiction, e /∈ {(3, 4), (4, 5), (7, 8), (8, 9)} := Θ since otherwise we get a planar
drawing of a graph H. Consider the graph G6 induced by S(a), S(c), the set of edges
Θ, and the chord (4, 8) (shown in Figure 9). This graph has three faces F1, F2 and

F3 in one of which b must lie. For each of the three possibilities, we always get at
least two circuit-edges joining the vertices of S(b) to the corresponding vertices of
the other stars which cross some other edges, thus giving a contradiction.

11 1

ac
7 8 9

3 4 5

F1 F2

F3

Figure 9

#%$'&�( +
. No pair of crossed edges share a common vertex.

3.1. All the three crossed edges are star-edges.
In this case, the circuit and one of the stars, say S(d), are untouched. By deleting

the crossed edges, each crossed star becomes a ‘chord’ of the circuit, homeomorphic
to K2. First, we consider the chord obtained from the star S(a) and, without loss
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of generality, let this chord be (1, 9). Then we consider the graph G7 shown in

Figure 10. There are nine cases left to consider, depending on the chords (2, 6),
(6, 10), (2, 10) for S(b) and (3, 7), (7, 11), (3, 11) for S(c). None of the chords (2, 10),
(6, 10), (3, 11) and (7, 11) can be inserted in G7 without giving another intersection.

This leaves the chords (3, 7) and (2, 6) which, again, cannot both be inserted in G7

without giving a crossing.
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3.2. Two of the crossed edges are star-edges, the third is a circuit-edge e.

In this case we have two stars which are intact, which can be either successive or

non-successive. We delete the crossed star-edges and consider the following subcases.

3.2.1. Let the two intact stars be successive, which we choose to be S(a) and S(b).
3.2.1.1. We consider first the case when e is adjacent to at most one of S(a) and

S(b), that is, e /∈ {(1, 2), (5, 6), (9, 10)}. Without loss of generality, we let e = (2, 3)
and consider the graph G8 shown in Figure 11 obtained by further deleting e. We
note that the stars S(c) and S(d) are simply chords and we try to insert them in G8.
There are nine different ways how this can be done, depending on the chords (3, 7),
(7, 11), (3, 11) for S(c) and (4, 8), (8, 12), (4, 12) for S(d). Each of the nine possible
pairs of these chords yields a crossing.
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3.2.1.2. We consider now the case when e is adjacent to both S(a) and S(b) and,
without loss of generality, assume e = (1, 2). By deleting e, we obtain the graph
G9 shown in Figure 12. Again, there are nine cases which need to be considered,
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depending on the chords (3, 7), (7, 11), (3, 11) for S(c) and (4, 8), (8, 12), (4, 12) for
S(d). The chords (3, 7), (7, 11), (4, 8) and (8, 12) cannot be inserted in G9 without
producing another crossing. It remains to insert the pair of chords (3, 11) and (4, 12)
in G9. These cannot both be inserted, since then we either get another crossed edge,

or else the edge (1, 2) is crossed twice and, thus, ν(G4) > 4.
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3.2.2. Let the two intact stars be non-successive, and let them be S(a) and S(c).
The edge e must be adjacent to exactly one of the stars and so, without loss of

generality, we can choose e to be the edge (1, 2). By deleting the edge e we get a

subgraph containing the graph G10 shown in Figure 13. But then none of the three
possibile chords obtained from the star S(b), namely the chords (2, 6), (6, 10), and
(2, 10), can be inserted in G10 without producing another crossing.
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3.3. At least two of the crossed edges are the circuit-edges e and f (hence, at most

one of the crossed edges is a star-edge).
Firstly, we note that the minimum distance between e and f must be at least one,

otherwise the two edges are incident to the same vertex, which reduces to Case 2. In
this case we have at least three stars that are intact, which we denote by S(a), S(b)
and S(c). Considering only these three stars, we get a subgraph H(G3). Without
loss of generality, we can fix e to be the edge (1, 2). Since f cannot be adjacent to

e, we have f /∈ {(11, 1), (2, 3)}. Also, f /∈ {(3, 5), (7, 9)} since otherwise, by deleting
the edges (1, 2), (3, 5) and (7, 9) we get a planar drawing of H((S3 × P2) − Γ), a
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contradiction. Therefore, f must be one of {(5, 6), (6, 7), (9, 10), (10, 11)}. Now, we
consider the graph G11 induced by S(a) and S(c) and the edges (11, 1), (3, 5) and
(7, 9), which consists of three hexagonal faces (refer to Figure 14). The edge (2, 3)
must be in one of the faces F1 or F2 of G9; we choose F1. This implies that S(b) is
also in F1 and thus, the vertex 6 is in F1. When we try to introduce the circuit-edges
(6, 7) and (9, 10), we note that both of them must intersect some other edge, thus
giving us a contradiction. �

c
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Figure 14
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