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A REMARK ON THE EXISTENCE OF STEADY NAVIER-STOKES

FLOWS IN 2D SEMI-INFINITE CHANNEL INVOLVING THE

GENERAL OUTFLOW CONDITION

H. Morimoto, Kawasaki, H. Fujita, Tokyo

Dedicated to Prof. J.Nečas on the occasion of his 70th birthday

Abstract. We consider the steady Navier-Stokes equations in a 2-dimensional unbounded
multiply connected domain Ω under the general outflow condition. Let T be a 2-dimensional
straight channel �× (−1, 1). We suppose that Ω∩{x1 < 0} is bounded and that Ω∩{x1 >
−1} = T ∩ {x1 > −1}. Let V be a Poiseuille flow in T and µ the flux of V . We look for a
solution which tends to V as x1 → ∞. Assuming that the domain and the boundary data
are symmetric with respect to the x1-axis, and that the axis intersects every component of
the boundary, we have shown the existence of solutions if the flux is small (Morimoto-Fujita
[8]). Some improvement will be reported in this note. We also show certain regularity and
asymptotic properties of the solutions.

Keywords: stationary Navier-Stokes equations, non-vanishing outflow, 2-dimensional
semi-infinite channel, symmetry

MSC 2000 : 35Q30, 76D05

1. Introduction

Let Ω be an unbounded domain in �2 , the x1x2 plane, satisfying the following two

conditions:
(I) Ω ∩ {(x1, x2); x1 > −1} = {(x1, x2); x1 > −1,−1 < x2 < 1} and Ω ∩

{(x1, x2); x1 < 0} is bounded.
(II) The boundary of Ω is smooth and is composed of an infinite component γ0 and

finite components γ1, γ2, . . . , γN , the latter being simply closed curves. Namely,

∂Ω = γ0 ∪ γ1 ∪ . . . ∪ γN .

γ0 can be regarded as the outer boundary of Ω while γi (1 � i � N) as the
inner boundary.
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We consider the boundary value problem of the Navier-Stokes equations

(NS)

{ (u · ∇)u = ν∆u−∇p+ f in Ω,

divu = 0 in Ω,

with the boundary conditions

(BC)

{ u = β on ∂Ω,

u → µU as x1 →∞
where f is a function defined on Ω, β is a given function on ∂Ω = γ0 ∪ γ1 ∪ . . .∪ γN

satisfying β = 0 on γ0. U is the standard Poiseuille flow in T = �1 × (−1, 1):

(U) U = 3
4 (1− x22, 0),

and µ is a nonzero constant. For the boundary value β, we suppose
∫

∂Ω
β · ndσ = −µ,

n being the unit outward normal vector to ∂Ω.
Suppose that the domain Ω is symmetric with respect to the x1-axis, that every

γi (0 � i � N) intersects the x1-axis and that the boundary value β and the
external force f are also symmetric with respect to the x1-axis. Here the vector

field ϕ(x) = (ϕ1(x1, x2), ϕ2(x1, x2)) is called symmetric with respect to the x1-axis
if ϕ1(x1, x2) is an even function of x2 and ϕ2(x1, x2) is an odd function of x2, that
is,

ϕ1(x1, x2) = ϕ1(x1,−x2), ϕ2(x1, x2) = −ϕ2(x1,−x2)

holds. Under these assumptions we can show the existence of a solution to (NS),
(BC) if ν−|µ|σS > 0 holds. Here σS is a constant depending only on the channel T .

In Section 2, we state the notation and the results concerning the existence of
a solution (Theorem 1), the extension of the boundary value (Lemma 1), and the
regularity and the asymptotic behavior of the flow (Theorem 2). In Section 3, some

preliminaries, and in Section 4, the proof of Theorem 1 are given. The proof of
Theorem 2 is similar to that in [7] and is omitted.

Let us recall that for a certain “full” infinite channel in �2 , symmetric with respect
to the axis and with symmetric data, we have obtained the existence of a stationary

flow under the general outflow condition ([7]).
For a simply connected channel-like domain or a multiply connected domain in

�
2 or �3 under a stringent outflow condition, that is, under the condition that the
flux is zero on every connected component of the boundary, there are many works.

Among others, we refer to Amick [1], [2]. We use his argument in order to show the
existence result.
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2. Notation and results

Let C∞
0 (Ω) be the set of all smooth vector valued functions with compact support

in Ω. Let L2(Ω) be the set of all vector valued square integrable functions in Ω with

the inner product (·, ·)Ω and the norm || · ||Ω. If it is clear from the context, we
write simply (·, ·) and || · ||. Let Lp(Ω) be the set of all vector valued functions u

such that |u|p is integrable in Ω. The norm is denoted by ||u||Lp(Ω) or simply by
||u||p. Wm,p(Ω) are the Sobolev spaces; Hm(Ω) = Wm,2(Ω). Hm

0 (Ω) is the closure

of C∞
0 (Ω) in Hm(Ω). Let C∞

0,σ(Ω) be the set of all smooth solenoidal vector valued
functions with compact support in Ω. Hσ(Ω) is the closure of C∞

0,σ(Ω) in L2(Ω).

V (Ω) is the completion of C∞
0,σ(Ω) in the Dirichlet norm ||∇ · ||. Let C∞,S

0,σ (Ω) be
the set of all functions in C∞

0,σ(Ω) symmetric with respect to the x1-axis. V S(Ω) is

the completion of C∞,S
0,σ (Ω) in the Dirichlet norm ||∇ · ||.

By definition, u is called a weak solution to the problem (NS), (BC) if

(i) u− µU ∈ H1(Ω),
(ii) divu = 0 in Ω,

(iii) ν(∇u,∇v)+((u·∇)u, v) = (f , v) (∀v ∈ C∞
0,σ(Ω)), and u satisfies the boundary

condition,

(iv) u = β on γ0 ∪ γ1 ∪ . . . ∪ γN in the trace sense.
Our main result is as follows.

Theorem 1. Suppose that Ω ⊂ �
2 is symmetric with respect to the x1-axis

satisfying (I) and (II), and that every γi (0 � i � N) intersects the x1-axis. Assume

that the boundary value β ∈ H3/2(∂Ω) is also symmetric with respect to the x1-axis,

β = 0 on γ0 and ∫

∂Ω
β · ndσ = −µ.

Suppose further that f ∈ L2(Ω) is symmetric with respect to the x1-axis. Let

(1) σS ≡ sup
ϕ∈V S(T )

((ϕ · ∇)ϕ, U)T
||∇ϕ||2T

.

There exists a symmetric weak solution to (NS), (BC) provided the inequality ν −
|µ|σS > 0 holds true.

������ 1. The constant σS does not depend on the domain Ω, but depends

on the channel T . This constant is studied in detail by Amick [2]. Nevertherless, we
shall give an elementary proof of σS > 0 (Lemma 4). In the previous paper [8], we

have shown that there exists a solution if ν − |µ|c0 > 0, where

(2) c0 ≡ sup
w∈V S(Ω)

|((w · ∇)w, U)Ω|
||∇w||2Ω

.
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Let

(3) cS ≡ sup
w∈V S(Ω)

((w · ∇)w, U)Ω
||∇w||2Ω

.

Then, it is obvious that c0 � cS . In the next section, we will show that the constant

cS is larger than or equal to σS and therefore positive. Furthermore, if the domain
Ω is contained in the channel T , then σS = cS (Lemma 5).

For the regularity and the asymptotic behavior of the flow, we obtain the following
result, with the notation

ΩR = {(x1, x2) ∈ Ω; x1 > R},
Ω0 = Ω ∩ {(x1, x2); x1 < 0},
Ω1 = Ω ∩ {(x1, x2); x1 > 0}.

Theorem 2. Suppose f = 0. The weak solution u to (NS), (BC) obtained in

Theorem 1 is continuous in Ω1, and converges to µU uniformly at infinity, that is,

(4) sup
ΩR

|u(x)− µU(x)| → 0 (R →∞).

������ 2. Theorem 2 holds for nonzero f ∈ L2(Ω) with compact support.

3. Preliminaries

The next lemma plays an important role for the proof of Theorem 1. The proof

of the lemma is similar to Fujita [4] with resort to the virtual drain method and is
omitted.

Lemma 1. Suppose that Ω ⊂ �
2 is symmetric with respect to the x1-axis

satisfying conditions (I) and (II), that every γi (0 � i � N) intersects the x1-axis

and that the boundary value β0 ∈ H3/2(∂Ω) is symmetric with respect to the x1-

axis, has compact support in {(x1, x2)|x1 < 0} ∩ ∂Ω and
∫

∂Ω β0 · ndσ = 0. Then
for every ε > 0 there exists a symmetric solenoidal extension bε of β0 such that

bε ∈ H2(Ω) and

(5) |((v · ∇)v, bε)Ω| � ε||∇v||2Ω (∀v ∈ V S(Ω)).

������ 3. The boundary integral
∫

γi

β0 · ndσ (0 � i � N)

is not necessarily zero.
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������ 4. It should be noted that we can take bε with compact support

contained in Ω0.

Now, we show some properties of the constant σS . First, we study the case without

assuming the symmetry. Put

(6) σ(U) ≡ sup
ϕ∈V (T )

((ϕ · ∇)ϕ, U)T
||∇ϕ||2T

, c(U) ≡ sup
w∈V (Ω)

((w · ∇)w, U)Ω
||∇w||2Ω

.

Lemma 2. σ(U) does not depend on the direction of U and is positive, i.e.,

σ(U) = σ(−U) > 0

and in particular,

σ(µU) = |µ|σ(U) (µ ∈ �).

�����. Let v = (v1, v2) be an arbitrary element in V (T ). If we define w =
(w1, w2) by

w1(x1, x2) = −v1(−x1, x2), w2(x1, x2) = v2(−x1, x2),

then it is easy to see thatw ∈ V (T ). Write Fv = w. The operatorF : V (T )→ V (T )
is one to one, onto and isometric. By a simple calculation, we get

((v · ∇)v, U)T = −((w · ∇)w, U)T .

This proves σ(U) = σ(−U) � 0.
Now let us prove σ(U) > 0. Let f be the stream function of v = (v1, v2), i.e.,

v1 = D2f, v2 = −D1f . Here, Di denotes the differentiation ∂/∂xi with respect to
xi. Then

((v · ∇)v, U)T = 3/2
∫

T

x2v1v2 dx = −3/2
∫

T

x2D1fD2f dx

where U = (U1, U2) = 3/4(1− x22, 0).
Suppose that

∫
T

x2D1fD2f dx = 0 holds true for all nonzero f in C∞0 (T ). Let

f, g ∈ C∞0 (T ), f, g 
= 0. Then

0 =
∫

T

x2D1(f + g)D2(f + g) dx =
∫

T

x2(D1fD2g +D2fD1g) dx.

Integrating by parts, we obtain
∫

T

f(2x2D1D2g +D1g) dx = 0.

Since f is arbitrary, 2x2D1D2g+D1g should be zero in T. This contradicts g 
= 0. �
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Lemma 3. The constant σ(U) is less than or equal to c(U), i.e.,

σ(U) � c(U).

Furthermore, if the domain Ω is contained in the channel T , then σ(U) is equal to

c(U).

�����. Let ϕ ∈ C∞
0,σ(T ), k ∈ � and put vϕ(x1, x2) = ϕ(x1 − k, x2). Then

divvϕ = 0. We choose k so large that the support of vϕ is contained in Ω. Therefore
vϕ can be considered belonging to V (Ω). Since ((vϕ · ∇)vϕ, U)Ω = ((ϕ · ∇)ϕ, U)T
holds, we have

((ϕ · ∇)ϕ, U)T
||∇ϕ||2T

=
((vϕ · ∇)vϕ, U)Ω

||∇vϕ||2Ω
� c(U).

Therefore σ(U) � c(U).

Next we consider the case Ω ⊂ T . Let v be an arbitrary element in V (Ω) and put

ϕ(x) =

{
v(x) x ∈ Ω
0 x ∈ T \ Ω.

Then ϕ ∈ V (T ) and

((v · ∇)v, U)Ω
||∇v||2Ω

=
((ϕ · ∇)ϕ, U)T

||∇ϕ||2T
� σ(U).

Therefore c(U) � σ(U), and c(U) = σ(U) holds true. �

Since the operator F preserves the symmetry, we can prove the next two lemmas
similarly to the above ones.

Lemma 4. We have

σ(U) � σS(U), σS(U) = σS(−U) > 0

and in particular,

σS(µU) = |µ|σS(U).

Lemma 5. σS(U) � cS(U) holds true. Furthermore, if the domainΩ is contained

in the channel T , then σS(U) is equal to cS(U).

Hereafter we write simply σ, σS instead of σ(U), σS(U).
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Now we construct “an approximation” s ∈ C∞,S
0,σ (Ω) of the Poiseuille flow U . We

follow the argument of Amick [1]. Let ϕ(t) = 3/4(t− t3/3) be a stream function of
U ,

U = ∇⊥ϕ(x2) = (D2ϕ,−D1ϕ) = (ϕ′(x2), 0)

and �(x) = dist(x, ∂Ω) for x ∈ Ω. Let δ0, κ0 be real numbers such that δ0 > 0, 1/4 >

κ0 > 0. We take a function j(t) ∈ C∞0 [0,∞) having the following properties:

0 � j(t) � 1/t,

j(t) = 0 (0 � t � κ0δ0, (1− κ0)δ0 � t),

j(t) = 1/t (2κ0δ0 � t � (1 − 2κ0)δ0).

Put h(t) = 1−
∫ t

0 j(s) ds/
∫∞
0 j(s) ds. Then

h(t) ≡ 1 for 0 � t � κ0δ0,

h(t) ≡ 0 for δ0 � t,

t · h′(t)→ 0 uniformly as κ0 → 0.

See Fujita [3] for details. Put Ũ = ∇⊥{h(�(x))ϕ(x2)}. Then divŨ = 0 in Ω ,

Ũ |∂Ω = U |∂Ω and

Ũ(x) = h(�(x))U + ϕ(x2)h
′(�(x))∇⊥�.

For x in Ω1 we have

Ũ(x) = h(�(x))U + ϕ(x2)h′(�(x))(−sgnx2, 0),

since �(x) = 1± x2 in Ω1. Let θ(t) be a smooth function such that 0 � θ(t) � 1 (t ∈
�), θ(t) ≡ 0 for t � 1/2 and θ(t) ≡ 1 for t � 1. Let δ > 0 and put θδ(x) = θ(δx1).

We introduce the following function:

(7) s(x) =

{
U − Ũ in Ω0,

∇⊥{(1− h(�(x)))(1 − θδ(x)2)ϕ(x2)} in Ω1.

It is easy to see that the support of s is contained in Ω∩{x1 < 1/δ} and s ∈ C∞,S
0,σ (Ω).

The function s is “an approximation” of U in the following sense.

Lemma 6. There exists a positive constant C0 such that for every positive ε

and δ there exists s ∈ C∞,S
0,σ (Ω) satisfying the following estimates:

(8) |((w · ∇)w, µU)Ω0 − ((w · ∇)w, µs)Ω0 | � ε||∇w||2, ∀w ∈ V (Ω)
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and

(9)
|((w · ∇)w, µU)Ω1 − ((w · ∇)w, µs)Ω1 − ((w · ∇)w, θ2δµU)Ω1 |

� (ε+ C0δ)||∇w||2, ∀w ∈ V (Ω).

�����. The left hand side of (8) is

|((w · ∇)w, µŨ )Ω0 | �
∫

Ω0

|(w · ∇)w1µh(�(x))U1| dx

+
∫

Ω0

|(w · ∇)w · µϕ(x2)h′(�(x))∇⊥�| dx.

If we choose δ0 sufficiently small, the first term on the right hand side is less than

ε/2||∇w||2. The second term is

(10)

|µ|
∫

Ω0

∣∣∣ w

�(x)

∣∣∣ · |∇w| · |ϕ(x2)| · |�(x)h′(�(x))| · |∇⊥�| dx

� C sup |�(x)h′(�(x))|
∫

Ω0

∣∣∣ w

�(x)

∣∣∣ |∇w| dx

� C sup |�(x)h′(�(x))| ||∇w||2,

where we have used the Hardy type inequality. As κ0 → 0, C sup |�(x)h′(�(x))|
becomes less than ε/2, which proves (8).
Now we show (9). According to the definition of s, we have

((w · ∇)w, µU)Ω1 − ((w · ∇)w, µs)Ω1 − ((w · ∇)w, θ2δµU)Ω1

=
∫

Ω1

(w · ∇)w1 µŨ1 (1− θ2δ ) dx−
∫

Ω1

(w · ∇)w2 µs2 dx.

Therefore, the left hand side of (9) is less than

∫

Ω1

|(w · ∇)w1µh(�)U1(1 − θ2δ)| dx+
∫

Ω1

|(w · ∇)w1µh′(�)ϕ(x2)| dx

+
∫

Ω1

|(w · ∇)w2 µs2| dx.

If δ0 is sufficiently small, then |µh(�(x))U1| is small in Ω1, and the first term is
less than ε/2||∇w||2. The second term is estimated as in (10) and, if we take κ0
sufficiently small, then this term is less than ε/2||∇w||2. On the other hand, since

s2(x) = −D1{(1− h(�(x)))(1 − θ(δx1)2)ϕ(x2)},
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an estimate |s2| � Cδ holds where C = 2 sup |θ′(δx1)ϕ(x2)|. Therefore the third
term is estimated by

∫

Ω1

|(w · ∇)w2 µs2| dx � Cδ

∫

Ω1

|(w · ∇)w2| dx,

and we obtain (9). Thus Lemma 6 is proved. �

We need the following theorem for the proof of Theorem 1, which was proved by

Amick [1] for a more general case. The constant σS is defined in (1).

Theorem 3. Let

(11) Γ(δ) = sup
w∈V S(Ω)

((w · ∇)w, θ2δµU)Ω1
||∇w||2Ω

.

Then

lim
δ→+0

Γ(δ) = |µ|σS .

������ 5. Since σS is positive (Lemma 4), Γ(δ) is also positive for sufficiently

small positive δ. Furthermore, there exists a sequence wj ∈ V S(Ω) (j = 1, 2, . . .)
such that ((wj∇)wj , µθ2δU)Ω1 > 0 and

((wj · ∇)wj , µθ2δU)Ω1
||∇wj ||2Ω

→ Γ(δ) (j →∞).

4. Proof of Theorem 1

By the assumption ν − |µ|σS > 0 and Theorem 3, we can choose ε > 0 and δ > 0

small enough that

(12) Γ(δ)− |µ|σS � 4−1(ν − |µ|σS), 3ε+ C0δ � 4−1(ν − |µ|σS)

hold. We fix these ε and δ.
Let Ωn, n = 1, 2, . . ., be a sequence of bounded symmetric domains with smooth

boundaries such that Ωn ⊂ Ωn+1 and Ωn → Ω as n → ∞. We suppose that the
domain Ω1 contains Ω ∩ {x1 � 1/δ}. We consider the stationary Navier-Stokes
equations in Ωn:

(NS)n

{ (u · ∇)u = ν∆u −∇p+ f in Ωn,

divu = 0 in Ωn,
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with the boundary conditions

(BC)n

{ u = β on ∂Ω ∩ ∂Ωn,

u = µU on ∂Ωn \ ∂Ω.

A function u is called a weak solution to (NS)n, (BC)n if u ∈ H1(Ωn), divu = 0,

ν(∇u,∇v) + ((u · ∇)u, v) = (f , v) (∀v ∈ V (Ωn)),

and u satisfies the boundary condition (BC)n in the trace sense.
Let un be a symmetric weak solution to (NS)n, (BC)n, the existence of which was

established by Fujita [4]. Put un = wn+ b+µU , where b ∈ H2(Ω) is the solenoidal
symmetric extension (in Ω) of β−µU . As β−µU satisfies the hypothesis of Lemma

1, there exists its solenoidal extension b ∈ H2(Ω) for which the following inequality
holds:

|((v · ∇)v, b)Ω| � ε||∇v||2Ω (∀v ∈ V S(Ω)).

It should be noted that the support of this extension is compact. Without loss

of generality, we can suppose that the support is contained in {x1 < 1/δ}. Then
divwn = 0 and wn|∂Ωn = 0. Therefore wn belongs to V S(Ωn) and satisfies the

equation

(13)
ν(∇wn,∇v) + ((wn · ∇)wn, v) + µ((wn · ∇)U + (U · ∇)wn, v)

+ ((wn · ∇)b+ (b · ∇)wn, v) = (F , v) − ν(∇b,∇v) (∀v ∈ V (Ωn)),

where F = f − {(b · ∇)b + µ(U · ∇)b + µ(b · ∇)U}. Since wn ∈ V S(Ωn), we can
substitute v = wn into (13), obtaining

(14) ν||∇wn||2 = µ((wn · ∇)wn, U) + ((wn · ∇)wn, b) + (F , wn)− ν(∇b,∇wn).

Because V S(Ωn) is a subset of V S(Ω) for all n, the following inequality holds true
from the definition of Γ(δ):

((v · ∇)v, θ2δµU)Ω1 � Γ(δ)||∇v||2 (∀v ∈ V S(Ωn)).

Let s be fixed as in Lemma 6. By (8) and (9) we have

(15)
((wn · ∇)wn, µU)Ω = ((wn · ∇)wn, µU)Ω0 + ((wn · ∇)wn, µU)Ω1

� ((wn · ∇)wn, µs)Ω + ((wn · ∇)wn, µθ2δU)Ω1 + (2ε+ C0δ)||∇wn||2.

Since s ∈ C∞,S
0,σ (Ω

n), we substitute v = µs in (13), obtaining

(16)
((wn · ∇)wn, µs)Ω = −ν(∇wn,∇(µs))− ((wn · ∇)µU + (µU · ∇)wn, µs)

− ((wn · ∇)b + (b · ∇)wn, µs) + (F , µs)− ν(∇b,∇µs).
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The right hand side is linear in wn. Therefore the following inequality holds true

with some positive constants k′, k′′ which do not depend on wn:

(17) ((wn · ∇)wn, µs)Ω � k′ + k′′||∇wn||.

Hence we have

ν||∇wn||2 = ((wn · ∇)wn, µU)Ω + ((wn · ∇)wn, b)Ω + (F , wn)Ω − ν(∇b,∇wn)Ω

� ((wn · ∇)wn, µs)Ω + ((wn · ∇)wn, θ2δµU)Ω1 + (2ε+ C0δ)||∇wn||2

+ ((wn · ∇)wn, b)Ω + (F , wn)Ω − ν(∇b,∇wn)Ω

� k′ + k′′||∇wn||+ ((wn · ∇)wn, θ2δµU)Ω1 + (2ε+ C0δ)||∇wn||2

+ ε||∇wn||2 + k′′′||∇wn||

where k′′′ is a positive constant independent of wn. Using the definition of Γ(δ), we

have

(18) ν||∇wn||2 � k′ + (k′′ + k′′′)||∇wn||+ (3ε+ C0δ)||∇wn||2 + Γ(δ)||∇wn||2.

Since ε and δ are chosen as in (12), we obtain

2−1(ν − |µ|σS)||∇wn||2 � k′ + (k′′ + k′′′)||∇wn||.

Therefore, there exists a positive constant M such that the following estimate holds

for all n:
||∇wn|| � M.

The sequence wn being bounded in V S(Ω), we can choose a subsequence wn′ which

converges weakly in V S(Ω). Let w be the limit.
Let ϕ be an arbitrary element in C∞

0,σ(Ω). There exists an integer n0 such that
the support of ϕ is contained in Ωn0 . Let n′ � n0. Then

(19)
ν(∇wn′ ,∇ϕ) + ((wn′ · ∇)wn′ , ϕ) + µ((wn′ · ∇)U , ϕ) + µ((U · ∇)wn′ , ϕ)

+ ((wn′ · ∇)b, ϕ) + ((b · ∇)wn′ , ϕ) = (F , ϕ) − ν(∇b,∇ϕ).

We can select a subsequence which converges strongly in L4(Ωn0). We denote this

subsequence by the same symbol wn′ . Letting n′ →∞, we obtain

(20)
ν(∇w,∇ϕ) + ((w · ∇)w, ϕ) + µ((w · ∇)U , ϕ) + µ((U · ∇)w, ϕ)

+ ((w · ∇)b, ϕ) + ((b · ∇)w, ϕ) = (F , ϕ) − ν(∇b,∇ϕ).

Therefore u := w+ b+ µU is a symmetric weak solution to (NS), (BC). Theorem 1
is proved. �
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