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Abstract. The σ-finiteness of a variational measure, generated by a real valued function,
is proved whenever it is σ-finite on all Borel sets that are negligible with respect to a σ-finite
variational measure generated by a continuous function.
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1. Introduction

In 1994, a question was posed by W.Pfeffer (see [13]) whether the absolute conti-

nuity of a variational measure, generated by a real valued function, with respect to
the Lebesgue measure would imply its σ-finiteness. The affirmative answer was first

given in [2], providing a full descriptive characterization of the Henstock-Kurzweil
integral (see also [14], and [4], [5], [6], [8] for higher dimensional results). Then in

[18], strengthening the result presented in [2], the author proved that a variational
measure is σ-finite whenever it is σ-finite on all subsets of zero Lebesgue measure (see

also [3] for a variational measure related to a certain class of differentiation bases).
In this paper we show that the same result holds if the Lebesgue measure is replaced

by a suitable variational measure. Namely, the variational measure V∗F , generated
by a function F : [a, b] → 
 , is σ-finite on [a, b] whenever it is σ-finite on all subsets
having measure zero with respect to a σ-finite variational measure V∗U generated by

a continuous function U : [a, b] → 
 . We derive some results on the differentiability
of the function F with respect to U , and a representation theorem for the variational

measure V∗F in terms of the Lebesgue integral.
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2. Preliminaries

If E ⊂ 
 , then |E| and intE denote the outer Lebesgue measure and the interior
of E, respectively. All functions we consider are real-valued. By (L)

∫
we denote

the Lebesgue integral. We always consider nondegenerate subintervals of 
 . For
c, d ∈ 
 with c < d, we denote by [c, d] the compact subinterval of 
 with endpoints
c and d, and by (c, d) the open one. A collection of intervals is called nonoverlapping
whenever their interiors are disjoint. Throughout this note [a, b] will be a fixed
interval. A partition in [a, b] is a collection P = {([a1, b1], x1), . . . , ([ap, bp], xp)}
where [a1, b1], . . . , [ap, bp] are nonoverlapping subintervals of [a, b] and xi ∈ [ai, bi] for
i = 1, . . . , p. A positive function δ on E ⊂ [a, b] is called a gauge on E. Given a
gauge δ on [a, b], a partition P = {([a1, b1], x1), . . . , ([ap, bp], xp)} in [a, b] is called
(i) δ-fine if bi − ai < δ(xi), i = 1, . . . , p;

(ii) of [a, b] if
p⋃

i=1

[ai, bi] = [a, b];

(iii) anchored in E if xi ∈ E ⊂ [a, b] for each i = 1, . . . , p.

Let H : [a, b] → 
 be a given function. The variational measure of H (see [17]

and [2]) is the metric outer measure defined for each E ⊂ [a, b] by

V∗H(E) = inf
δ

sup
P

p∑

i=1

|H(bi)−H(ai)|

where the infimum is taken over all gauges δ on E, and the supremum over all δ-fine
partitions P = {([a1, b1], x1), . . . , ([ap, bp], xp)} anchored in E.

If V∗H(N) = 0, then the set N ⊂ [a, b] is called H-negligible. For details on metric
outer measure we refer to [15] and [17]. We recall that H-negligible sets are V∗H-

measurable, and any set that differs from a V∗H-measurable one by an H-negligible
set is itself V∗H-measurable. We also recall that the restriction of a metric outer

measure to the Borel sets is a measure.

V∗H is said to be σ-finite on E ⊂ [a, b] if the set E is the union of sets En,

n = 1, 2, . . ., satisfying V∗H(En) < ∞. A variational measure V∗F is said to be
absolutely continuous with respect to V∗H if V∗F (N)=0 for any H-negligible set
N ⊂ [a, b].

�����������
2.1. (i) Let x ∈ [a, b]. Then H is continuous at x if and only if

V∗H({x}) = 0.
(ii) If H is a continuous monotone function, then V∗H is the Lebesgue-Stieltjes

measure associated with H , in which case

(a) V∗H([c, d]) = H(d)−H(c) for any subinterval [c, d] ⊂ [a, b];
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(b) V∗H is Gδ-regular, i.e. for every E ⊂ [a, b] there is a V∗H-measurable Gδ set

Y ⊂ [a, b] containing E for which V∗H(E) = V∗H(Y ) (see [17, p. 62]).

According to [10, p. 416] a set E ⊂ [a, b] is said to be H-null if it is the union
of a countable set and an H-negligible set. A property is said to hold H-almost

everywhere (abbreviated as H-a.e.) if the set of points where it fails to hold is H-
null. However, if H is a continuous function, by Remark 2.1(i) we have that a set is

H-null if and only if it is H-negligible.

Let F and H be any two functions on [a, b]. We need some definitions and results
on the differentiability of the function F with respect to H . The lower and upper

derivative of F with respect to H ,

DHF (x) = lim inf
y→x

F (y)− F (x)
H(y)−H(x)

and DHF (x) = lim sup
y→x

F (y)− F (x)
H(y)−H(x)

,

are defined for all x ∈ [a, b] for which H(y) 6= H(x) in a neighborhood of x.
If DHF (x) = DHF (x) 6= ±∞ this common value is denoted by F ′H and F is said

to be H-differentiable at x. Moreover, set

|D|HF (x) = lim sup
y→x

|F (y)− F (x)|
|H(y)−H(x)| .

The following result on H-differentiability will be useful. We point out that in [10]

a function F is said to be V BGo if V∗F is σ-finite on [a, b].

Lemma 2.2 [10, Proposition 3.10]. Let F , H : [a, b] → 
 be given. If the vari-
ational measures V∗F and V∗H are σ-finite on [a, b], then F is H-differentiable H-

a.e. in [a, b].

The following lemma can be proved by standard arguments (cf. for example [12,

Proposition 5.3.3]).

Lemma 2.3. Let F : [a, b] → 
 be given. If H : [a, b] → 
 is a strictly increasing
function, then for each x ∈ [a, b] we have

(1) DHF (x) = inf
δ

sup
[c,d]

F (d)− F (c)
H(d)−H(c)

where δ is a positive number and the supremum is taken over all subintervals [c, d] of
[a, b] with x ∈ [c, d] and d− c < δ. If in addition H and F are continuous at x, then

the supremum in (1) can be taken over all subintervals [c, d] of [a, b] with x ∈ (c, d)
and d− c < δ.
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Lemma 2.4. Let F : [a, b] → 
 be a continuous function. If H : [a, b] → 
 is a
continuous strictly increasing function, then DHF is Borel-measurable.

���������
. In view of Lemma 2.3, DHF (x) can be written as in (1) where the

supremum is taken over all subintervals [c, d] of [a, b] with x ∈ (c, d) and d − c <

δ. Then by standard arguments (see for example [17, Theorem 4.2]), the upper
derivative DHF is Borel-measurable. �

Clearly the same considerations of Lemma 2.3 and Lemma 2.4 apply to DHF (x)
and |D|HF (x).

3. The variational measure

In order to study the properties of a variational measure, we introduce the follow-
ing notion of H-density.

Definition 3.1. Let H : [a, b] → 
 and let E be a subset of [a, b]. We say that
a point x ∈ [a, b] is a point of H-density for E if

lim
r→0+

V∗H(E ∩ [x− r, x + r])
V∗H([x− r, x + r])

= 1.

The following lemma is a particular case of [11, Corollary 2.14].

Lemma 3.2. Let H : [a, b] → 
 be a continuous and strictly increasing function.
Let E be a V∗H-measurable subset of [a, b]. Then H-almost all points of E are

H-density points for E.

In view of Remark 2.1 (ii) we have that if H : [a, b] → 
 is a continuous and strictly
increasing function, then V∗H is the corresponding Lebesgue-Stieltjes measure. Now
we point out (see for example [7]) that the Vitali covering theorem holds for V∗H .

Precisely, if a class of closed intervals covers a subset A ⊂ [a, b] in the sense of Vitali,
then there is a countable disjoint sequence of those intervals whose union differs from

A by at most an H-negligible subset. In the following proposition we prove a result
on the σ-finiteness of a variational measure by a technique similar to that used in [3,

Theorem 3.1].

Proposition 3.3. Let F : [a, b] → 
 be given and let H : [a, b] → 
 be a con-
tinuous and strictly increasing function. If V∗F is σ-finite on all H-negligible Borel

subsets of [a, b], then V∗F is σ-finite on [a, b].
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���������
. Let Q be the set of all points x ∈ [a, b] for which V∗F is not σ-finite on

any open interval (c, d) of [a, b] containing x. Clearly Q is closed and has no isolated
points. Thus Q is a perfect set.

Now for any given interval I ⊂ [a, b], let {Ij} denote the sequence of intervals
complementary to Q in I . Then a compactness argument shows that V∗F is σ-finite
on Ij for each j. In particular, V∗F is σ-finite on the complement of Q in [a, b].
Therefore if V∗H(Q) = 0, by the hypothesis it follows that V∗F is σ-finite on [a, b].
Assume by contradiction that V∗H(Q) > 0 and let KQ be the set of all points of Q

which are H-density points for Q. By Lemma 3.2, V∗H(Q \KQ) = 0. Let K denote
the set of all x ∈ KQ for which the following condition holds: if I ⊂ [a, b] is any
interval containing x, then V∗H(KQ ∩ intI) > 0. We claim that V∗H(KQ \K) = 0.
The family B of all intervals I ⊂ [a, b] for which V∗H(KQ∩ intI) = 0 is a Vitali cover
of the set KQ \K. By the Vitali covering theorem for Lebesgue-Stieltjes measures
there is a disjoint sequence {Ixi} in B with xi ∈ (KQ \K) ∩ Ixi , such that

(2) V∗H

(
(KQ \K) \

(⋃

i

Ixi

))
= 0.

For each i we have V∗H(KQ ∩ intIxi) = 0, which together with the continuity of H
implies V∗H(KQ ∩ Ixi) = 0. Then we have

(3) V∗H

(
KQ ∩

(⋃

i

Ixi

))
= 0.

Thus by (2) and (3) we have

V∗H(KQ \K) = V∗H

(
(KQ \K) \

(⋃

i

Ixi

))
+ V∗H

(
(KQ \K) ∩

(⋃

i

Ixi

))
= 0.

We show now that V∗F is not σ-finite onK∩I , whenever I is an interval of [a, b] which
intersects K. As before let {Ij} denote the sequence of intervals complementary to
Q in I . Write

I = (K ∩ I) ∪ ((Q \K) ∩ I) ∪
(⋃

j

Ij

)
,

and by Remark 2.1 (ii)(b) find an H-negligible Gδ set Y ⊂ [a, b] containing Q \K.
Then we get

V∗F (I) 6 V∗F (K ∩ I) + V∗F (Y ∩ I) + V∗F
(⋃

j

Ij

)
.
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By the hypothesis V∗F is σ-finite on Y ∩ I , and we have shown that it is σ-finite

on
⋃
j

Ij . Hence the σ-finiteness of V∗F on K ∩ I would imply its σ-finiteness on I ,

which is not the case. This implies that for any gauge δ we have

(4) sup
P

p∑

i=1

|F (bi)− F (ai)| = ∞

where P = {([a1, b1], x1), . . . , ([ap, bp], xp)} runs over all δ-fine partitions anchored in
K ∩ I .

Fix an open interval (c, d) containing a point of K. In view of Remark 2.1 (ii)(a),
we may assume that V∗H((c, d)) < 1/2. Using (4) we can choose a finite collection
{[a(1)

i , b
(1)
i ], i = 1, . . . p1} of intervals contained in (c, d), such that

p1∑

i=1

|F (b(1)
i )− F (a(1)

i )| > 2.

We may assume that the family consists of at least two intervals. Also we have that

the interior of each [a(1)
i , b

(1)
i ] intersects K. Clearly,

p1∑

i=1

V∗H([a(1)
i , b

(1)
i ]) < 1/2.

Thinking of [a, b] as [a(0)
1 , b

(0)
1 ], we construct inductively finite collections {[a(k)

i ,

b
(k)
i ], i = 1, . . . , pk} such that the following conditions are satisfied for k = 1, 2, . . .:

(i) K ∩ (a(k)
i , b

(k)
i ) 6= ∅ for i = 1, . . . pk;

(ii) each [a(k)
i , b

(k)
i ] is contained in some [a(k−1)

j , b
(k−1)
j ];

(iii) each [a(k−1)
j , b

(k−1)
j ] contains at least two intervals [a(k)

i , b
(k)
i ];

(iv)
pk∑
i=1

V∗H([a(k)
i , b

(k)
i ]) < 2−k;

(v)
∑

i : [a
(k)
i ,b

(k)
i ]⊂[a

(k−1)
j ,b

(k−1)
j ]

|F (b(k)
i )− F (a(k)

i )| > 2k for each j = 1, . . . pk−1.

Now we define N =
∞⋂

k=1

pk⋃
i=1

[a(k)
i , b

(k)
i ]. From conditions (i)–(iv) it follows that N is

a perfect H-negligible set. As V∗F is σ-finite on N , we can write N =
∞⋃

s=1
Ns, where

Ns are disjoint V∗F -measurable subsets of finite V∗F -measure. Choose a gauge δ on
N such that for every integer s > 1

sup
P

p∑

i=1

|F (bi)− F (ai)| < ∞
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where P = {([a1, b1], x1), . . . , ([ap, bp], xp)} runs over all δ-fine partitions anchored in
Ns. Let Lm = {x ∈ N : δ(x) > 1/m} for m = 1, 2, . . .. Since N =

⋃
m,s

(Lm ∩ Ns),

using the Baire category theorem we conclude that there exist integers m and s and
an interval I with N ∩ I 6= ∅ such that Lm ∩Ns is a dense subset of N ∩ I . We may

assume |I | < 1/m. By the choice of δ we have

(5) sup
P

p∑

i=1

|F (bi)− F (ai)| < ∞

where P = {([a1, b1], x1), . . . , ([ap, bp], xp)} runs over all δ-fine partitions anchored in
Lm∩Ns. Since I intersectsN , then for all sufficiently large k there is some j such that
[a(k−1)

j , b
(k−1)
j ] ⊂ I . Each interval [a(k)

i , b
(k)
i ] ⊂ [a(k−1)

j , b
(k−1)
j ] contains a point of N

and consequently a point, say xik, of Lm ∩Ns. Then {([a(k)
i , b

(k)
i ], xik) : [a(k)

i , b
(k)
i ] ⊂

[a(k−1)
j , b

(k−1)
j ]} is a δ-fine partition anchored in Lm ∩Np. Condition (v) implies

∑

i : [a
(k)
i ,b

(k)
i ]⊂[a

(k−1)
j ,b

(k−1)
j ]

|F (b(k)
i )− F (a(k)

i )| > 2k.

For a sufficiently large k, the last inequality contradicts (5), and the proposition is
proved. �

Theorem 3.4. Let F : [a, b] → 
 be given and let U : [a, b] → 
 be a continuous
function such that V∗U is σ-finite on [a, b]. If V∗F is σ-finite on all U -negligible Borel

subsets of [a, b], then V∗F is σ-finite on [a, b].
���������

. Since U is continuous we observe that V∗U coincides with the full
variational measure ∆U∗ introduced by Thomson in [17]. Then by [17, Theorem 7.8]

the function U is V BG∗ in the sense of Saks and by a theorem of Ward (see [16,
p. 237]) there exists a continuous strictly increasing function H such that |D|HU(x) is
finite at every x ∈ [a, b]. Therefore by [10, Lemma 3.8], V∗U is absolutely continuous
with respect to V∗H . This last property and the hypothesis imply that V∗F is σ-

finite on all H-negligible Borel subsets of [a, b]. By Proposition 3.3, the σ-finiteness
of V∗F on [a, b] follows. �

Corollary 3.5. Let F : [a, b] → 
 be given and let U : [a, b] → 
 be a continuous
function such that V∗U is σ-finite on [a, b]. If V∗F is σ-finite on all U -negligible Borel

subsets of [a, b], then F is U -differentiable U -a.e. in [a, b].
���������

. By Theorem 3.4, V∗F is σ-finite on [a, b]. Then the corollary follows
from Lemma 2.2. �
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As a corollary of Theorem 3.4, we obtain a recently published result of V. Ene [9,

Theorem 3.2]. We whish to point out that this result allows one to furnish a full
descriptive characterization of the Henstock-Stieltjes integral introduced by Faure in
[10] (see [9, Theorem 5.1 (iii)]).

Corollary 3.6. Let F : [a, b] → 
 be given and let U : [a, b] → 
 be a continuous
function such that V∗U is σ-finite on [a, b]. If V∗F is absolutely continuous with

respect to V∗U , then V∗F is σ-finite on [a, b].

The following proposition allows us to represent V∗F on Borel sets in terms of the
Lebesgue integral with respect to a σ-finite variational measure. It is based on a

result of B. Bongiorno [1, Theorem 1] where a finite measure is considered.

Proposition 3.7. Let F : [a, b] → 
 be given and let U : [a, b] → 
 be a continu-
ous function such that V∗U is σ-finite on [a, b]. If V∗F is absolutely continuous with
respect to V∗U , then

(6) V∗F (E) = (L)
∫

E

|F ′U | dV∗U

for every Borel set E ⊂ [a, b].
���������

. In view of Corollary 3.5 the variational measure V∗F is σ-finite on [a, b].
Therefore by Lemma 2.2, F ′U exists U -a.e. We observe that by the absolute continuity
of V∗F with respect to V∗U and Remark 2.1(i), the function F is continuous. Let

E ⊂ [a, b] be a Borel set.
Assume first that U is strictly increasing. Since the set of all x ∈ [a, b] for which

F ′U (x) 6= DUF (x) is U -negligible and by Lemma 2.4 DUF is Borel-measurable, we
have that F ′U is V∗U -measurable. Thus the Lebesgue integral (L)

∫
E
|F ′U | dV∗U exists

(possibly equal to +∞). By Remark 2.1(ii), V∗U is the Lebesgue-Stieltjes measure
generated by U and V∗U([c, d]) = U(d)−U(c). Thus F ′U coincides with the derivative
of the set function [c, d] → F (d)− F (c) with respect to the measure V∗U .

Hence (6) follows by [1, Theorem 1] (cf. also [14, Proposition 10]).
Assume now V∗U to be σ-finite and let H denote, as in the proof of Theorem 3.3, a

continuous strictly increasing function on [a, b] such that V∗U is absolutely continuous
with respect to V∗H . Then by the first part of the proof we get

(7) V∗U(E) = (L)
∫

E

|U ′H | dV∗H.

The hypothesis implies that V∗F is absolutely continuous with respect to V∗H , hence
we also have

(8) V∗F (E) = (L)
∫

E

|F ′H | dV∗H.
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Let N1 denote the H-negligible, and hence U -negligible, subset of [a, b] such that F ′H
and U ′H exist for each x ∈ [a, b] \N1. Now let N2 = {x ∈ [a, b] \N1 : U ′H(x) = 0}.
We observe that N2 is V∗H-measurable. Choose an ε > 0. Given x ∈ N2, find a
δ(x) > 0 such that

|U(d)− U(c)| < ε(H(d)−H(c))

for any subinterval [c, d] of [a, b] with x ∈ [c, d] and d − c < δ. If P =
{([a1, b1], x1), . . . , ([ap, bp], xp)} is a δ-fine partition anchored in N2, then

p∑

i=1

|U(bi)− U(ai)| < ε(H(b)−H(a)).

As ε is arbitrary, the setN2 is U -negligible. Then the setN = N1∪N2 is U -negligible,

and for any x ∈ [a, b] \N we have

(9) F ′U (x) = F ′H(x)(U ′H (x))−1.

Since by (7), for every V∗H-measurable function g : [a, b] → [0,∞] we have

(L)
∫

E

g dV∗U = (L)
∫

E

|U ′H |g dV∗H,

by virtue of (8) and (9) the theorem follows for g = |F ′U |. �
�! ��"#�%$'&(�%)+*��,��"�-

. The author wish to thank Professor L.Di Piazza for her

advice during the preparation of this paper.
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