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ON THE DIFFERENCE EQUATION
agTp +a1Tpn—1 + ...+ ApTp—k
boxy, +b1Tp_1+ ... +bpxp_i

Tp+1 =

E. M. ELABBASY, H. EL-METWALLY, E. M. ELSAYED, Mansoura

(Received October 10, 2006)

Abstract. In this paper we investigate the global convergence result, boundedness and
periodicity of solutions of the recursive sequence

. agTn + a1Tp—1 + ... +AQpTy_k n=01
1 = = Y
nt boxn +b1xn—1+ ... +bpxy_g ’ T

where the parameters a; and b; for ¢ = 0,1, ...,k are positive real numbers and the initial
conditions x_j,T_jy1,...,To are arbitrary positive numbers.

Keywords: stability, periodic solution, difference equation
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1. INTRODUCTION

Our goal in this paper is to investigate the global stability character and the
periodicity of solutions of the recursive sequence

agTp +a1Tp—1+ ...+ ATp—k
boxy, +b1xp_1+ ... +bpxp_k ’

(1) LTn+1 =

where the parameters a; and b; for i = 0,1, ...,k are positive real numbers and the
initial conditions are arbitrary positive numbers.
k k k k
Suppose that A=Y a;, B= > b;, A" = > a;, B"=)_ b;.
=0 =0 i=0 i=0
iET iET
The case when k& = 1 was investigated in [11]. Other nonlinear rational difference
equations were investigated in [8]-[12]. See also [1]-[4].
The study of these equations is quite challenging and rewarding and still at its
infancy.
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Definition 1. A solution of the difference equation
(2) Tyl = F(TnyTp—1,. ., Tn-k), n=01,...

is said to be persistent if there exist numbers m and M with 0 < m < M < oo
such that for any initial conditions z_g, 2 _k41,...,2-1,20 € (0,00) there exists a
positive integer N which depends on the initial conditions such that

m<x, <M foralln> N.

Definition 2 (Stability).
(i) An equilibrium point T of Eq. (2) is locally stable if for every £ > 0 there exists
0 > 0 such that for all x_, z_j41,...,2_1,29 € I with

ok — T+ |21 — T+ ...+ |0 —T| <6

we have

|z, —T| <e foralln> —k.

(ii) An equilibrium point T of Eq.(2) is locally asymptotically stable if T is
a locally stable solution of Eq.(2) and there exists v > 0 such that for all
T kyT—ftls---,T1,29 € I with

|l’,kff|+‘$fk+17f‘+...+|xoff‘<’Y

we have

lim z, =T.
n—oo

(iii) An equilibrium point T of Eq. (2) is a global attractor if for all z_j, z_j41,...,
x_1,x0 € I, we have

lim z, =T.
n—oo

(iv) An equilibrium point T of Eq. (2) is globally asymptotically stable if T is locally
stable, and T is also a global attractor of Eq. (2).
(v) An equilibrium point T of Eq. (2) is unstable if T is not locally stable.

The linearized equation of Eq. (2) about the equilibrium 7 is the linear difference

equation

(3) Yn+1 =
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Theorem A [7]. Assume that p,q € R and k € {0,1,2,...}. Then
pl+lql <1
is a sufficient condition for the asymptotic stability of the difference equation

Tyl +pTp +qTn—rp =0, n=0,1,....

Remark 1. Theorem A can be easily extended to general linear equations of
the form

(4) Tpyk +P1Tptk—1+ ... +PkTn =0, n=0,1,...

where p1,p2,...,pr € R and k € {1,2,...}. Then Eq.(4) is asymptotically stable
provided that

k
Z pil < 1.
i=1

The following theorem (which we state and prove for the convenience of the reader)
treats the method of Full Limiting Sequences which was developed by Karakostas
(see [5] and [6]).

Theorem B. Let ' € C[I**! I] for an interval I of real numbers and for a non-
negative integer k. Let {x,}° _, be a solution of Eq.(2), and suppose that there
exist constants A € I and B € I such that

A<z, <B foralln> —k.

Let Ly be a limit point of the sequence {x,}5° . Then the following statements
are true.
(i) There exists a solution {L,}22 _ . of Eq.(2), called a full limiting sequence of
{an}o2 ., such that Lo = Ly and that for every N € {...,—1,0,1,...}, Ly is
a limit point of {x,}2 _,.
(ii) For every ig < —k, there exists a subsequence {x,,}2, of {x,}2 _, such that

Ly = lim x,,4+n for every N > ig.
11— 00

Proof. We first show that there exists a solution {l,,}7> . ; of Eq.(2) such
that lo = Lo and that for every N > —k — 1, Iy is a limit point of {x,}° .

135



To this end, observe that there exists a subsequence {x,, }52, of {z,}5° _, such
that

lim z,, = Lo.
1— 00

Now the subsequence {x,, 1}, of {x,}52 _, also lies in the interval [A, B] and so
it has a limit point, which we denote by £_;. It follows that there exists another
subsequence {zn; }32, of {zn, }{2( such that lim z,, 1 =L_1.

j—o0

Thus we see that

im z,, 1 =L and lim z,, = Lo.
— 00

J—00

J

It follows similarly to the above that after re-labelling, if necessary, we may assume
that

m zp, k1 =L 1, lim zy, =L g,..., lim z,, = Lo.
j—o0 j—o0 j—o0

Consider the solution {/,,}22 , ;| of Eq.(2) with the initial conditions
ly=L g, lo=Lo,...; l p1=L p 1.
Then

F(‘Cfla £727 e 7‘67]671) = hm F(I’njfla 'rnj72a R 'Injfkfl)

j—o0
= Jli)rgo Tn; = Lo = lo-

It follows by induction that the solution {l,}>> ., of Eq.(2) has the desired prop-
erty that lo = Lo, and that Iy is a limit point of {z,,}>° , for every N > —k — 1.

Let S be the set of all solutions {L,} of Eq.(2) such that the following
statements are true.

(i) —co< —m < —k—1.
(ii) L, =1, foralln > —k—1.
(iii) For every jo € domain {L,}
{zn}22 _, such that

o0
n=—m

oo
n=—m?.,

there exists a subsequence {z,,};°, of

Ly = llim Ty +N forall N = jp.

Clearly {l,}2°_,_, € S, and so S # ¢. Given y,z € S, we say that y < z if
y C z. It follows that (9, <) is a partially ordered set which satisfies the hypotheses
of Zorn’s Lemma, and so we see that S has a maximal element which clearly is the
desired solution {L,}5%

—00"
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2. LINEARIZED STABILITY ANALYSIS

In this section we study the local stability character of the solutions of Eq. (1).
Eq. (1) has a unique positive equilibrium point and it is given by

k k A
=0 =0
Let f: (0,00)kT! — (0,00) be a function defined by

(5) f(u v u):aouo—l—alul—&—...—i—akuk
00y Wk b0U0+b1U1+...+bkuk.

Then it follows that

(a0b1 — albo)ul =+ (a0b2 — agbo)UQ + ...+ (aobk — akbo)uk

qu(UO7UI7“.7uk) B (boUo+b1U1 +...+bkuk)2
k k k 2
= (ao > biui — by Zaiuz) / (Zbiui) ;
i=1 i=1 i=0
f (’U,O uy. ... uk) _ (a1b0 — aobl)UO + (a1b2 — agbl)u2 + ...+ (albk — akbl)uk
“ B ’ (boUo +bjug +...+ bkuk)Q
k k k 2
= <a1 Z b;u; — by Z aiui> / <Z bzul> ,
=0 i=0, 1=0
i#1 i#1
Fou (0,01, - 0g) = (arbo — aobr)uo + (arbr — arby)uy + ... + (arbr—1 — ar—1bg)ur—1

(boUo + b1u1 +...+ bkuk)Q
k—1 k—1 k 2

= (ak Z biui — bk Z aiui> / (Z biui) .
=0 =0 =0

Now we see that

(a0b1 — albo) + (a0b2 — azbo) + ...+ (aobk - akbo)

qu(f,f,...,f): 1B
agBY — by A°
N AB ’
_ _ ai1bg — agb1) + (a1bg — agby) + ... + (a1by — agby
b )+ ety ) ...+ )
a1B1 — blAl
B AB 7
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ka (57 7 75) _ (akbo — aobk) —+ (akbl — albk) —+ ...+ (akbk,1 — akflbk)
AB
_ akBk — bkAk
B AB ’

The linearized equation of Eq. (1) about Z is
k
Ynt1 + Z diyn—i =0,
i=0

where d; = — f,,(ZT,T,...,T) for i = 0,1,..., k, whose characteristic equation is

k
pLag s Zdi)\i =0.
1=0

Theorem 2.1. Assume that
k
Z |CliB2 — bZAZ| < AB.
i=0
Then the positive equilibrium point of Eq. (1) is locally asymptotically stable.

Proof. The proofis a direct consequence of Theorem A.

3. BOUNDEDNESS OF SOLUTIONS

Here we study the persistence of Eq. (1).

Theorem 3.1. Every solution of Eq. (1) is bounded and persists.

Proof. Let {z,}° _, be a solution of Eq. (1). It follows from Eq. (1) that

agTy +a1Tp—1+ ... +apTp—k
Tp+l1 =
boxy, +b1xp_1+ ...+ brxp_k

agTn 1Tn—1
= +
boxn +b1Tpn_1+ ... +bpTp_ik boxn +b1Tpn_1+ ... +bpTr_k
ApTn—k
+
boxn +b1Tpn_1+ ... +bpxy_k
apTn a1Tn—1 ApTn—k
< e .
boxn blxn—l bkxn—k
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Hence

(6) Tn < Z

|2

=

k
i=0 '

Now we wish to show that there exists m > 0 such that

T, =>m forall n>1.

The transformation 1
Ty = —

Yn
will reduce Eq. (1) to the equivalent form

k k k—1
bo H Yn—i + bl H Yn—i + ...+ bk H Yn—i
_ i—1

i=1 i=0,i#£1

=M forall n>1.

Yn+1 =
i=1 i=0,i#£1

k
bo IT yn—i
i—1

K2

k k
aOHyn7i+a1 H yn7i+...+akl_‘[

Yn—i

k k k—1
ao H Yn—it+ar ] yn—it+...+a H Yn—i

i=1 i=0,i#1
k
b1 H Yn—i
i=0,i#1

+ k k —1
ao [T yn—i+ar [l Yn—i+...+ax [] yn—i

i=1 i=0,i#1 i=1

k—1
bk H Yn—i
i=1

+ k k k—1 ’
ao [[ yn—i+ar ] wyn—i+...+ax [] yni

i=1 i=0,i#1 i=1

which implies that
k k—1
bO H Yn—i b1 . H Yn—i bk H Yn—i
i=1 i=0,i#1 i=1 bo b1
Yn+1 X 3 & + + 1 —+ —+
— ag ai
ao H Yn—i ay H Yn—i ag H Yn—i
i=1 i=0,i#1 i=1

Hence

+...
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It follows that i

1 b;
gZ-:H forall n > 1.
Tn+1 i—o %
Thus we obtain
1 1
(7) Tp,=—>—=m foralln>1.
yn H

From (6) and (7) we see that
m<x, <M foralln>1.

Therefore every solution of Eq. (1) is bounded and persists.

4. PERIODICITY OF SOLUTIONS

In this section we study the existence of a prime period two solutions of Eq. (1).
Let o, (8, v and § be defined as follows:
If £ is odd, then

(k—1)/2 (k—1)/2
a= Y ay, B= Y ax,
i=0 i=0
(h-1)/2 (h-1)/2

y= 3 bau, 6= Y by,
i=0 i=0

if £ is even, then

k)2 k/2—1

a= E az, B= E (2441,
=0 =0
k)2 k/2—1

Y= b, =) bayr.
i=0 i=0
Theorem 4.1. Eq. (1) has a positive prime period two solution if and only if
(8) 150 < (7= 8)(B - a).
Proof. First suppose that there exists a prime period two solution

"7p7q7p7q7"'

of Eq. (1). We will prove that condition (8) holds.
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We see from Eq. (1) that

_ag+fp
¥q + dp
and
_ap+pq
P+ d0q
Then
(9) Ypq + 6p* = aq + fBp
and
(10) Ypq + 8¢ = ap + Bq.

Subtracting (9) from (10) gives
3(p* = ¢*) = (B—a)(p—q).

Since p # q, it follows that

(11) p+q:$-

Also, since p and q are positive, (5 — a) should be positive.
Again, adding (9) and (10) yields

(12) 29pq +6(p* + ¢*) = (p+ q)(a + ).
It follows by (11), (12) and the relation
PP+ =(p+q)?®—2pg forallpgeR

that

2a(0 — «
2(y = d)pg = %-
Again, since p and ¢ are positive and 8 > «, we see that v > 4.
Thus
a(f —a)
13 pg = —F—=.
19) 5 —9)

Now it is clear from Eq. (11) and Eq. (13) that p and ¢ are the two positive distinct
roots of the quadratic equation

(14) t? — t+
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and so

> 0.

T -

Since 7 — § and 0 — o have the same sign,

00—« 4o
PR

which is equivalent to
4da < (v = 6)(B — a).

Therefore inequality (8) holds.

Second suppose that inequality (8) is true. We will show that Eq. (1) has a prime
period two solution.

Assume that

b= 2
and
08—« B—al?2 4da(f-a)
5 +\/[ ) - 5(y—9)
= 2

We see from inequality (8) that
(7= 0)(B —a) > 4da
or

46a(B — «)

2

)

which is equivalent to

{ﬂ— a]Q - da(f — @)

5 5y —0)
Therefore p and q are distinct positive real numbers.

If k is odd, then we set (the case when k is even is similar and will be omitted)
Tk =(q, T_g41 = D,..., and xg = p. We wish to show that 1y = z_; = ¢ and
x9 = xog = p. It follows from Eq. (1) that

_ap+ fq
Tl = ——(7,
P + 0q

where p and ¢ are as given above.
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It follows that

“P‘W%W[“Wwﬁ%}

o 4oa 4
7{1—\/1—m]+5[1+\/1_m}
4
_(a+5)+(ﬂa)[\/1m]
4
(V+5)+(57)[\/1m}
Hence
A (e e
o 4
(87 = @ =21 - =]
: 4
(VJFCS)Q?M?V]Q[I?W]
4
pﬁvﬂm]”w%%‘”%‘m
! ~ifab ]
44y 7 —a
B-a, [[B-a? 4a(B-0q)
) +\/[ S ] - 5(’}/*5)
- 2 =4q.

Similarly to the above one can show that
To =P.
Then it follows by induction that
ZTop =p and xopy1=¢q forall n>-1.
Thus Eq. (1) has the positive prime period two solution

"'7p7q7p7q7"'
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where p and ¢ are the distinct roots of the quadratic equation (14) and the proof is

complete.

5. GLOBAL STABILITY OF EQ. (1)
In this section we investigate the global asymptotic stability of Eq. (1).

Theorem 5.1. If the function f(ug,u1,...,uy) defined by Eq. (5) is non decreas-
ing in u;, non increasing in u; and

(15) AIB' < a;(2b; + BY), i,j=0,1,...,k,

then the equilibrium point T is a global attractor of Eq. (1).

Proof. Let {z,}>2 _, be asolution of Eq. (1) and let f be the function defined
by Eq. (5) which is non decreasing in w; if a;/b; > a;/b;, and non increasing in u; if
ai/bi < (lj/bj, i7j = 07 1, . ,k

From Eq. (1) we see that

oty = Ty + @1 Tp—1+ ... +0jTp—j + ...+ QpTn—k
boxn +b1Tp—1 4+ ... FbjTp_j+ ...+ bpTn_p

aoTn + a1Zp—1+ ...+ a;(0) + ...+ arZTrn_p

= by + b1 4+ bi(0) o+ b

< agTn a1Tn—1 T Aj—1Tp—(5-1) 4 Aj+1Tn—(54+1) NI ApTn—k
boxn,  bixn_1 bj—1Tn_(j—1)  bj+1Tn_(jt+1) bk
L
1
= — =M.
b;
i=0
1#£]
Hence
(16) Tp <M forall n>1.

In the other hand,

aoTn + 01Zn—1+ ... +a;(M)+ ... +a;(0)+... + apZn_s
b0$n+b1$n_1+...+bj(M)+...+bi(0)+...+bkl’n_k

(17) Tn41 2

a; M
2 J
b0M+b1M++b](M)++bl(0)++bkM
_ M o
 B‘M  Bi
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From Egs. (16) and (17) we see that

S

k
(18) m:%<aﬁngz =M foralln>1.

%
%

=

S
SO

It follows by the Method of Full Limiting Sequences that there exist solutions
{I,}22_ . and {S,}>2 _ _ of Eq. (1) with

I =1,= lim infz, < lim supz, = Sy =5,

n—oo n—oo

where
1,,S,€[I,S], n=0,—-1,....

It suffices to show that I = S.
It follows from Eq. (1) that

al 1 +al o+ . ta;l_j 1+ 4ol 1+ a1
bol1+bil o+ ...4+bil j 1 +...4+bl i q+...+bel 1
apl_1+arl o+ ... +a;(S)+...+a (D) +...+arl__1
“ bolog b1l o+ b (S) . () b

al +arl+...+a;(S)+...+a()+...+ar] ATl+a;S
T boS A+ 1S+ .+ bi(S)+ . b)) .+ S BiS+bI]

I =

and so
(19) B'SI > AV] +a;S — b1
Similarly, we see from Eq. (1) that

o aOS,l +a1572 +...+ajS,j,1 “+ ... +aiS,Z~,1 +...+akS,k,1

- boS_1+b1S_o +...+bjS_j_1 + .o+ bS 1+ S

< apS—1+ar1S_2+...+a;(I)+...+a;(S)+ ...+ arS_k_1

S boS_1+b1S_a 4. A bi (D) +bi(S) e+ bES g1

< apS+a1S+...+a;(I)+...+a;(S)+...+arS _ AIS +a;1
bol +b11+...4+b;(I)+...+b;(S)+ ...+ bl B +b;S’

and so
(20) B'SI < A1S + a;I — b;S?.
Therefore it follows from (19) and (20) that

AT+ a;S —b;I1* < APS + a;I — b;S>
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or

Aj(S—I)-‘r(lj(I—S)-Fbi(Iz )
(I —S){a;+b;(I+8)— AT}

= 0,
20

b

and so
I>8 ifa;+b;(I+8)— A >0.

Now, we know by (15) that
A'B' < a;(2b; + BY).

Hence 2%,
A B < a; B (— 1)
B *
or

Al <b-(§+§) + a;.

It follows from Eq. (18) that
AT < bi(I+8S) +ay,

and so it follows that

I1>5
Therefore
I1=S5.
This completes the proof. O
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