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Abstract. For a graphical property P and a graph G, a subset S of vertices of G is a P-set
if the subgraph induced by S has the property P . The domination number with respect
to the property P , is the minimum cardinality of a dominating P-set. In this paper we
present results on changing and unchanging of the domination number with respect to the
nondegenerate and hereditary properties when a graph is modified by adding an edge or
deleting a vertex.
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1. Introduction

All graphs considered in this article are finite, undirected, without loops or mul-

tiple edges. For the graph theory terminology not presented here, we follow Haynes

et al. [8]. We denote the vertex set and the edge set of a graph G by V (G) and

E(G), respectively. The subgraph induced by S ⊆ V (G) is denoted by 〈S, G〉. The

complement of a graph G is denoted by G. For a vertex x of G, N(x, G) denotes the

set of all neighbors of x in G and N [x, G] = N(x, G) ∪ {x}. The complete graph on

m vertices is denoted by Km.

For a graph G, let x ∈ X ⊆ V (G). A vertex y is a private neighbor of x with

respect to X if N [y, G] ∩ X = {x}. The private neighbor set of x with respect to X

is pnG[x, X ] = {y : N [y, G] ∩ X = {x}}.

Let G denote the set of all mutually nonisomorphic graphs. A graph property is

any non-empty subset of G. We say that a graph G has the property P whenever
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there exists a graph H ∈ P which is isomorphic to G. For example, we list some

graph properties:

• I = {H ∈ G : H is totally disconnected};

• C = {H ∈ G : H is connected};

• T = {H ∈ G : H is without isolates};

• F = {H ∈ G : H is a forest};

• UK = {H ∈ G: each component of H is complete}.

A graph property P is called hereditary (induced-hereditary), if from the fact that

a graph G has the property P , it follows that all subgraphs (induced subgraphs)

of G also belong to P . A property is called additive if it is closed under taking

disjoint unions of graphs. A property P is called nondegenerate if I ⊆ P . Note

that: (a) I and F are nondegenerate, additive and hereditary properties; (b) UK is

nondegenerate, additive, induced-hereditary and is not hereditary; (c) C is neither

additive nor induced-hereditary nor nondegenerate; (d) T is additive but neither

induced-hereditary nor nondegenerate. Further, an additive and induced-hereditary

property is always nondegenerate.

A dominating set for a graph G is a set of vertices D ⊆ V (G) such that every

vertex of G is either in D or is adjacent to an element of D. A dominating set D is a

minimal dominating set if no set D′ ( D is a dominating set. The set of all minimal

dominating sets of a graph G is denoted by MDS(G). The domination number γ(G)

of a graph G is the minimum cardinality taken over all dominating sets of G. The

upper domination number Γ(G) is the maximum cardinality of a minimal dominating

set of G.

Any set S ⊆ V (G) such that the subgraph 〈S, G〉 possesses the property P is called

a P-set. The concept of domination with respect to any propertyP was introduced by

Goddard et al. [7]. The domination number with respect to the property P , denoted

by γP(G), is the smallest cardinality of a dominating P-set of G. Note that there

may be no dominating P-set of G at all. For example, all graphs having at least

two isolated vertices are without dominating P-sets, where P ∈ {C, T }. On the

other hand, if a property P is nondegenerate then every maximal independent set is

a P-set and thus γP(G) exists. Let S be a dominating P-set of a graph G. Then

S is a minimal dominating P-set if no set S′ ( S is a dominating P-set. The

set of all minimal dominating P-sets of a graph G is denoted by MDP S(G). The

upper domination number with respect to the property P , denoted by ΓP(G), is

the maximum cardinality of a minimal dominating P-set of G. Michalak [12] has

considered these parameters when the property is additive and induced-hereditary.

Note that:

(a) in the case P = G we have MDG S(G) = MDS(G), γG(G) = γ(G) and ΓG(G) =

Γ(G);
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(b) in the case P = I, every element of MDI S(G) is an independent dominat-

ing set and the numbers γI(G) and ΓI(G) are well known as the independent

domination number i(G) and the independence number β0(G);

(c) in the case P = C, every element of MDC S(G) is a connected dominating set

of G, γC(G) (ΓC(G)) is denoted by γc(G) (Γc(G)) and is called the connected

(upper connected) domination number ;

(d) in the case P = T , every element of MDT S(G) is a total dominating set of G,

γT (G) (ΓT (G)) is denoted by γt(G) (Γt(G)) and is called the total (upper total)

domination number ;

(e) in the case P = F , every element ofMDF S(G) is an acyclic and dominating set

of G, γF (G) (ΓF (G)) is denoted by γa(G) (Γa(G)) and is called the acyclic (up-

per acyclic) domination number. The concept of acyclic domination in graphs

was introduced by Hedetniemi et al. [10].

From the above definitions we immediately have

Observation 1.1. Let I ⊆ P2 ⊆ P1 ⊆ G and let G be a graph. Then

(1) [7] γ(G) 6 γP1
(G) 6 γP2

(G) 6 i(G);

(2) [7] Γ(G) > ΓP1
(G) > ΓP2

(G) > β0(G).

Observation 1.2. Let G be a graph, P ⊆ G and MDP S(G) 6= ∅. A dominating

P-set S ⊆ V (G) is a minimal dominating P-set if and only if for each nonempty

subset U ( S at least one of the following holds:

(a) there is a vertex v ∈ (V (G) − S) ∪ U with ∅ 6= N [v, G] ∩ S ⊆ U ;

(b) S − U is no P-set.

P r o o f. Assume first that S ∈ MDP S(G), ∅ 6= U ( S and SU = S − U is a

P-set of G. Hence some vertex v in V (G) − SU has no neighbors in SU . If v ∈ U

then ∅ 6= N [v, G] ∩ S ⊆ U . Let v ∈ V (G) − S. Since v is not dominated by SU but

is dominated by S it follows that ∅ 6= N [v, G] ∩ S ⊆ U . In both cases, condition (a)

holds.

For the converse, suppose S is a dominating P-set of G and for each U , ∅ 6=

U ( S one of the two above stated conditions holds. Suppose to the contrary that

S 6∈ MDP S(G). Then there exists a set U , ∅ 6= U ( S such that SU = S − U is a

dominating P-set. Since SU is a P-set, condition (b) does not hold. Since SU is a

dominating set it follows that every vertex of V (G)−SU has at least one neighbor in

SU , that is, condition (a) does not hold. Thus in all cases we have a contradiction.

�

169



Corollary 1.3. Let G be a graph, P ⊆ G be an induced-hereditary property and

MDP S(G) 6= ∅. A dominating P-set S ⊆ V (G) is a minimal dominating P-set if

and only if pnG[u, S] 6= ∅ for each vertex u ∈ S.

This result when P = G was proved by Ore [13].

We shall use the therm γP -set for a minimal dominating P-set of cardinality γP(G).

Let G be a graph and v ∈ V (G). Fricke et al. [5] defined a vertex v to be

(f) γP -good, if v belongs to some γP -set of G;

(g) γP -bad, if v belongs to no γP -set of G;

Sampathkumar and Neerlagi [16] defined a γP -good vertex v to be

(h) γP -fixed if v belongs to every γP -set;

(i) γP -free if v belongs to some γP -set but not to all γP -sets.

For a graph G and a property P ⊆ G such that MDP S(G) 6= ∅ we define:

GP(G) = {x ∈ V (G) : x is γP -good};

BP(G) = {x ∈ V (G) : x is γP -bad};

FiP(G) = {x ∈ V (G) : x is γP -fixed};

FrP(G) = {x ∈ V (G) : x is γP -free}.

Clearly {GP(G),BP(G)} is a partition of V (G), and {FiP(G),FrP(G)} is a par-

tition of GP(G). If additionally MDP S(G − v) 6= ∅ for each vertex v ∈ V (G), then

we define:

V0
P(G) = {x ∈ V (G) : γP(G − x) = γP(G)};

V−
P(G) = {x ∈ V (G) : γP(G − x) < γP(G)};

V+

P
(G) = {x ∈ V (G) : γP(G − x) > γP(G)}.

In this case {V−
P (G),V0

P (G),V+

P (G)} is a partition of V (G).

It is often of interest to know how the value of a graph parameter is affected when

a small change is made in a graph. In this connection, in this paper we consider this

question in the case γP(G) when a vertex is deleted from G or an edge from G is

added to G.

2. Vertex deletion

In this section we examine the effects on γP when a graph is modified by deleting

a vertex.

Theorem 2.1. Let G be a graph, u, v ∈ V (G), u 6= v and let H ⊆ G be nonde-

generate and closed under union with K1.

(i) Let v ∈ V
−
H

(G).

(i.1) If uv ∈ E(G) then u is a γH-bad vertex of G − v;
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(i.2) if M is a γH-set of G − v then M ∪ {v} is a γH-set of G and {v} =

pnG[v, M ∪ {v}];

(i.3) γH(G − v) = γH(G) − 1;

(ii) let v ∈ V
+

H(G). Then v is a γH-fixed vertex of G;

(iii) if v ∈ V
−
H(G) and u is a γH-fixed vertex of G then uv 6∈ E(G);

(iv) if v is a γH-bad vertex of G then γH(G − v) = γH(G);

(v) if v ∈ V
−
H

(G) and uv ∈ E(G) then γH(G − {u, v}) = γH(G) − 1.

P r o o f. (i.1): Let uv ∈ E(G) and let M be a γH-set of G − v. If u ∈ M then

M is a dominating H-set of G with |M | < γH(G)—a contradiction.

(i.2) and (i.3): Let M be a γH-set of G − v. By (i.1), M1 = M ∪ {v} is a

dominating set of G. Any vertex u ∈ V (G) − M1 has a neighbor in M , hence v is

isolated in M1 (otherwise M would dominate G) and {v} = pnG[v, M ∪ {v}]. Since

H is closed under union with K1 it follows that M1 is a dominating H-set of G and

|M1| = γH(G−v)+1 6 γH(G). HenceM1 is a γH-set ofG and γH(G−v) = γH(G)−1.

(ii): If M is a γH-set of G and v 6∈ M then M is a dominating H-set of G − v.

But then γH(G) = |M | > γH(G − v) > γH(G) and the result follows.

(iii): Let γH(G − v) < γH(G) and let M be a γH-set of G − v. Then by (i.2),

M ∪ {v} is a γH-set of G. This implies that u ∈ M and by (i.1) we have uv 6∈ E(G).

(iv): By (ii), γH(G − v) 6 γH(G) and by (i.2), γH(G − v) > γH(G).

(v): Immediately follows by (i) and (iv). �

Let P ⊆ G be nondegenerate and closed under union with K1. Since γP(G− v) 6

|V (G)| − 1 for every v ∈ V (G) and because of Theorem 2.1 we have γP(G − v) =

γP(G) + p, where p ∈ {−1, 0, 1, . . . , |V (G)| − 2}. This motivated us to define for a

nontrivial graph G:

Fr−P(G) = {x ∈ FrP(G) : γP(G − x) = γP(G) − 1};

Fr0P(G) = {x ∈ FrP(G) : γP(G − x) = γP(G)};

Fi
p
P(G) = {x ∈ FiP(G) : γP(G − x) = γP(G) + p}, p ∈ {−1, 0, 1, . . . , |V (G)| − 2}.

We will refine the definitions of the γP -free vertex and the γP -fixed vertex. Let

G be a graph and let P ⊆ G be nondegenerate and closed under union with K1. A

vertex x ∈ V (G) is called

(j) γ0
P -free if x ∈ Fr

0

P(G);

(k) γ−
P
-free if x ∈ Fr

−
P(G);

(l) γ
q
P(G)-fixed if x ∈ Fi

q
P(G), where q ∈ {−1, 0, 1, . . . , |V (G)| − 2}.

Now, by Theorem 2.1 we have
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Corollary 2.2. Let G be a graph of order n > 2 and let H ⊆ G be nondegenerate

and closed under union with K1. Then

(1) {Fr
−
H(G),Fr

0

H(G)} is a partition of FrH(G);

(2) {Fi
−1

H (G),Fi
0

H(G), . . . ,Fi
n−2

H (G)} is a partition of FiH(G);

(3) {Fi
−1

H (G),Fr
−
H(G)} is a partition of V−

H(G);

(4) {Fi
0

H(G),Fr
0

H(G),BH(G)} is a partition of V0
H(G);

(5) {Fi
1

H(G),Fi
2

H(G), . . . ,Fi
n−2

H (G)} is a partition of V+

H(G).

A vertex v of a graph G is γP -critical if γP(G − v) 6= γP(G). The graph G is

vertex -γP-critical if all its vertices are γP -critical.

Theorem 2.3. Let G be a graph of order n > 2 and let H ⊆ G be additive and

induced-hereditary. Then G is a vertex-γH-critical graph if and only if γH(G− v) =

γH(G) − 1 for all v ∈ V (G).

P r o o f. Necessity is obvious. Sufficiency: Let G be a vertex-γH-critical graph.

Clearly, γH(G − v) = γH(G) − 1 for every isolated vertex v ∈ V (G). Hence if G

is isomorphic to Kn then γH(G − v) = γH(G) − 1 for all v ∈ V (G). So, let G

have a component of order at least two, say Q. Because of Theorem 2.1 (ii), (iii)

and (i.3), either γH(Q − v) > γH(Q) for all v ∈ V (Q), or γH(Q − v) = γH(Q) − 1

for all v ∈ V (Q). Suppose that γH(Q − v) > γH(Q) for all v ∈ V (Q). But then

Theorem 2.1 (ii) implies that V (Q) is a γH-set of Q. This is a contradiction with

γH(Q − v) > γH(Q). �

Theorem 2.3 when H ∈ {G, I,F} is due to Carrington et al. [2], Ao and

MacGillivray (see [9, Chapter 16]) and the present author [15], respectively. Further

properties of these graphs can be found in [1], [6], [8, Chapter 5], [9, Chapter 16],

[11], [14].

Now we concentrate on graphs having cut-vertices. Observe that domination and

some of its variants in graphs having cut-vertices have been the topic of several

studies—see for example [1], [18], [14] and [9, Chapter 16].

Let G1 and G2 be connected graphs, both of order at least two, and let them have

a unique vertex in common, say x. Then a coalescence G1

x
◦G2 is the graph G1∪G2.

Clearly, x is a cut-vertex of G1

x
◦ G2.

Theorem 2.4. Let G = G1

x
◦G2 and let H ⊆ G be induced-hereditary and closed

under union with K1. Then γH(G) > γH(G1) + γH(G2) − 1.

P r o o f. Since H is induced-hereditary and closed under union with K1 it follows

that H is nondegenerate. Let M be a γH-set of G and Mi = M ∩ V (Gi), i = 1, 2.

Since H is induced-hereditary it follows that M1 and M2 are H-sets of G1 and G2,

respectively. Hence there exist three possibilities:
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(a) x 6∈ M and Mi is a dominating H-set of Gi, i = 1, 2;

(b) x 6∈ M and there are i, j such that {i, j} = {1, 2}, Mi is a dominating H-set of

Gi and Mj is a dominating H-set of Gj − x;

(c) x ∈ M and Mi is a dominating H-set of Gi, i = 1, 2.

If (a) holds, then γH(G) = |M | = |M1| + |M2| > γH(G1) + γH(G2). If (c) holds

then γH(G) = |M | = |M1|+ |M2| − 1 > γH(G1) + γH(G2) − 1. Finally, let (b) hold.

Then γH(G) = |M | = |M1|+ |M2| > γH(Gi)+ γH(Gj −x). Now by Theorem 2.1 (i),

γH(G) > γH(G1) + γH(G2) − 1.

Thus, in all cases, γH(G) > γH(G1) + γH(G2) − 1. �

Theorem 2.5. Let G = G1

x
◦ G2, let H ⊆ G be additive and induced-hereditary,

and γH(G1 − x) < γH(G1). Then

(a) γH(G) = γH(G1) + γH(G2) − 1;

(b) if γH(G2 − x) < γH(G2) then γH(G − x) = γH(G) − 1;

(c) if γH(G2 − x) > γH(G2) then x is a γH-fixed vertex of G;

(d) if x is a γH-bad vertex of G2 then x is a γH-bad vertex of G.

P r o o f. Since H is additive and induced-hereditary it follows that H is nonde-

generate and closed under union with K1.

(a): Let U1 be a γH-set ofG1−x and let U2 be a γH-set ofG2. Then U = U1∪U2 is a

dominating set of G. It follows by Theorem 2.1(i.2) that 〈U, G〉 has two components,

namely 〈U1, G〉 and 〈U2, G〉. Since H is additive, U is an H-set of G. Thus U is

a dominating H-set of G. Hence γH(G) 6 |U1 ∪ U2| = γH(G1 − x) + γH(G2) =

γH(G1) + γH(G2) − 1. Now the result follows by Theorem 2.4.

(b): By Theorem 2.1 (i.3) we have γH(G − x) = γH(G1 − x) + γH(G2 − x) =

γH(G1) + γH(G2) − 2. Hence by (a), γH(G − x) = γH(G) − 1.

(c): γH(G − x) = γH(G1 − x) + γH(G2 − x) = γH(G1) − 1 + γH(G2 − x) =

γH(G)+γH(G2−x)−γH(G2) > γH(G). The result now follows by Theorem 2.1 (ii).

(d): Let M be a γH-set of G and Mi = M ∩ V (Gi), i = 1, 2. Suppose x ∈ M .

Hence Mi is a dominating H-set of Gi, i = 1, 2 and then γH(Gi) 6 |Mi|. Since

x belongs to no γH-set of G2 we have |M2| > γH(G2). Hence γH(G) = |M | =

|M1| + |M2| − 1 > γH(G1) + γH(G2)—a contradiction with (a). �

Theorem 2.6. Let H ⊆ G be additive and induced-hereditary and let G =

G1

x
◦G2, where G1, G2 are both vertex-γH-critical. Then G is vertex-γH-critical and

γH(G) = γH(G1) + γH(G2) − 1.

P r o o f. By Theorem 2.5(b) it follows that γH(G)−1 = γH(G−x). Let without

loss of generality y ∈ V (G2−x). If G2−y is connected then G−y = G1

x
◦(G2−y) and
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by Theorem 2.5(a), γH(G−y) = γH(G1)+γH(G2−y)−1 = γH(G1)+γH(G2)−2 =

γH(G) − 1.

So, assume G2 − y is not connected and let Q be the component of G2 − y which

contains x. By Theorem 2.1 (i), V (Q) 6= {x}. Now, by Theorem 2.5 (a), γH(G1

x
◦Q) =

γH(G1) + γH(Q)− 1 and then γH(G− y) = γH(G1

x
◦Q) + γH(G2 − (V (Q)∪ {y})) =

γH(G1) + γH(G2 − y) − 1 = γH(G1) + γH(G2) − 2 = γH(G) − 1. �

3. Edge addition

Here we present results on changing and unchanging of γP(G) when an edge from

G is added to G. Recall that if a property P is hereditary and closed under union

with K1 then P is nondegenerate and hence all graphs have a domination number

with respect to P .

Theorem 3.1. Let x and y be two different and nonadjacent vertices in a graph

G. LetH ⊆ G be hereditary and closed under union with K1. If γH(G+xy) < γH(G)

then γH(G + xy) = γH(G)− 1. Moreover, γH(G + xy) = γH(G) − 1 if and only if at

least one of the following holds:

(i) x ∈ V
−
H

(G) and y is a γH-good vertex of G − x;

(ii) x is a γH-good vertex of G − y and y ∈ V
−
H(G).

P r o o f. Let γH(G + xy) < γH(G) and let M be a γH-set of G + xy. Since H

is hereditary, M is an H-set of G. Further, |{x, y} ∩ M | = 1, otherwise M would

be a dominating H-set of G, a contradiction. Let without loss of generality x 6∈ M

and y ∈ M . Since M is an H-set of G it follows that M is no dominating set of

G, which implies M ∩ N(x, G) = ∅. Hence M1 = M ∪ {x} is a dominating H-

set of G with |M1| = γH(G + xy) + 1, which implies γH(G) = γH(G + xy) + 1.

Since M is a dominating H-set of G − x we have γH(G − x) 6 γH(G + xy). Hence

γH(G) > γH(G−x)+1 and Theorem 2.1 implies γH(G) = γH(G−x)+1. Thus x is

in V
−
H

(G) and M is a γH-set of G−x. Since y ∈ M , y is a γH-good vertex of G− x.

For the converse let without loss of generality (i) hold. Then there is a γH-set M

of G−x with y ∈ M . CertainlyM is a dominating H-set of G+xy and consequently

γH(G + xy) 6 |M | = γH(G − x) = γH(G) − 1 6 γH(G + xy). �

Corollary 3.2. Let x and y be two different and nonadjacent vertices in a graph

G, let H ⊆ G be hereditary and closed under union with K1, and let x ∈ V
−
H(G).

Then γH(G) − 1 6 γH(G + xy) 6 γH(G).

P r o o f. Let M be a γH-set of G−x. If y ∈ GH(G−x) then Theorem 3.1 yields

γH(G) − 1 = γH(G + xy). So, let y ∈ BH(G − x). By Theorem 2.1, M1 = M ∪ {x}
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is a γH-set of G and M1 ∩ N(x, G) = ∅. Hence M1 is a dominating H-set of G + xy

and γH(G + xy) 6 |M1| = γH(G − x) + 1 = γH(G). �

We need the following lemma:

Lemma 3.3. LetH ⊆ G be nondegenerate and closed under union withK1 and let

x be a γ0
H-fixed vertex of a graph G. Then N(x, G) ⊆ BH(G−x)∩(V0

H(G)∪Fi
1

H(G))

and for each y ∈ N(x, G), γH(G − {x, y}) = γH(G).

P r o o f. Let M be a γH-set of G − x and y ∈ N(x, G). If y ∈ M then M is a

dominating H-set of G of cardinality |M | = γH(G − x) = γH(G)—a contradiction

with x ∈ FiH(G). Thus N(x, G) ⊆ BH(G − x). Now by Theorem 2.1 (iv), γH(G −

{x, y}) = γH(G − x) = γH(G). Further, Theorem 2.1(iii) implies y 6∈ V
−
H(G). If

y 6∈ V
0
H(G), from Corollary 2.2(5) it follows that y ∈ Fi

p
H(G) for some p > 1.

Assume p > 2. Since M is a dominating H-set of G − x and M ∩ N(x, G) = ∅ it

follows that M2 = M ∪ {x} is a dominating H-set of G and y 6∈ M2. Hence M2 is a

dominating H-set of G−y. This implies γH(G)+p = γH(G−y) 6 |M2| = |M |+1 =

γH(G − x) + 1 = γH(G) + 1, a contradiction. �

It is a well known fact that γ(G + e) 6 γ(G) for any edge e ∈ G. In general, for

γP this is not valid.

Theorem 3.4. Let x and y be two different and nonadjacent vertices in a graph

G and let H ⊆ G be hereditary and closed under union with K1. Then γH(G+xy) >

γH(G) if and only if no γH-set of G is an H-set of G + xy and one of the following

holds:

(1) x is a γ
p
H
-fixed vertex of G and y is a γ

q
H
-fixed vertex of G for some p, q > 1;

(2) x ∈ Fi
0

H(G) and y ∈ Fi
1

H(G) ∩ BH(G − x);

(3) x ∈ Fi
1

H(G) ∩BH(G − y) and y ∈ Fi
0

H(G);

(4) x, y ∈ Fi
0

H(G), x ∈ BH(G − y) and y ∈ BH(G − x).

P r o o f. Let γH(G + xy) > γH(G). By Corollary 3.2 we have x, y ∈ V
0
H(G) ∪

V
+

H(G). Assume to the contrary that (without loss of generality) x 6∈ FiH(G). Hence

there is a γH-set M of G with x 6∈ M . But then M is a dominating H-set of G + xy

and |M | = γH(G) < γH(G + xy)—a contradiction. Thus both x and y are γH-fixed

vertices of G. This implies that each γH-set M of G is a dominating set of G + xy

but not an H-set of G + xy.

Let x be γ
p
H-fixed, let y be γ

q
H-fixed and without loss of generality, q > p > 0.

Assume (1) does not hold. Hence p = 0. Let M1 be a γH-set of G − x. Then

|M1| = γH(G − x) = γH(G) < γH(G + xy) and y 6∈ M1, for otherwise M1 would be

a dominating H-set of G + xy; thus y is a γH-bad vertex of G − x. By Lemma 3.3,
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N(x, G) ∩ M1 = ∅. Then M1 ∪ {x} is a dominating H-set of G + xy, which implies

γH(G+xy) = γH(G)+1. Since y 6∈ M1∪{x} it follows thatM1∪{x} is a dominating

H-set of G − y and then γH(G) + 1 = |M1 ∪ {x}| > γH(G − y) = γH(G) + q. So,

q ∈ {0, 1}. If q = 1 then (2) holds. If q = 0 then, by symmetry, it follows that x is a

γH-bad vertex of G − y and hence (4) holds.

For the converse, let no γH-set of G be an H-set of G + xy and let one of the

conditions (1), (2), (3) and (4) hold. Assume to the contrary that γH(G + xy) 6

γH(G). By Theorem 3.1, γH(G + xy) = γH(G). Let M2 be a γH-set of G + xy.

Hence |M2 ∩ {x, y}| = 1—otherwise M2 would be a γH-set of G. Let without loss

of generality x 6∈ M2. Then M2 is a dominating H-set of G − x, which implies

γH(G− x) 6 |M2| = γH(G + xy) = γH(G). Thus γH(G− x) = γH(G + xy) = γH(G)

and then M2 is a γH-set of G − x. Hence x is a γ0
H-fixed vertex of G and y is a

γH-good vertex of G − x, which is a contradiction with each of (1)–(4). �

By Theorem 3.1 and Theorem 3.4 we immediately obtain:

Theorem 3.5. Let x and y be two different and nonadjacent vertices in a graphG.

LetH ⊆ G be hereditary and closed under union withK1. Then γH(G+xy) = γH(G)

if and only if at least one of the following holds:

(1) x ∈ V
−
H

(G) ∩ BH(G − y) and y ∈ V
−
H

(G) ∩BH(G − x);

(2) x ∈ V
−
H(G) and y ∈ BH(G − x) − V

−
H(G);

(3) x ∈ BH(G − y) − V
−
H

(G) and y ∈ V
−
H

(G);

(4) x, y 6∈ V
−
H(G) and |{x, y} ∩ FiH(G)| 6 1;

(5) x ∈ Fi
0

H(G) and y ∈ Fi
s
H(G) ∩ GH(G − x) for some s ∈ {0, 1};

(6) x ∈ Fi
s
H(G) ∩GH(G − y) and y ∈ Fi

0

H(G) for some s ∈ {0, 1};

(7) x ∈ Fi
0

H(G) and y ∈ Fi
q
H

(G) for some q > 2;

(8) x ∈ Fi
q
H(G) and y ∈ Fi

0

H(G) for some q > 2;

(9) there is a γH-set of G which is an H-set of G + xy and one of the conditions

(1), (2), (3) and (4) stated in Theorem 3.4 holds.

Corollary 3.6. Let x and y be two different and nonadjacent vertices in a graph

G. Let H ⊆ G be hereditary and closed under union with K1. If x ∈ BH(G) then

γH(G + xy) = γH(G).

P r o o f. By Theorem 2.1 (iv), x 6∈ V
−
H(G). If y 6∈ V

−
H(G) then the result follows

by Theorem 3.5(4). If y ∈ V
−
H(G) then by Theorem 2.1 (i.2) we have x ∈ BH(G−y)

and the result now follows by Theorem 3.5(3). �

Let µ ∈ {γ, γc, i}. A graph G is edge-µ-critical if µ(G + e) < µ(G) for every edge

e not belonging to G. These concepts were introduced by Sumner and Blitch [17],

Xue-Gang Chen et al. [3] and Ao and MacGillivray [9, Chapter 16], respectively.
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Here we define a graph G to be edge-γP -critical if γP(G + e) 6= γP(G) for every

edge e of G, where P ⊆ G is hereditary and closed under union with K1. Relating

edge addition and vertex removal, Sumner and Blitch [17] and Ao and MacGillivray

showed that V+

P
(G) is empty for P ∈ {G, I}, respectively. Furthermore, Favaron

et al. [4] showed that if V0
G(G) 6= ∅ then

〈

V
0
G(G), G

〉

is complete. In general, for

edge-γP-critical graphs the following holds.

Theorem 3.7. Let H ⊆ G be hereditary and closed under union with K1 and let

G be an edge-γH-critical graph. Then

(1) V (G) = Fi
−1

H (G) ∪ FrH(G) and if Fr
0

H(G) 6= ∅ then
〈

Fr
0

H(G), G
〉

is complete;

(2) γH(G + e) < γH(G) for every edge e not belonging to G.

P r o o f. (1) If x, y ∈ Fr
0

H(G) and xy 6∈ E(G) then Theorem 3.5(4) implies

γH(G + xy) = γH(G), a contradiction. If x ∈ BH(G) then Corollary 3.6 implies

N [x, G] = V (G) and hence {x} is a γH-set of G—a contradiction. Assume x ∈

Fi
q
H(G) for some q > 0. LetM be any γH-set of G. By Corollary 1.3, pnG[x, M ] 6= ∅.

If pnG[x, M ] = {x} then M −{x} dominates G−x, so x ∈ V
−
H

(G)—a contradiction.

Hence there is y ∈ pnG[x, M ]−{x}. Since pnG[x, M ]∩V
−
H(G) = ∅ (by Theorem 2.1

(iii)), BH(G) = ∅ and y 6∈ M , it follows that y ∈ Fr
0

H(G). Let M1 be a γH-set of G

and y ∈ M1. Then there is z ∈ (pnG[x, M1] − {x}) ∩ Fr
0

H(G). Hence y, z ∈ Fr
0

H(G)

and yz 6∈ E(G)—a contradiction. Thus FiH(G) = Fi
−1

H (G) and the result follows.

(2) This immediately follows by (1) and Theorem 3.4. �
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