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GRAPHS ISOMORPHIC TO THEIR PATH GRAPHS
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Abstract. We prove that for every number n � 1, the n-iterated P3-path graph of G is
isomorphic to G if and only if G is a collection of cycles, each of length at least 4. Hence,
G is isomorphic to P3(G) if and only if G is a collection of cycles, each of length at least 4.
Moreover, for k � 4 we reduce the problem of characterizing graphs G such that Pk(G) ∼= G
to graphs without cycles of length exceeding k.
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1. Introduction

Let G be a graph, k � 1, and let Pk be the set of paths of length k in G. The
vertex set of a path graph Pk(G) is the set Pk. Two vertices of Pk(G) are joined by

an edge if and only if the edges in the intersection of the corresponding paths form
a path of length k − 1 in G, and their union forms either a cycle or a path of length

k+1. It means that the vertices are adjacent if and only if one can be obtained from
the other by “shifting” the corresponding paths in G.

Path graphs were investigated by Broersma and Hoede in [2] as a natural general-
ization of line graphs, since P1(G) is the line graph L(G) of G (for further connections

to line graphs see [6]). Traversability of P2-path graphs is studied in [9], and a char-
acterization of P2-path graphs is given in [2] and [7]. Distance properties of path

graphs are studied in [1], [3] and [5], and in [4] graphs with connected P3-path graphs
are characterized.
When a new function on graphs appears, one of the very first problems is to

determine the fixed points of the function, i.e., graphs that are isomorphic to their
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images. It is well known (and trivial to prove) that a connected graphG is isomorphic

to its line graph L(G) if and only if G is a cycle.
In [2] it is proved that a connected graph G is isomorphic to its P2-path graph if

and only if G is a cycle. We remark that Pk(G) is not necessarily a connected graph
if G is connected and k � 2. However, slight modifications of the proof in [2] give
rise to the following theorem:

Theorem A. Let G be a graph isomorphic to P2(G). Then each component of
G is a cycle.

However, even stronger theorem follows from [5]. Let P i
k(G) denote the i-iterated

Pk-path graph of G, i.e., P i
k(G) = Pk(P

i−1
k (G)) if i > 0, and P 0k (G) = G. We have

Theorem B. Let G be a graph and n a number, n � 1, such that G is isomorphic
to Pn

2 (G). Then each component of G is a cycle.

By now, only a little is known about Pk-path graphs for k � 3. In [8] Li and Zhao
proved the following theorem:

Theorem C. Let G be a connected graph isomorphic to P3(G). Then G is a

cycle of length greater than or equal to 4.

In this paper we generalize Theorem C to an analogue of Theorem A for P3-path

graphs:

Theorem 1. Let G be a graph isomorphic to P3(G). Then each component of
G is a cycle of length greater than or equal to 4.

In fact, we prove more. We prove an analogue of Theorem B for P3-path graphs:

Theorem 2. Let G be a graph and n a number, n � 1, such that G is isomorphic
to Pn

3 (G). Then each component of G is a cycle of length greater than or equal to 4.

We remark that the proof of Theorem C in [8] is analogous to the proof of Theo-

rem A (in a weaker form) in [2], and since it is based on some counting arguments,
it is not clear how to extend it to the proof of Theorem 2. In fact, our approach to
the problem is completely different.

At present, we are not able to generalize Theorem 1 to Pk-path graphs for k � 4.
The problem seems to be too complicated in general; for a solution for graphs in
which every component contains a “large” cycle see Lemma 3. Thus, for k � 4 it
may be useful to start with trees, see also Corollary 6. However, even for trees the
problem appears to be hard. In this connection we pose the following
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Problem. Does there exist a tree T and a number k, k � 4, such that P i
k(T ) is

a nonempty forest for every i � 0?

If such a tree does not exist, then Pk(G) � G for every number k and a forest G.

(We remark that the problem is trivial for k = 1; for k = 2 it is solved negatively in
[5]; and for k = 3 it is solved negatively by Lemma 7.)

In the next two sections we prove Theorem 2. In Section 2 we present some general
results for Pk-path graphs when k � 2, and Section 3 is devoted to P3-path graphs

of trees.

2. General results

We use standard graph-theoretic notation. Let G be a graph. The vertex set and

the edge set of G, respectively, are denoted by V (G) and E(G). If v is a vertex of G
then degG(v) denotes the degree of v in G. For two subgraphs, H1 and H2 of G, we

denote by H1 ∪H2 the union of H1 and H2 in G, and by H1 ∩H2 their intersection.
A path and a cycle, respectively, of length l are denoted by Pl and Cl.

For easier handling of paths of length k in G (i.e., the vertices of Pk(G)) we make
the following agreement. We denote the vertices of Pk(G) (as well as the vertices

of G) by small letters a, b, . . ., while the corresponding paths of length k in G are
denoted by capital letters A, B, . . .. It means that if A is a path of length k in G

and a is a vertex in Pk(G), then a must be the vertex corresponding to the path A.
Throughout this section, the symbol k is used for the length of paths producing

the path graph. I.e., we consider here only Pk-path graphs, k � 2. By a large cycle
we mean a cycle of length greater than k. A cycle whose length does not exceed k is

a small cycle.

Lemma 3. Let G be a graph such that Pn
k (G) ∼= G for some n � 1 and k � 2.

Then every component of G containing a large cycle is isomorphic to a single cycle.

�����. If C is a large cycle then Pk(C) ∼= C, and hence Pn
k (C) ∼= C, too. As

Pn
k (G) ∼= G, all large cycles in Pn

k (G) are images of large cycles in G.

If a and b are adjacent vertices in Pk(G), then A and B share a path of length
k − 1. This implies that if C is a large cycle in G, then Pk(C) does not contain a

chord in Pk(G), and hence, Pn
k (C) does not contain a chord in Pn

k (G), either. Since
the number of large cycles in G is equal to the number of large cycles in Pn

k (G), no

large cycle contains a chord in G.
Suppose that there is a large cycle in G with a vertex incident to an edge outside

this cycle. For every large cycle C, let IG(C) denote the total number of edges
outside C that are incident to a vertex of C. As C does not contain a chord,
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IPk(G)(Pk(C)) = 2 · IG(C), and IP n
k (G)
(Pn

k (C)) = 2
n · IG(C). Let I(G) denote the

maximum value of IG(C), where C is a large cycle in G. Then I(Pn
k (G)) = 2

n ·I(G).
Since I(G) > 0, Pn

k (G) is not isomorphic to G. �

Lemma 4. Every small cycle in Pk(G) has an even length.

�����. Let C = (a1, a2, . . . , al) be a small cycle of length l in Pk(G), l � k. If

u and v are adjacent vertices in Pk(G), then U and V share a path of length k − 1.
Since l � k, A1, A2, . . . , Al share a path P of length t � k − (l − 1) � 1 in G. Let

P = (p0, p1, . . . , pt).
Assume that A1 = (a1,0, a1,1, . . . , a1,k), . . . , Al = (al,0, al,1, . . . , al,k) are denoted

so that for every i, 1 � i � l, we have i0 < it, where ai,i0 = p0 and ai,it = pt. Then
i0 and (i + 1)0 have different parity, 1 � i < l. As (a1, a2, . . . , al) forms a cycle, 10
and l0 have different parity, too, and hence l is even. �

We remark that Lemma 3 and Lemma 4 reduce the examination of graphs G for

which Pn
k (G) ∼= G, to graphs without large cycles and without odd small cycles.

Hence, to complete the proof of Theorem 2 it remains to study forests.

Definition. A tree �t is obtained from a clawK1,3 subdividing each edge of K1,3
by t − 1 vertices, see Figure 1 for �3. A tree �t1,t2 is obtained from two paths of
length 2t1 central vertices of which are joined by a path of length t2, see Figure 2
for �1,2 and Figure 3 for �2,1.
�3:
�
�1,2:
�
�2,1:
�

Figure 1 Figure 2 Figure 3

It is easy to see that Pk(�k) = C3k and Pk(�t,k−t) contains C4t, 1 � t < k. Thus,
Pk-path graphs of trees containing a copy of �k or �t,k−t contain cycles. The next

lemma shows a converse.

Lemma 5. If T is a tree such that Pk(T ) contains a cycle, then T contains either�k or �t,k−t, 1 � t < k.

�����. Only for this proof we define the notion of a turning path (see also

[1]). Let (x0, x1, . . . , xl−1) be a closed walk of length l in Pk(G). Then for every
i, 0 � i < l, the edges of Xi−1 ∩ Xi form a path of length k − 1 (the indices are
modulo l). A path Xi is a turning path if and only if the edges of Xi−1 ∩Xi ∩Xi+1

form a path of length k − 1, too.
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Let T be a tree, and let C = (a0, a1, . . . , al−1) be a cycle of length l in Pk(T ).

Since T is a tree, there are at least two turning paths among A0, A1, . . . , Al−1. Let
Ai1 and Ai2 be turning paths such that t = [(i2 − i1)mod l] is the smallest possible.
Then Ai1 ∪Ai1+1 ∪ . . .∪Ai2 forms a path of length k+ t (the indices are modulo l).

If t � k, then Ai1−t ∪Ai1−t+1 ∪ . . .∪Ai1 forms another path of length t+ k, since
Ai1−t+1, Ai1−t+2, . . . , Ai1−1 are not turning paths. As Ai1−1 �= Ai1+1, T contains �k.
Thus, suppose that t < k. Since t < k, Ai1 and Ai2 share a path P =

(p0, p1, . . . , pl′) of length l′ = k−t. Assume that Ai1 = (bt, bt−1, . . . , b1, p0, p1, . . . , pl′)

andAi2 = (p0, p1, . . . , pl′ , c1, c2, . . . , ct). ThenAi1∪Ai1+1∪. . .∪Ai2 = (bt, bt−1, . . . , b1,

p0, p1, . . . , pl′ , c1, c2, . . . , ct). Since t is the smallest possible distance between ver-

tices of C corresponding to turning paths, we have Ai1−t ∪ Ai1−t+1 ∪ . . . ∪ Ai1 =
(bt, bt−1, . . . , b1, p0, p1, . . . , pl′ , d1, d2, . . . , dt), where d1 �= c1, and Ai2 ∪ Ai2+1 ∪ . . . ∪
Ai2+t = (et, et−1, . . . , e1, p0, p1, . . . , pl′ , c1, c2, . . . , ct), where e1 �= b1. As T is a tree
and l′ = k − t, T contains �t,k−t. �

By Lemma 5 and the note before it, we have

Corollary 6. Let T be a tree. Then Pk(T ) contains a cycle if and only if T

contains either �k or �t,k−t, 1 � t < k.

3. P3-path graphs

Definition. A caterpillar is a tree T with a path P = (v0, v2, . . . , vl), such that
the eccentricity of vi is at most 2 in the component of T − E(P ) containing vi,

0 � i � l. A 3-caterpillar T is a caterpillar with a path P = (v0, v2, . . . , v3r) such
that degT (vi) = 2 if 0 < i < 3r and i �= 3j. The vertices v3j are called the basic

vertices of a 3-caterpillar, 0 � j � r.

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

T

�
v′0 v′1 v′2 v′3 v′4 v′5 v′6

T ′

�
Figure 4

In Figure 4 we have a 3-caterpillar T with 4 basic vertices v0, v3, v6 and v9. We

remark that usually, the term caterpillar is used for a bit different tree. However, in
this paper we use this notion only for the graph defined in the preceding definition.

Let G be a forest such that Pn
3 (G) ∼= G for some n � 1. By Lemma 4, every cycle

in P3(G) is a large cycle. Thus, G does not contain �3, �1,2 or �2,1 by Corollary 6,
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as otherwise Pn
3 (G) contains a large cycle. In particular, since G does not contain�3, it is a disjoint union of caterpillars.

Lemma 7. Let T be a caterpillar such that P i
3(T ) is a forest for every i � 0.

Then there is j such that P j
3 (T ) is an empty graph.

�����. Let T be a caterpillar such that P i
3(T ) does not contain a cycle for

every i � 0. If the diameter of T is at most 4, then P3(T ) does not contain a path

of length 3 (recall that T does not contain �1,2), so that P 23 (T ) is an empty graph.
Hence, assume that the diameter of T is at least 5.

If G is a tree, then at most one nontrivial component of P3(G) is different from

a complete bipartite graph, see [4, Corollary 5]. Since the diameter of a complete
bipartite graph is at most two, at most one nontrivial component of P3(T ) is a
caterpillar containing a path of length 3. Hence, in what follows it is enough to

consider this unique “large” caterpillar of P3(G).

Let T be a 3-caterpillar with a path P = (v0, v1, . . . , v3r) denoted as in the defin-
ition above. Then T has exactly r + 1 basic vertices. Let V ′

i = (vi, vi+1, vi+2, vi+3),

0 � i � 3r − 3. Then the (large) caterpillar T ′ of P3(T ) is a 3-caterpillar with a
path P ′ = (v′1, v

′
2, . . . , v

′
3r−3) with exactly r basic vertices, see Figure 4. Hence, the

caterpillar of P r
3 (T ) is a 3-caterpillar with a unique basic vertex, so that P r+2

3 (T ) is
an empty graph.

To prove the lemma it is enough to concentrate on caterpillars that are not 3-
caterpillars. These caterpillars T ∗ contain a pair of vertices u∗1 and u∗2 at a distance

either 3j + 1 or 3j + 2 such that degT∗(u∗1) � 3 and degT∗(u∗2) � 3. Moreover,
if the distance from u∗1 to u∗2 is 3j + 1 and Q∗ is a path joining u∗1 with u∗2, then

the eccentricity of u∗i in the component of T ∗ − E(Q∗) containing u∗i is at least 2,
i ∈ {1, 2}. In what follows consider the caterpillar T of P j

3 (T
∗). By our assumption,

T is not a 3-caterpillar and it contains two vertices u1 and u2 at a distance either
1 or 2 such that degT (u1) � 3 and degT (u2) � 3. Moreover, if u1u2 ∈ E(G) then

the eccentricity of ui in the component of T − {u1u2} containing ui is at least 2,
i ∈ {1, 2}.
If u1 and u2 have distance 2 then T contains �1,2, so that P3(T ) contains a large

cycle.

Now consider a caterpillar T with u1u2 ∈ E(T ). Let Co(u1) and Co(u2) be

components of T − {u1u2} containing u1 and u2, respectively. As mentioned above,
the eccentricities of u1 and u2 in these components are at least 2. However, if both

of them exceed 2, then P3(T ) contains �1,2.
Thus, suppose that the eccentricity of u1 in Co(u1) is exactly 2. Then Co(u1)

consists of at most 2 paths of length 2 rooted in u1 and of some edges incident
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with u1. Otherwise T contains �1,2 or P3(T ) contains �3. Moreover, as iterated P3-

path graphs of T do not contain �1,2, the distance from u2 to u is 3j if u ∈ V (Co(u2))
and degT (u) � 3.
We distinguish two cases.

���� 1: There are exactly two paths of length 2 rooted in u1.
If the eccentricity of u2 is at least 5 in Co(u2), then P3(T ) contains �3. On the

other hand, if the eccentricity of u2 is at most 4 in Co(u2), then the caterpillar T ′

of P3(T ) is a 3-caterpillar, or P3(T ) contains �1,2, see Figure 5. (We remark that
U ′ = (u1, u2, u3, u4). Extra edges that are possibly in T or in T ′, are represented by
halfedges in Figure 5.)

u1 u2 u3 u4

T

�
u′

T ′

�
Figure 5

u1 u2 u3 u4 u5 u6 u7

uT	
u′2 u′1

T ′

Figure 6

���� 2: There is exactly one path of length 2 rooted in u1.

Let (u2, u3, . . . , uk) be a longest path of Co(u2) rooted in u2. Denote by T ′ the
caterpillar of P3(T ), U ′

2 = (u1, u2, u3, u4) and U ′
1 = (u2, u3, u4, u5) (if u5 exists),

see Figure 6. Let Co(u′1) and Co(u
′
2) be defined analogously to Co(u1) and Co(u2)

above.

If the eccentricity of u2 is at least 6 in Co(u2) (i.e., if k � 8), then the eccentricities
of u′1 and u′2 are greater than 2 in Co(u

′
1) and Co(u

′
2), respectively. Hence, P

2
3 (T )

contains �1,2, a contradiction.
If the eccentricity of u2 is at most 2 in Co(u2) (i.e., if k = 4), then T ′ is a 3-

caterpillar (recall that T ′ does not contain �1,2).
Let u be a vertex adjacent to u2, u �= u3, such that degT (u) = 2, see Figure 6. If

k = 7 then T ′ is of the type already solved in Case 1, and if 5 � k � 6 then T ′ is
of the type from Case 2 and all (but one) neighbours of u′2 have degree 1 in Co(u

′
2).

Hence, we may assume that all neighbours of u2 (except u3) have degree 1 in Co(u2).
Now if k = 7 then T ′ is of the type from Case 2 with the eccentricity of u′2 exactly

3 in Co(u′2), and if 5 � k � 6 then T ′ is a 3-caterpillar. �

By Lemma 7, for every caterpillar T there is a number t such that P t
3(T ) is an

empty graph or P t
3(G) contains a large cycle. Thus, for every n, n � 1, we have

Pn
3 (G) � G if G is a forest, which completes the proof of Theorem 2.
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