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Abstract. We obtain a simple construction for particular subclasses of several varieties
of lattice expansions. The construction allows a unified approach to the characterization of
the subdirectly irreducible algebras
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1. Introduction

In [5], C. Chen and G.Grätzer introduced a method of construction of Stone lat-

tices from Boolean algebras and distributive lattices. This was a construction by
means of the so-called “triples” which were successfully used in constructions of dis-

tributive p-algebras [11], pseudocomplemented semilattices [10] and K2-algebras (a
subvariety of MS-algebras) [3], [12], [8].

In this article we first obtain a simple construction for particular subclasses of

several varieties, including Ockham algebras with De Morgan skeleton,MS-algebras,
demi-p-lattices, p-algebras, Stone lattices and semi-De Morgan algebras (Section 3).
The construction allows a unified approach to the characterization of the subdirectly

irreducible algebras (Section 4). In Section 5 we generalize this construction. Several
examples illustrate the results.
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2. Preliminaries

For notation and assumed results about lattice theory we refer the reader to [1].

Let L be a lattice expansion. ∇L is the universal congruence on L and ∆L is the
trivial congruence on L. Con(L) denotes the congruence lattice of L. By θ(x, y) we
denote the principal congruence relation generated by the pair (x, y) ∈ L2. We use
θlat(x, y) to denote the principal lattice congruence generated by (x, y).
We are interested in several subvarieties of the variety of semi-De Morgan algebras,

introduced by Sankappanavar in [15]. A semi-De Morgan algebra is an algebra
〈L,∧,∨,∗ , 0, 1〉 satisfying:
〈L,∧,∨, 0, 1〉 is a distributive lattice with 0 and 1,
(C1) (x ∨ y)∗ = x∗ ∧ y∗,

(C2) (x ∧ y)∗∗ = x∗∗ ∧ y∗∗,

(C3) 0∗ = 1,
(C4) 1∗ = 0,
(C5) x∗∗∗ = x∗.

A semi-De Morgan algebra L is a distributive demi-pseudocomplemented lattice
(demi-p-lattice, for brevity) if L satisfies x∗ ∧x∗∗ = 0.We refer the reader to [14] for

the basic properties of demi-p-lattices. A demi-p-lattice L is a distributive p-algebra

if L satisfies the condition x ∧ a = 0 iff a 6 x∗. A distributive p-algebra is a Stone

algebra if it satisfies the identity x∗ ∨ x∗∗ = 1.
On the other hand, a semi-De Morgan algebra L is anOckham lattice with De Mor-

gan skeleton [2] if it satisfies the equation (x ∧ y)∗ = x∗∨y∗. This variety is denoted
by K1,1. If, in addition, L satisfies x 6 x∗∗, then L is called anMS-algebra. We refer

the reader to [3] and [4] for the basic properties of MS-algebras. An MS-algebra
is a De Morgan algebra if x = x∗∗ for every x ∈ L. We recall that the subdirectly

irreducible De Morgan algebras are 2, 3, and M0, where n is the chain of n ele-
ments for n = 2, 3, and M0 is the algebra with universe 2 × 2 and (0, 0)∗ = (1, 1),
(0, 1)∗ = (0, 1), (1, 0)∗ = (1, 0), (1, 1)∗ = (0, 0).
Let L be a semi-De Morgan algebra. Let S (L) = {x∗ : x ∈ L} = {x : x = x∗∗}, the

skeleton of L, and also let Gz = {x ∈ L : x∗ = z∗} for z ∈ L. The skeleton S (L) can
be made into a De Morgan algebra 〈S (L) , ∨̇,∧,∗ , 0, 1〉 by defining a∨̇b = (a ∨ b)∗∗.
Note that the map x → x∗∗ from L to S (L) is an onto homomorphism. We denote
by γL the kernel of this homomorphism. Note that if θ is a lattice-congruence and
θ ⊆ γL then θ ∈ Con(L).
If |Gx| 6 2 for every x ∈ L, then we say that L is 2-regular. The following

definition was given in [6, Section 5]. If C ⊆ L is the finite chain x1 < x2 < . . . < xn,

then let

nL,C = |{1 6 i < n : x∗i = x∗i+1}|.
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If {nL,C : C ⊆ L is a finite chain} has a maximum, then we denote it by nL. Clearly,

if nL = 1, then L is 2-regular and nL = 0 if and only if γL = ∆L.

Lemma 1. Let L be a (finitely) subdirectly irreducible semi-De Morgan algebra.

Then nL 6 1.
���������

. If x < y 6 v < z and (x, y), (v, z) ∈ γL, we claim that σ = θlat(x, y) ∩
θlat(v, z) is the trivial congruence∆L. (Note that since σ ⊆ γL we have σ ∈ Con(L)).
Let (a, b) ∈ σ. Then

a ∧ x = b ∧ x, a ∨ y = b ∨ y and a ∧ v = b ∧ v, a ∨ z = b ∨ z

(see [7, II. 3, Theorem 3]). Since y 6 v we have a ∧ y = b ∧ y. By the cancelation
property for distributive lattices, a = b. �

We conclude the section by observing that if L is a semi-De Morgan algebra

satisfying nL 6 1 then for every x ∈ L we have that either x∗∗ > x or x∗∗ 6 x.

3. A simple quadruple construction

A 2-quadruple will be a tuple (M, I, F, η), where
(1) M is a De Morgan algebra.

(2) I (resp.F ) is an ideal (filter) of M satisfying I ∪ F = M and I ∩ F 6= ∅.
(3) η is a proper filter of M satisfying M − I ⊆ η ⊆ F .
We associate to each 2-quadruple T = (M, I, F, η) an algebra of type (2, 2, 1, 0, 0),

denoted by LT , with universe

LT = ((I − F )× {0}) ∪ ((I ∩ F )× 2) ∪ ((F − I)× {1}) ,

defined by the following conditions:

(a) LT is a sublattice of M × 2,

(b) (a, i)∗ =

{
(a∗, 1) a∗ ∈ η

(a∗, 0) a∗ /∈ η.
For simplicity we also denote by η the map from M to 2 defined by the condition

η(a) = 1 ⇔ a ∈ η. So, (a, i)∗ can be defined as (a∗, η(a∗)). If we conceive of η as

a map, then the condition (3) takes the following form, which will be occasionally
used:

(3′) η is a {0, 1,∧}-preserving map from M to 2 satisfying η(x) = 0 for every
x ∈ I − F , and η(x) = 1, for every x ∈ F − I .
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Lemma 2. Let T = (M, I, F, η) be a 2-quadruple. Then LT is a semi-De Morgan

algebra satisfying nLT = 1 and S (LT ) ∼= M .
���������

. That LT is a distributive lattice follows from (a). The conditions (C1)

and (C2) can be easily checked. Conditions (C3) and (C4) hold because η is a {0, 1}-
preserving map. (C5) follows from the fact that M is a De Morgan algebra. We

prove now that S(LT ) ∼= M . Clearly S (LT ) = {(a, η(a)) : a ∈ M}. We check now
that a → (a, η(a)) is a De-Morgan isomorphism from M to S(LT ). It is trivial that
this map is a one-to-one {0, 1,∧}-homomorphism. By the definition of LT , the map
is onto. Moreover,

a ∨ b → (a ∨ b, η(a ∨ b)) = ((a ∨ b)∗∗, η((a ∨ b)∗∗)) ,

because M is a De Morgan algebra. But

((a ∨ b)∗∗, η((a ∨ b)∗∗)) = ((a ∨ b)∗∗, i)∗∗

for every i such that ((a ∨ b)∗∗, i) ∈ LT . Take i = η(a) ∨ η(b) to conclude that the
above map preserves ∨.
Finally, nLT = 1 follows from the fact that ((a, i), (b, j)) ∈ γLT iff a = b. �

Note that different 2-quadruples can generate isomorphic algebras. For instance,
consider the 2-quadruples

T1 = (M0, M0, {(0, 1), (1, 1)}, {(0, 1), (1, 1)}),
T2 = (M0, M0, {(1, 0), (1, 1)}, {(1, 0), (1, 1)}).

Both the 2-quadruples generate the only (up to isomorphism) MS-algebra having

lattice reduction 2× 3 and skeleton M0. However, the representation is unique up
to isomorphisms of 2-quadruples.

Definition 3. The 2-quadruples T = (M, I, F, η) and T ′ = (M ′, I ′, F ′, η′) are
isomorphic if there exists an isomorphism α : M → M ′ such that I ′ = α(I), F ′ =
α(F ) and η′ = α(η).

Lemma 4. Let L be a semi-De Morgan algebra satisfying nL = 1. Then there
exists (up to isomorphism) only one 2-quadruple T = (M, I, F, η) such that LT

∼= L.
���������

. Let T = (S(L), (S] , [S) , η)1, S = {a ∈ S(L) : |Ga| = 2} and

η = {a ∈ S(L) : a is the top element of Ga and a > b for some b ∈ S} .

1 [S) is the set of x such that x > s for some s ∈ S. In a similar manner (S] is defined.
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We claim that S is a subalgebra of S(L). Suppose that |Ga| = |Gb| = 2, a 6= b. If

a < b then |Ga∧b| = |Ga| = 2 and |Ga∨b| = |Gb| = 2. Suppose that a and b are
not comparable. It is left as an exercise to the reader to check that |Ga∧b| = 1 or
|Ga∨b| = 1 implies that the sublattice generated by Ga∪Gb is not distributive, which

is a contradiction. Thus the claim follows. Consequently, (S] (resp. [S)) is an ideal
(filter) of S(L). Let ϕ = [η)L be the filter on L generated by η. Define f : L → LT

by f(x) = (x∗∗, 1) if x ∈ ϕ, and f(x) = (x∗∗, 0) if x /∈ ϕ. That f is 1 − 1 follows
from the fact that if (a, b) ∈ γL and a, b ∈ ϕ then a = b. This is a consequence of

the fact that
∧

Gx /∈ ϕ if |Gx| = 2. Finally, f is onto because f(
∧

Ga) = (a, 0) and
f(

∨
Gb) = (b, 1) for every a ∈ I and b ∈ F . In order to check the case a ∈ I , use the

fact that if |Gx| = 1, |Gy| = 2 and x < y then x /∈ ϕ (if not we contradict the fact
that nL = 1). The rest of the lemma is easy to check. �

Lemma 5. Let T = (M, I, F, η) be a 2-quadruple. Then
(i) LT is an Ockham lattice with De Morgan skeleton iff η is a prime filter.

(ii) LT is an MS-algebra iff η is a prime filter and F = η.

(iii) LT is a demi-p-lattice iff M is a Boolean algebra.

(iv) LT is a p-algebra iff M is a Boolean algebra, I = M and η = F .

(v) LT is a Stone algebra iffM = I is a Boolean algebra and η = F is a prime filter.
���������

. Use the following facts: (a) η is a prime filter iff LT satisfies the De-

Morgan laws. (b) F = η iff LT satisfies x 6 x∗∗ for every x ∈ LT . (c)M is a Boolean
algebra iff LT satisfies the equation x∗ ∧ x∗∗ = 0. In order to prove (iv), note that a
p-algebra is a demi-p-lattice satisfying x 6 x∗∗ for every x. �
�����! ���"#�%$

. The 2-quadruples of the right-hand side of (i) of Lemma 5 (resp. (ii),
(iii), (iv) and (v)) will be called K1,1-tuples (resp.MS-tuples, demi-p-tuples, p-tuples
and Stone tuples).

For instance, in the following table we show a set of non isomorphic 2-quadruples

generating allMS-algebras with S(L) ∈ {2,3,M0} and nL = 1. Here a is the middle
element of the chain 3. In the next section we will show that these 2-quadruples are
exactly those corresponding to the subdirectly irreducible MS-algebras that are not
De Morgan algebras.

2-quadruple T

(2,2,{1}, {1})
(3,3,{1}, {1})

(3,{0, a},{a, 1}, {a, 1})
(3,3,{a, 1}, {a, 1})

(M0, M0, {(0, 1), (1, 1)}, {(0, 1), (1, 1)})

lattice reduction of LT

3

4

4

1⊕ (2× 2)

3× 2
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On the other hand, if n represents the chain of n elements and n > 4, then
an algebra L with lattice reduction n and skeleton 3 can not be represented by a
2-quadruple, because nL > 1.

4. Subdirectly irreducible algebras

Let V be any of the varieties from Lemma 5. By Lemmas 1 and 3.3, in order
to give a complete characterization of the (finitely) subdirectly irreducible members

of V , it is sufficient to determine the class of V-tuples T such that LT is (finitely)
subdirectly irreducible. In this section we do this for each of those varieties, and also

for the class of all semi-De Morgan algebras.
The classes of subdirectly irreducible of the above mentioned varieties were deter-

mined by the following authors:
p-algebras: Lakser, [13],

demi-p-lattices: Sankappanavar, [14],
MS-algebras: Blyth and Varlet, [3],

semi-De Morgan algebras (topological characterization): Hobby, [9].
The following theorem follows from [6, Theorem 5.6].

Theorem 6. Let T = (M, I, F, η) be a 2-quadruple. LT is a (finitely) subdirectly

irreducible semi-De Morgan algebra if and only if for every chain a < b in M there

exist c, d ∈ M satisfying either (c ∨ a) ∧ d /∈ η and (c ∨ b) ∧ d ∈ η, or (c ∨ b∗) ∧ d /∈ η

and (c ∨ a∗) ∧ d ∈ η.

Corollary 7. (i) Let T = (M, I, F, η) be a 2-quadruple such that η is a prime

filter. Then LT is (finitely) subdirectly irreducible if and only if M ∈ {2,3,M0}.
(ii) Let T = (M, I, F, η) be a 2-quadruple such thatM is a Boolean algebra. Then

LT is (finitely) subdirectly irreducible if and only if η = {1}.
���������

. (i) The “if” part follows from a simple computation, by checking that

γLT is a monolite of the congruence lattice of LT . Suppose that LT is a finitely
subdirectly irreducible semi-De Morgan algebra. Using Theorem 6 and the fact that

η is a prime filter, it can be checked that
(a) for every a 6 b, if η(a) = η(b) and η(a∗) = η(b∗) then a = b. Let a ∈ M−{0, 1} .

We claim that η(a∧a∗) = η(a∨a∗). Suppose not. Thus η(a∧a∗) = 0 and η(a∨a∗) = 1.
Thus, for some b ∈ {a, a∗}, we have η(b) = 0 and η(b∗) = 1. By (a), b = 0, which
is a contradiction. Thus we have the claim. Consequently, a = a∗. Since the map
a → a∗ from S (L) to S (L) is an anti-isomorphism, we have S(L) ∈ {2,3,M0}.
(ii) Let LT be subdirectly irreducible and suppose that a ∈ η. Since a ∧ a∗ = 0

and η is a proper filter, we have a∗ /∈ η. If a 6= 1, then, by Theorem 6, there exist
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c, d ∈ M such that either (c ∨ a) ∧ d /∈ η and (c ∨ 1) ∧ d ∈ η, or (c ∨ 1∗) ∧ d /∈ η

and (c ∨ a∗) ∧ d ∈ η. That (c ∨ a) ∧ d /∈ η and (c ∨ 1) ∧ d ∈ η is impossible, because
η is a filter and a ∈ η. Suppose that (c ∨ 1∗) ∧ d /∈ η and (c ∨ a∗) ∧ d ∈ η. Then
c ∧ d > c ∧ d ∧ a = a ∧ (c ∨ a∗) ∧ d ∈ η, which is a contradiction. Hence a = 1.
Suppose now that η = {1}, and let a < b. We will check the condition of The-

orem 6. Suppose that a < b. Since a ∨ b∗ 6= 1, we have (b∗ ∨ a) ∧ 1 /∈ η and

(b∗ ∨ b) ∧ 1 ∈ η. �

Corollary 8. Let T = (M, I, F, η) be a 2-quadruple.
(i) LT is a (finitely) subdirectly irreducible Ockham lattice with De Morgan skele-

ton iff η is a prime filter and M ∈ {2,3,M0}.
(ii) LT is a (finitely) subdirectly irreducible MS-algebra iff η is a prime filter,

F = η and M ∈ {2,3,M0}.
(iii) LT is a (finitely) subdirectly irreducible demi-p-lattice iff M is a Boolean

algebra and η = {1}.
(iv) LT is a (finitely) subdirectly irreducible p-algebra iff M is a Boolean algebra,

I = M and η = F = {1}.
(v) LT is a (finitely) subdirectly irreducible Stone algebra iff M = I = 2 and

η = F = {1}2.

5. A general construction

In this section we extend the construction from Section 4 to the class of all semi-

De Morgan algebras such that nL is finite. In this Section we omit the proofs of
the results. If N is a finite distributive lattice, then by I(N) we denote the set of
intervals of N , that is,

I(N) = {Ia,b : a, b ∈ N, a 6 b},

where Ia,b = {x ∈ N : a 6 x 6 b}. The set I(N) can be made into a lattice by
defining Iu,v 6 Iw,r iff for every x,

x ∈ Iu,v implies x ∨ w 6 r.

It is easy to check that

Ia,b ∧ Ic,d = Ia∧c,b∧d,

Ia,b ∨ Ic,d = Ia∨c,b∨d.

2 This determines the chain of three elements, the only s.i. proper 2-regular Stone algebra.
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A quadruple will be a tuple (M, N, ϕ, η), where
(1) M is a De Morgan algebra and N is a finite distributive lattice.

(2) ϕ : M → I(N) is a lattice homomorphism satisfying 0 ∈ ϕ(0), 1 ∈ ϕ(1) and
that for every s, t ∈ N such that t covers s there exists a ∈ M with s, t ∈ ϕ(a).

(3) η is a {0, 1,∧}-preserving map from M to N such that η(a) ∈ ϕ(a) for every
a ∈ M .

We will occasionally use l(a) and u(a) to denote the elements of N satisfying that
ϕ(a) = Il(a),u(a). We associate with each quadruple T = (M, N, ϕ, η) an algebra of
type (2, 2, 1, 0, 0), denoted by LT , with universe LT = {(a, t) : t ∈ ϕ(a)}, defined by
the following conditions:

(a) LT is a sublattice of M ×N ,

(b) (a, i)∗ = (a∗, η(a∗)).

Definition 9. Two quadruples T = (M, N, ϕ, η), T ′ = (M ′, N ′, ϕ′, η′) are iso-
morphic if there exist isomorphisms α : M → M ′ and β : N → N ′ such that
ϕ′(α(a)) = β(ϕ(a)) and η′(α(a)) = β(η(a)).

Lemma 10. (i) Let T = (M, N, ϕ, η) be a quadruple. Then LT is a semi-De

Morgan algebra satisfying S (LT ) ∼= M and nLT < ∞.
(ii) Let L be a semi-De Morgan algebra satisfying nL < ∞ and S(L) ∼= M , and

let

N = L/(γL)∗,

ϕ(a) = {[x](γL)∗ : x∗∗ = a}, and η(a) = [a](γL)∗,

where (γL)∗ is the pseudocomplement of γL in the congruence lattice of L. Then

T = (M, N, ϕ, η) is (up to isomorphism) the only quadruple satisfying LT
∼= L.

Lemma 11. Let T = (M, N, ϕ, η) be a quadruple. Then
(i) LT is a Ockham lattice with De Morgan skeleton iff η preserves ∨.
(ii) LT is a MS-algebra iff η preserves ∨ and η(a) = u(a) for every a ∈ M.

(iii) LT is a demi-p-lattice iff M is a Boolean algebra.

(iv) LT is a p-algebra iff M is a Boolean algebra and η(a) = u(a) for every a ∈ M.

&('*) $+��,.-#/�021�34/5$��!6
. We would like to thank the referee for several correc-

tions which improve the presentation of the paper.
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