Mathematic Bohemica

Cengiz Cinar; Ramazan Karatas; Ibrahim Yalçınkaya

On solutions of the difference equation $x_{n+1}=x_{n-3} /\left(-1+x_{n} x_{n-1} x_{n-2} x_{n-3}\right)$

Mathematica Bohemica, Vol. 132 (2007), No. 3, 257-261
Persistent URL: http://dml.cz/dmlcz/134123

Terms of use:

© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON SOLUTIONS OF THE DIFFERENCE EQUATION

$$
x_{n+1}=x_{n-3} /\left(-1+x_{n} x_{n-1} x_{n-2} x_{n-3}\right)
$$

Cengiz Cinar, Ramazan Karatas, Ibrahim Yalçinkaya, Konya

(Received March 13, 2006)

Abstract. We study the solutions and attractivity of the difference equation $x_{n+1}=$ $x_{n-3} /\left(-1+x_{n} x_{n-1} x_{n-2} x_{n-3}\right)$ for $n=0,1,2, \ldots$ where x_{-3}, x_{-2}, x_{-1} and x_{0} are real numbers such that $x_{0} x_{-1} x_{-2} x_{-3} \neq 1$.

Keywords: difference equation, recursive sequence, solutions, equilibrium point

MSC 2000: 39A11

1. Introduction

A lot of work has been done concerning the attractivity and solutions of the rational difference equations, for example in [1]-[9]. In [3] Cinar studied the positive solutions of the difference equation $x_{n+1}=x_{n-1} /\left(1+x_{n} x_{n-1}\right)$ for $n=0,1,2, \ldots$ and proved by induction the formula

$$
x_{n}= \begin{cases}x_{-1} \frac{\prod_{i=0}^{[(n+1) / 2]-1}\left(2 x_{-1} x_{0} i+1\right)}{[(n+1) 2]-1}\left((2 i+1) x_{-1} x_{0}+1\right. & \text { for } n \text { odd }, \\ \prod_{i=0}^{n / 2}\left({ }^{[2 i n}\right) \\ x_{0} \frac{\prod_{i=1}^{n / 2}\left((2 i-1) x_{-1} x_{0}+1\right)}{\prod_{i=1}^{n / 2}\left(2 i x_{-1} x_{0}+1\right)} \quad \text { for } n \text { is even. }\end{cases}
$$

In [6] Stevic studied the stability properties of the solutions of Cinar's equation. Also in [7] Stevic investigated the solutions of the difference equation $x_{n+1}=$
$B x_{n-1} / B+x_{n}$ and gave the formulas

$$
\begin{aligned}
x_{2 n} & =x_{0}\left(1-x_{1} \sum_{j=1}^{n} \prod_{i=1}^{2 j-1} \frac{1}{1+x_{i}}\right), \\
x_{2 n+1} & =x_{-1}\left(1-\frac{x_{0}}{1+x_{0}} \sum_{j=0}^{n} \prod_{i=1}^{2 j} \frac{1}{1+x_{i}}\right) .
\end{aligned}
$$

Moreover, in [1] Aloqeili generalized the results from [3], [6] to the k th order case and investigated the solutions, stability character and semicycle behavior of the difference equation $x_{n+1}=x_{n-k} /\left(A+x_{n-k} x_{n}\right)$ where $x_{-k}, \ldots, x_{0}>0$ and $A>0, k$ being any positive integer.

Our aim in this paper is to investigate the solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{-1+x_{n} x_{n-1} x_{n-2} x_{n-3}} \quad \text { for } \quad n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where x_{-3}, x_{-2}, x_{-1} and x_{0} are real numbers such that $x_{0} x_{-1} x_{-2} x_{-3} \neq 1$.
First, we give two definitions which will be useful in our investigation of the behavior of solutions of Eq. (1.1).

Definition 1. Let I be an interval of real numbers and let $f: I^{4} \rightarrow I$ be a continuously differentiable function. Then for every $x_{-i} \in I, i=0,1,2,3$, the difference equation $x_{n+1}=f\left(x_{n}, x_{n-1}, x_{n-2}, x_{n-3}\right), n=0,1,2, \ldots$, has a unique solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$.

Definition 2. The equilibrium point \bar{x} of the equation $x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots\right.$, $\left.x_{n-k}\right), n=0,1,2, \ldots$, is the point that satisfies the condition $\bar{x}=f(\bar{x}, \ldots, \bar{x})$.

2. Main Results

Theorem 1. Assume that $x_{0} x_{-1} x_{-2} x_{-3} \neq 1$ and let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a solution of Eq. (1.1). Then for $n=0,1,2, \ldots$ all solutions of Eq.(1.1) are of the form

$$
\begin{align*}
& x_{4 n+1}=x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}, \tag{2.1}\\
& x_{4 n+2}=x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}, \tag{2.2}\\
& x_{4 n+3}=x_{-1} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}, \tag{2.3}\\
& x_{4 n+4}=x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} . \tag{2.4}
\end{align*}
$$

Proof. $\quad x_{1}, x_{2}, x_{3}$ and x_{4} are clear from Eq. (1.1). Also, for $n=1$ the result holds. Now suppose that $n>1$ and our assumption holds for $(n-1)$. We shall show
that the result holds for n. From our assumption for $(n-1)$ we have

$$
\begin{aligned}
x_{4 n-3} & =x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}, \\
x_{4 n-2} & =x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}, \\
x_{4 n-1} & =x_{-1} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}, \\
x_{4 n} & =x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n} .
\end{aligned}
$$

Then, from Eq. (1.1) and the above equality, we have

$$
\begin{aligned}
x_{4 n+1} & =x_{4 n-3} /\left(-1+x_{4 n} x_{4 n-1} x_{4 n-2} x_{4 n-3}\right) \\
& =\frac{x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}}{-1+x_{0} x_{-1} x_{-2} x_{-3}}=\frac{x_{-3}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} .
\end{aligned}
$$

That is,

$$
x_{4 n+1}=\frac{x_{-3}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} .
$$

Also,

$$
\begin{aligned}
x_{4 n+2} & =\frac{x_{4 n-2}}{-1+x_{4 n+1} x_{4 n} x_{4 n-1} x_{4 n-2}} \\
& =\frac{x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}}{-1+x_{0} x_{-1} x_{-2} x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)} \\
& =x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} .
\end{aligned}
$$

Hence, we have

$$
x_{4 n+2}=x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} .
$$

Similarly,

$$
\begin{aligned}
x_{4 n+3}=\frac{x_{4 n-1}}{-1+x_{4 n+2} x_{4 n+1} x_{4 n} x_{4 n-1}} & =\frac{x_{-1} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}}{-1+x_{0} x_{-1} x_{-2} x_{-3}} \\
& =\frac{x_{-1}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} .
\end{aligned}
$$

Consequently, we have

$$
x_{4 n+3}=\frac{x_{-1}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} .
$$

Now we prove the last formula. Since

$$
\begin{aligned}
x_{4 n+4} & =\frac{x_{4 n}}{-1+x_{4 n+3} x_{4 n+2} x_{4 n+1} x_{4 n}} \\
& =\frac{x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n}}{-1+x_{0} x_{-1} x_{-2} x_{-3} /\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)} \\
& =x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1},
\end{aligned}
$$

we have

$$
x_{4 n+4}=x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} .
$$

Thus, we have proved (2.1), (2.2), (2.3) and (2.4).
Theorem 2. Eq. (1.1) has three equilibrium points which are $0, \sqrt[4]{2}$ and $-\sqrt[4]{2}$.
Proof. For the equilibrium points of Eq. (1.1) we write

$$
\bar{x}=\bar{x} /(-1+\bar{x} \bar{x} \bar{x} \bar{x}) .
$$

Then we have

$$
\bar{x}^{5}-2 \bar{x}=0 .
$$

Thus, the equilibrium points of Eq. (1.1) are $0, \sqrt[4]{2}$ and $-\sqrt[4]{2}$.

Corollary 1. Let $\left\{x_{n}\right\}$ be a solution of Eq. (1.1). Assume that x_{-3}, x_{-2}, x_{-1}, $x_{0}>0$ and $x_{-3} x_{-2} x_{-1} x_{0}>1$. Then all solutions of Eq.(1.1) are positive.

Proof. This is clear from Eqs. (2.1), (2.2), (2.3) and (2.4).
Corollary 2. Let $\left\{x_{n}\right\}$ be a solution of Eq. (1.1). Assume that x_{-3}, x_{-2}, x_{-1}, $x_{0}<0$ and $x_{-3} x_{-2} x_{-1} x_{0}>1$. Then all solutions of Eq.(1.1) are negative.

Proof. This is clear from Eqs. (2.1), (2.2), (2.3) and (2.4).

Corollary 3. Let $\left\{x_{n}\right\}$ be a solution of Eq.(1.1). Assume that x_{-3}, x_{-2}, x_{-1}, $x_{0}>0$ and $x_{-3} x_{-2} x_{-1} x_{0}>2$. Then

$$
\lim _{n \rightarrow \infty} x_{4 n+1}=0, \lim _{n \rightarrow \infty} x_{4 n+2}=\infty, \lim _{n \rightarrow \infty} x_{4 n+3}=0 \text { and } \lim _{n \rightarrow \infty} x_{4 n+4}=\infty
$$

Proof. Let $x_{-3}, x_{-2}, x_{-1}, x_{0}>0$ and $x_{-3} x_{-2} x_{-1} x_{0}>2$.
Then $x_{-3} x_{-2} x_{-1} x_{0}-1>1$ and Eq. (2.1), (2.2), (2.3) and (2.4) imply

$$
\begin{aligned}
\lim _{n \rightarrow \infty} x_{4 n+1} & =\lim _{n \rightarrow \infty} \frac{x_{-3}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}}=0, \\
\lim _{n \rightarrow \infty} x_{4 n+2} & =\lim _{n \rightarrow \infty} x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}=\infty, \\
\lim _{n \rightarrow \infty} x_{4 n+3} & =\lim _{n \rightarrow \infty} \frac{x_{-1}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}}=0, \\
\lim _{n \rightarrow \infty} x_{4 n+4} & =\lim _{n \rightarrow \infty} x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}=\infty .
\end{aligned}
$$

Corollary 4. Let $\left\{x_{n}\right\}$ be a solution of Eq.(1.1). Assume that x_{-3}, x_{-2}, x_{-1}, $x_{0}<0$ and $x_{-3} x_{-2} x_{-1} x_{0}>2$. Then

$$
\lim _{n \rightarrow \infty} x_{4 n+1}=0, \lim _{n \rightarrow \infty} x_{4 n+2}=-\infty, \lim _{n \rightarrow \infty} x_{4 n+3}=0 \text { and } \lim _{n \rightarrow \infty} x_{4 n+4}=-\infty .
$$

The proof is similar to that of Corollary 3. Thus it is omitted.
Now, we give the following result about the product of solutions of Eq. (1.1).
Corollary 5. $\prod_{n=0}^{s} x_{4 n+1} x_{4 n+2} x_{4 n+3} x_{4 n+4}=\left(x_{0} x_{-1} x_{-2} x_{-3}\right)^{s+1}$ where $s \in \mathbb{Z}^{+}$.
Proof. From Eqs. (2.1), (2.2), (2.3) and (2.4) we obtain

$$
\begin{gathered}
x_{4 n+1} x_{4 n+2} x_{4 n+3} x_{4 n+4}=\frac{x_{-3}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} x_{-2}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1} \\
\times \frac{x_{-1}}{\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}} x_{0}\left(-1+x_{0} x_{-1} x_{-2} x_{-3}\right)^{n+1}=x_{0} x_{-1} x_{-2} x_{-3}
\end{gathered}
$$

and the above equality yields

$$
\prod_{n=0}^{s} x_{4 n+1} x_{4 n+2} x_{4 n+3} x_{4 n+4}=\left(x_{0} x_{-1} x_{-2} x_{-3}\right)^{s+1}
$$

Thus, the proof is complete.

References

[1] Aloqeili M.: Dynamics of a k th order rational difference equation. Appl. Math. Comput. (In press.).
[2] Camouzis E., Ladas G., Rodrigues I. W., Northshield S.: The rational recursive sequence $x_{n+1}=b x_{n}^{2} / 1+x_{n-1}^{2}$. Comput. Math. Appl. 28 (1994), 37-43.
[3] Cinar C.: On the positive solutions of the difference equation $x_{n+1}=x_{n-1} /\left(1+x_{n}\right.$ $\left.\times x_{n-1}\right)$. Appl. Math. Comput. 150 (2004), 21-24.
[4] Cinar C.: On the positive solutions of the difference equation $x_{n+1}=a x_{n-1} /\left(1+b x_{n}\right.$ $\left.\times x_{n-1}\right)$. Appl. Math. Comput. 156 (2004), 587-590.
[5] Cinar C.: On the difference equation $x_{n+1}=x_{n-1} /\left(-1+x_{n} x_{n-1}\right)$. Appl. Math. Comput. 158 (2004), 813-816.
[6] Stevic S.: More on a rational recurence relation $x_{n+1}=x_{n-1} /\left(1+x_{n-1} x_{n}\right)$. Appl. Math. E-Notes 4 (2004), 80-84.
zbl
[7] Stevic S.: On the recursive sequence $x_{n+1}=x_{n-1} / g\left(x_{n}\right)$. Taiwanese J. Math. 6 (2002), 405-414.
[8] Stevic S.: On the recursive sequence $x_{n+1}=\alpha+x_{n-1}^{p} / x_{n}^{p}$. J. Appl. Math. Comput. 18 (2005), 229-234.
[9] Yang X., Su W., Chen B., Megson G., Evans D.: On the recursive sequences $x_{n+1}=$ $a x_{n-1}+b x_{n-2} /\left(c+d x_{n-1} x_{n-2}\right)$. Appl. Math. Comput. 162 (2005), 1485-1497.

Authors' addresses: Cengiz Cinar, Ramazan Karatas, Ibrahim Yalçınkaya, Selcuk University, Education Faculty, Mathematics Department, 42099, Meram Yeni Yol, Konya, Turkiye, e-mail: ccinar25@yahoo.com, rckaratas@yahoo.com, iyalcinkaya1708@yahoo. com.

