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Abstract. We study the solutions and attractivity of the difference equation xn+1 =
xn−3/(−1 + xnxn−1xn−2xn−3) for n = 0, 1, 2, . . . where x−3, x−2, x−1 and x0 are real
numbers such that x0x−1x−2x−3 6= 1.
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1. Introduction

A lot of work has been done concerning the attractivity and solutions of the

rational difference equations, for example in [1]–[9]. In [3] Cinar studied the positive

solutions of the difference equation xn+1 = xn−1/(1 + xnxn−1) for n = 0, 1, 2, . . .

and proved by induction the formula

xn =



































x−1

[(n+1)/2]−1∏

i=0

(2x
−1x0i+1)

[(n+1)/2]−1∏

i=0

((2i+1)x
−1x0+1

for n odd,
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(2ix
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for n is even.

In [6] Stevic studied the stability properties of the solutions of Cinar’s equa-

tion. Also in [7] Stevic investigated the solutions of the difference equation xn+1 =
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Bxn−1/B + xn and gave the formulas

x2n = x0
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)

,

x2n+1 = x−1

(
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1 + x0

n
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2j
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1
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)

.

Moreover, in [1] Aloqeili generalized the results from [3], [6] to the kth order

case and investigated the solutions, stability character and semicycle behavior of the

difference equation xn+1 = xn−k/(A + xn−kxn) where x−k, . . . , x0 > 0 and A > 0, k

being any positive integer.

Our aim in this paper is to investigate the solutions of the difference equation

(1.1) xn+1 =
xn−3

−1 + xnxn−1xn−2xn−3
for n = 0, 1, 2, . . .

where x−3, x−2, x−1 and x0 are real numbers such that x0x−1x−2x−3 6= 1.

First, we give two definitions which will be useful in our investigation of the be-

havior of solutions of Eq. (1.1).

Definition 1. Let I be an interval of real numbers and let f : I4 → I be a

continuously differentiable function. Then for every x−i ∈ I, i = 0, 1, 2, 3, the

difference equation xn+1 = f(xn, xn−1, xn−2, xn−3), n = 0, 1, 2, . . ., has a unique

solution {xn}∞n=−3 .

Definition 2. The equilibrium point x̄ of the equation xn+1 = f(xn, xn−1, . . . ,

xn−k), n = 0, 1, 2, . . . , is the point that satisfies the condition x̄ = f(x̄, . . . , x̄).

2. Main results

Theorem 1. Assume that x0x−1x−2x−3 6= 1 and let {xn}∞n=−3 be a solution of

Eq. (1.1). Then for n = 0, 1, 2, . . . all solutions of Eq. (1.1) are of the form

x4n+1 = x−3/ (−1 + x0x−1x−2x−3)
n+1

,(2.1)

x4n+2 = x−2 (−1 + x0x−1x−2x−3)
n+1

,(2.2)

x4n+3 = x−1/(−1 + x0x−1x−2x−3)
n+1,(2.3)

x4n+4 = x0 (−1 + x0x−1x−2x−3)
n+1

.(2.4)

P r o o f. x1, x2, x3 and x4 are clear from Eq. (1.1). Also, for n = 1 the result

holds. Now suppose that n > 1 and our assumption holds for (n− 1).We shall show
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that the result holds for n. From our assumption for (n − 1) we have

x4n−3 = x−3/ (−1 + x0x−1x−2x−3)
n

,

x4n−2 = x−2(−1 + x0x−1x−2x−3)
n,

x4n−1 = x−1/ (−1 + x0x−1x−2x−3)
n

,

x4n = x0 (−1 + x0x−1x−2x−3)
n

.

Then, from Eq. (1.1) and the above equality, we have

x4n+1 = x4n−3/(−1 + x4nx4n−1x4n−2x4n−3)

=
x−3/ (−1 + x0x−1x−2x−3)

n

−1 + x0x−1x−2x−3
=

x−3

(−1 + x0x−1x−2x−3)
n+1 .

That is,

x4n+1 =
x−3

(−1 + x0x−1x−2x−3)
n+1 .

Also,

x4n+2 =
x4n−2

−1 + x4n+1x4nx4n−1x4n−2

=
x−2 (−1 + x0x−1x−2x−3)

n

−1 + x0x−1x−2x−3/(−1 + x0x−1x−2x−3)

= x−2 (−1 + x0x−1x−2x−3)
n+1

.

Hence, we have

x4n+2 = x−2 (−1 + x0x−1x−2x−3)
n+1

.

Similarly,

x4n+3 =
x4n−1

−1 + x4n+2x4n+1x4nx4n−1
=

x−1/ (−1 + x0x−1x−2x−3)
n

−1 + x0x−1x−2x−3

=
x−1

(−1 + x0x−1x−2x−3)
n+1 .

Consequently, we have

x4n+3 =
x−1

(−1 + x0x−1x−2x−3)
n+1 .

Now we prove the last formula. Since

x4n+4 =
x4n

−1 + x4n+3x4n+2x4n+1x4n

=
x0 (−1 + x0x−1x−2x−3)

n

−1 + x0x−1x−2x−3/(−1 + x0x−1x−2x−3)

= x0 (−1 + x0x−1x−2x−3)
n+1 ,
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we have

x4n+4 = x0 (−1 + x0x−1x−2x−3)
n+1

.

Thus, we have proved (2.1), (2.2), (2.3) and (2.4). �

Theorem 2. Eq. (1.1) has three equilibrium points which are 0, 4
√

2 and − 4
√

2.

P r o o f. For the equilibrium points of Eq. (1.1) we write

x̄ = x̄/(−1 + x̄x̄x̄x̄).

Then we have

x̄5 − 2x̄ = 0.

Thus, the equilibrium points of Eq. (1.1) are 0, 4
√

2 and − 4
√

2. �

Corollary 1. Let {xn} be a solution of Eq. (1.1). Assume that x−3, x−2, x−1,

x0 > 0 and x−3x−2x−1x0 > 1. Then all solutions of Eq. (1.1) are positive.

P r o o f. This is clear from Eqs. (2.1), (2.2), (2.3) and (2.4). �

Corollary 2. Let {xn} be a solution of Eq. (1.1). Assume that x−3, x−2, x−1,

x0 < 0 and x−3x−2x−1x0 > 1. Then all solutions of Eq. (1.1) are negative.

P r o o f. This is clear from Eqs. (2.1), (2.2), (2.3) and (2.4). �

Corollary 3. Let {xn} be a solution of Eq. (1.1). Assume that x−3, x−2, x−1,

x0 > 0 and x−3x−2x−1x0 > 2. Then

lim
n→∞

x4n+1 = 0, lim
n→∞

x4n+2 = ∞, lim
n→∞

x4n+3 = 0 and lim
n→∞

x4n+4 = ∞.

P r o o f. Let x−3, x−2, x−1, x0 > 0 and x−3x−2x−1x0 > 2.

Then x−3x−2x−1x0 − 1 > 1 and Eq. (2.1), (2.2), (2.3) and (2.4) imply

lim
n→∞

x4n+1 = lim
n→∞

x−3

(−1 + x0x−1x−2x−3)n+1
= 0,

lim
n→∞

x4n+2 = lim
n→∞

x−2(−1 + x0x−1x−2x−3)
n+1 = ∞,

lim
n→∞

x4n+3 = lim
n→∞

x−1

(−1 + x0x−1x−2x−3)n+1
= 0,

lim
n→∞

x4n+4 = lim
n→∞

x0(−1 + x0x−1x−2x−3)
n+1 = ∞.

�
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Corollary 4. Let {xn} be a solution of Eq. (1.1). Assume that x−3, x−2, x−1,

x0 < 0 and x−3x−2x−1x0 > 2. Then

lim
n→∞

x4n+1 = 0, lim
n→∞

x4n+2 = −∞, lim
n→∞

x4n+3 = 0 and lim
n→∞

x4n+4 = −∞.

The proof is similar to that of Corollary 3. Thus it is omitted.

Now, we give the following result about the product of solutions of Eq. (1.1).

Corollary 5.
s
∏

n=0
x4n+1x4n+2x4n+3x4n+4 = (x0x−1x−2x−3)

s+1 where s ∈ Z+.

P r o o f. From Eqs. (2.1), (2.2), (2.3) and (2.4) we obtain

x4n+1x4n+2x4n+3x4n+4 =
x−3

(−1 + x0x−1x−2x−3)
n+1 x−2 (−1 + x0x−1x−2x−3)

n+1

× x−1

(−1 + x0x−1x−2x−3)
n+1 x0 (−1 + x0x−1x−2x−3)

n+1
= x0x−1x−2x−3

and the above equality yields

s
∏

n=0

x4n+1x4n+2x4n+3x4n+4 = (x0x−1x−2x−3)
s+1.

Thus, the proof is complete. �
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