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Dedicated to Professor Jaroslav Kurzweil on the occasion of his 80th birthday

Abstract. We investigate the regularity of semipermeable surfaces along barrier solutions
without the assumption of smoothness of the right-hand side of the differential inclusion.
We check what can be said if the assumptions concern not the right-hand side itself but the
cones it generates. We examine also the properties of families of sets with semipermeable
boundaries.
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It is a honour and pleasure for both authors to have an occasion to dedicate this

modest paper to Professor Jaroslav Kurzweil.

It was a great chance for me (the second author) to meet Professor Kurzweil in
Prague during Equadiff 1977. This meeting and later contacts provided me with

a subject for my PhD thesis which I prepared under the supervision of Professor
Czeslaw Olech—it was a real luck to have such two guides.

Professor Kurzweil (together with J. Jarník and P.Krbec) wrote several papers
devoted to multivalued maps, differential inclusions and in particular to the so called

Scorza-Dragoni property: [8], [9], [10], [11], [12]—this enumeration does not pretend
to completeness.

The problems considered by Scorza-Dragoni in [21], [22] included first of all the

regularity of functions f(t, x) continuous with respect to x and measurable with

This research was supported by a grant from the Faculty of Mathematics and Information
Science of Warsaw University of Technology.
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respect to t. He proved that for any ε > 0 there is a set Aε with measure not

greater than ε and such that f is continuous with respect to (t, x) if we eliminate
t ∈ Aε. This was later shown also for multifunctions, however, it occured that it
is not possible to replace continuity by upper semicontinuity with respect to x. It

was a surprising and very useful result of Jaroslav Kurzweil and Jiří Jarník given
in [8] where they proved that for F (t, x) upper semicontinuous in x one can replace

the original multifunction F (t, x) by F̃ (t, x) which is already regular similarly to the
Scorza-Dragoni case and the differential inclusions ẋ ∈ F (t, x) and ẋ ∈ F̃ (t, x) have
the same solutions. This became an important tool in the theory of multifunctions
and differential inclusions.

The results mentioned above were used by Scorza-Dragoni and others to the exam-
ination of sets of t for which the Carathéodory type solutions of differential equations

or differential inclusions may not satisfy ẋ(t) = f(t, x(t)) or ẋ(t) ∈ F (t, x(t)). It oc-
curs that for differential equations all those sets are contained in a common set of

measure zero. This also was carried by Jaroslav Kurzweil and Jiří Jarník in [9] to dif-
ferential inclusions upper semicontinuous with respect to x—the derivative ẋ(t) had
to be replaced by the contingent Dx(t) (the set of all limit points of the differential
quotient). A corollary to that theorem is used in the present paper.

A full description of influence of those results and the papers which appeared later
referring to them would require a special survey and not a short one.

Let me express my personal admiration and gratitude to Professor Kurzweil. The
papers [17], [19] (which contain a fundamental part of my thesis) were directly in-

spired by his works and advice. Much more recent [6] also refers in an essential way
to the results mentioned above. Last but not least—I always appreciated his nice

and friendly attitude.

Tadeusz Rzeżuchowski

1. Introduction and preliminaries

We consider in this paper autonomous differential inclusions

(1) ẋ ∈ F (x)

where x ∈ Ω ⊂ � d , Ω open, F (x) ⊂ � d and solutions are understood in the sense of

Carathéodory, that is, defined on some interval absolutely continuous functions x(·)
with values in Ω which satisfy ẋ(t) ∈ F (x(t)) almost everywhere.
In most considerations we assume the same set of conditions on F so it will be

convenient to put them together and name them.
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Definition 1.1. We say that F : Ω � d is a Lipschitz multifunction if the sets

F (x) ⊂ � d are nonempty, compact, convex and the Lipschitz condition

∃L > 0, ∀x, y ∈ Ω: F (y) ⊂ F (x) + L‖x− y‖B1

is satisfied, where B1 is the closed unit ball in
� d .

The difference with the so called Marchaud maps (see [1]) is in the regularity of

F (·)—Marchaud maps are upper semicontinuous.
We use the notation F (·) or x(·) for maps, F (x) or x(t) denote their values at x

or t.
By SolF (x0, T ), where x0 ∈ Ω and T > 0, we mean the set of all solutions of (1)

defined on [0, T ] and satisfying the initial condition

(2) x(0) = x0.

Semipermeable surfaces so important in differential games and control theory ap-

peared in the pioneering work of Isaacs [7]. He considered a differential system

(3) ẋ(t) = f(x(t), u(t), v(t))

in
� d , where u(t) and v(t) are functions controlled by two players—one of them wants

to bring the object to some set, the other wants to avoid it. The victory domain
for each of the players is the set of positions such that he can always find a winning
strategy. Isaacs proved that if the boundary of a victory domain is smooth then

it is a semipermeable surface—this means that this set is viable (from any point a
solution starts which always stays in it) and invariable if we reverse the time (in

other words, no solution can enter it from outside).
M.Quincampoix introduced in [16] the notion of nonsmooth semipermeable sur-

faces. He proved that the viability kernel contained in some set K (if nonempty) has
semipermeable boundary—the viability kernel of K is the set of all x0 ∈ K for which

there is a solution x(·) of (1) defined on [0, +∞) for which x(0) = x0 and x(t) ∈ K

for all t > 0.
P.Cardaliaguet investigates in [3] and [4] sets with semipermeable boundary and

pays special attention to the solutions which lie on that boundary—the so called

barrier solutions. He proves there some results on the smoothness of barrier solutions.
Let A(x0, t) = {x(t) : x(·) ∈ SolF (x0, t)}. Under certain conditions on F (·) the

surface (∂GraphA(x0, ·)) ∩ ([0, +∞)× Ω) is semipermeable with respect to the dif-
ferential inclusion (σ̇, ẏ) ∈ {−1} × (−F (y)). This permits to prove that under some
additional assumptions it is possible to recover the initial point x0 if we have some
information on A(x0, t) (see [18]).
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H.Frankowska proved in [5] that the graph of the value function V (t, x) for a con-
trol problem is a semipermeable surface for some differential inclusion (although she
did not use explicitly this notion) which permitted her to prove that V is a solution
in the sense of viscosity of the Hamilton-Jacobi equation

−∂V

∂t
+ H

(
t, x,−∂V

∂x
(t, x)

)
= 0.

S. Plaskacz and M.Quincampoix gave in [14] a similar result for the graph of the
value function in differential games.

In this paper we treat problems similar to those considered by Cardaliaguet in
[3] and [4]—the properties of semipermeable surfaces and especially the regularity of
barrier solutions. The main assumption there was, apart from Lipschitz regularity,

the smoothness of the boundary ∂F (x) for all x. We show that some of these results
can be proved even if this assumption is not satisfied. Next we treat the families of

sets with semipermeable boundary. The last section is devoted to the application
of equivalent differential inclusions to weakening of assumptions on F (·) (such as
regularity and smoothness of the boundary ∂F (x)).
We recall now a few notions from set-valued analysis to be used in the sequel. Let

K ⊂ � d be closed.
The contingent (or Bouligand) cone to K ⊂ � d at any x ∈ K is defined as

TK(x) =
{

v ∈ � d ; lim inf
h→0+

dist(x + hv, K)
h

= 0
}

where dist(y, K) = inf
z∈K

‖z − y‖.
The normal cone to K at x is defined by

K− =
{
v ∈ � d ; ∀u ∈ K : 〈u, v〉 6 0

}
.

The Dubovitski-Miliutin tangent cone is defined as

DK(x) =
{
v ∈ � d ; ∃α > 0: x + (0, α](v + αB1) ⊂ K

}

and the hypertangent cone (it is the interior of Clarke’s tangent cone) as

C◦K(x) =
{
v ∈ � d ; ∃ε > 0, ∃δ > 0, ∀y ∈ B(x, δ) ∩K : y + (0, ε](v + εB1) ⊂ K

}
.

The cone generated by a set K is denoted by SK .

The contingent derivative of a function x : [a, b] → � d at t ∈ [a, b] is defined as
the set of all limit points of the differential quotient (x(t + h) − x(t))/h as h → 0,
and is denoted by Dx(t).
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2. Semipermeable surfaces-basic facts

We pass now to the definition of the notion fundamental to our considerations.

Definition 2.1. The boundary ∂M of a closed setM ⊂ � d is semipermeable in
an open set U with respect to the differential inclusion (1) if the following conditions

are fulfilled:

(i) ∀ξ ∈ M ∩ U, ∃T > 0, ∃x(·) ∈ SolF (ξ, T ), ∀t ∈ [0, T ] : x(t) ∈ M ,

(ii) ∀ξ ∈ M ∩ U, ∃T > 0, ∀x(·) ∈ Sol−F (ξ, T ), ∀t ∈ [0, T ] : x(t) ∈ M .

Remark that in (ii) the set of solutions of the differential inclusion ẋ ∈ −F (x) is
used.

Condition (ii) in this definition is equivalent to the following one:

(ii)′ ∀ξ ∈ M ∩ U , ∀T > 0 if x(·) ∈ Sol−F (ξ, T ) and x(t) ∈ U for all t ∈ [0, T ] then
x(t) ∈ M for all t ∈ [0, T ].

This last property means that any solution of ẋ ∈ −F (x) starting at some point
belonging to M ∩ U does not leave M as long as it stays in U .

The implication (ii)′ ⇒ (ii) is obvious. To prove the inverse suppose (ii)′ is not
true. This means that for some ξ ∈ M ∩ U and T > 0 there is a solution x(·) ∈
Sol−F (ξ, T ) such that for all t ∈ [0, T ] we have x(t) ∈ U but x(t) /∈ M for some t. Let

τ = max{t > 0: x(s) ∈ M for all s 6 t}. Consider now the function y(t) = x(t + τ).
For every T̃ > 0 there are t ∈ (0, T̃ ] for which y(t) /∈ M . The negation of (ii) is thus

true, which finally proves the implication (ii) ⇒ (ii)′.
Cardaliaguet defines in [3] semipermeable surfaces using the notion of lower Hamil-

tonian

hF (x, p) = inf{〈v, p〉 : v ∈ F (x)}

—according to this definition a closed set M has semipermeable boundary with
respect to (1) in a neighborhood of x0 ∈ ∂M if there is r > 0 such that

(4) ∀x ∈ M ∩ B(x0, r), ∀p ∈ TM (x)− : hF (x, p) = 0

—B(x0, r) is the closed ball centered at x0 with radius r. He proves for Lipschitz reg-
ular multifunctions that (4) is equivalent to the existence of two open neighborhoods

O and O′ of x0, with O ⊂ O′, and the existence of T > 0 for which the following
conditions hold:

(Ci) ∀x ∈ M ∩ O, ∃x(·) ∈ SolF (x, T ), ∀t ∈ [0, T ] : x(t) ∈ M ∩ O′,

(Cii) ∀x ∈ M ∩ O, ∀x(·) ∈ Sol−F (x, T ), ∀t ∈ [0, T ] : x(t) ∈ M ∩ O′.

This definition and properties have a local character wheras Definition 2.1 that we
use can be considered as global although they do not differ in an essential way.
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Using Filippov’s theorem (see for example Therorem 10.4.1 in [2]) Cardaliaguet

proves in [3] (Proposition 1.1) a property of semi-permeable surfaces which in our
setting has the following shape (below M̂ =

�
d \M).

Lemma 2.1. If F is a Lipschitz multifunction and (i), (ii) hold then
(iii) ∀ξ ∈ ∂M ∩ U, ∃T > 0, ∀x(·) ∈ SolF (ξ, T ), ∀t ∈ [0, T ] : x(t) ∈ M̂ .

This lemma coupled with (i) gives

Corollary 2.1. If M has semipermeable boundary then for every ξ ∈ ∂M there

are T > 0 and x(·) ∈ SolF (ξ, T ) such that x(t) ∈ ∂M for t ∈ [0, T ].

The solutions like in Corollary 2.1—staying on ∂M—are called barrier solutions.

Their trajectories {x(t) : t ∈ [0, T ]} will be called barriers.
We give at the end of this section an example which is very simple, nonetheless

explains well the situation.
� �������
	��

2.1. For every x ∈ � 2 put F (x) ≡ B((1, 1), 1) and

M1 = {(y1, y2) ; y1 ∈
�
, y2 6 0} M2 = {(y1, y2) ; y1 6 0, y2 ∈

� }.

The surfaces ∂M1, ∂M2 and ∂(M1 ∪M2) are semipermeable for differential inclu-
sion (1). The third one has one point at which it is not smooth—the origin (0, 0).
There are, of course, barrier solutions which start from this point (two) but no one

starting from any other point reaches it. This situation is typical.

The position of the origin 0 in
� d with respect to the sets F (x) is important. We

check first that if 0 ∈ intF (x0) then x0 may not lie on the semipermeable boundary
of any M . Suppose that x0 ∈ M . We remark first that if 0 ∈ IntF (x0) then there is
r > 0 and a ball B(x0, δ) such that B(0, r) ⊂ −F (x) for any x ∈ B(x0, δ). Hence for
sufficiently small τ > 0 all the functions x(s) = x0 + sv, s ∈ [0, τ ], where v ∈ B1 is

arbitrary, are solutions of ẋ ∈ −F (x). As no such solution can exit M so there are
no points from

� d \M in a neighborhood of x0 and thus x0 /∈ ∂M contrary to the

assumption.

When 0 ∈ ∂F (x) for all x in a neighborhood of x0 the condition (i) in Definition 2.1
is automatically satisfied as constant maps are solutions. To have the property (ii)

the condition −F (x) ⊂ TM (x) for x ∈ ∂M is necessary and sufficient (due to the
Lipschitz assumption—see Chapter V in [1]).

The most interesting case for our investigation is when 0 /∈ F (x) for all x in some
neighborhood of x0.
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3. Properties of semipermeable surfaces when the boundaries ∂F (x)
need not be smooth

In this section we are interested in some properties of semipermeable surfaces when
the sets F (x) may have nonsmooth boundary. Smoothness of ∂F (x) was one of the
main assumptions in [3] and [4]. We try to show what can be said if it is omitted.
Let us start with an observation that an important property proved in [4] (Theo-

rem 1.3)

(5) LimsupTM (x′) ⊂ TM (x) when x′ → x, x′ ∈ ∂M

is no more true when the boundaries ∂F (x) are nonsmooth.
� �������
	��

3.1. Let x ∈ � 3 and

F (x) ≡
{

(y1, y2, y3) ;
√

(y1 − 1)2 + y2
2 6 y3 6 1

}
.

The set M = {(x1, x2, x3) ; x3 6 −|x2|} has semipermeable boundary but the prop-
erty (5) is not satisfied—it is sufficient to reach a point on the edge {(x1, 0, 0) ; x1 ∈
� } of M by a sequence of points not belonging to that edge.

The upper semicontinuity of TM (x) expressed in (5) can be preserved but only if
we approach a point of ∂M along barriers.

Lemma 3.1. Suppose F is a Lipschitz multifunction and M has semipermeable

boundary in an open set U ⊂ Ω. If x(·) is a barrier solution defined on [0, T ] then

Limsupt→τ+TM (x(t)) ⊂ TM (x(τ))

for τ ∈ [0, T ) and
Limsupt→τ−T M (x(t)) ⊂ T 

M
(x(τ))

for τ ∈ (0, T ].

This is in fact Lemma 2.1 from [3] expressed in other terms. Let us justify the
first inclusion. Take v ∈ Limsupt→τ+TM (x(t)). Then for some tn → τ+ and vn ∈
TM (x(tn)) we have vn → v,

dist(v,TM (x(τ)) 6 ‖v − vn‖+ dist(vn,TM (x(τ))

and in view of the lemma mentioned above dist(vn,TM (x(τ)) 6 C‖vn‖(tn−τ), which
implies v ∈ TM (x(τ)). The justification of the second inclusion is similar.
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Let us note one of the implications of Lemma 3.1. If at a point x(τ) of the
trajectory of a barrier solution x(·) the contingent cone to M does not contain any
half-space then for t in an interval (τ, τ + ε) the contingent cone TM (x(t)) cannot
contain any half-space, either. If we consider the situation described in Example 3.1

then we see that no barrier can exit the edge. One could comment that the only way
to exit an edge of this kind is that the edge disappears while the solution follows

it. Similar interpretation can be given for the second semicontinuity described in
Lemma 3.1.

It is shown in [3], under the assumption that ∂F (x) is of class C1 for all x ∈ Ω, that
for each barrier solution x(·) there exists an absolutely continous nonzero function
p : [0, T ] → � d (adjoint function) for which

TM (x(t)) = (p(t))− and hF (x(t), p(t)) = 〈ẋ(t), p(t)〉 = 0.

This implies in particular that at those points where the derivative exists the inclusion

ẋ(t) ∈ ∂SF (x(t)) holds. We show a bit further that this last inclusion is valid without
the assumption of smoothness of ∂F (x) and for all t and all elements of the contingent
Dx(t) instead of ẋ(t) only.
We start with another theorem to be used in the proof of the above mentioned

property and which may present an interest by itself. In [3] (Lemma 2.2) the equal-
ities

−IntTF (x(t))(ẋ(t)) = DM (x(t)), IntTF (x(t))(ẋ(t)) = D 
M

(x(t))

were proved, where x(·) is a barrier solution, F a Lipschitz multifunction and the

boundaries ∂F (x) are smooth. It was shown first, even without the smoothnes
mentioned, that the left-hand terms are included in the right-hand terms. The

theorem below gives a stronger version of this result. First, we consider not only
the derivatives ẋ(t) (where they exist) but any v ∈ Dx(t) for any t. Next, the

left-hand side terms will be essentially larger and at the right-hand side we put the
hypertangent cones which on the contrary are usually essentially smaller than the

Dubovitsky-Miliutin cone.

Theorem 3.1. Let F : Ω  � d be a Lipschitz multifuction and let 0 /∈ F (x) in
an open set U ⊂ Ω. If the boundary ∂M is semipermeable in U and x(·) is a barrier
solution defined on [0, T ] then for every t ∈ (0, T ] and v ∈ Dx(t)

(6) −IntTSF (x(t))
(v) ⊂ C◦M (x(t)), IntTSF (x(t))

(v) ⊂ C◦
M

(x(t)).

���������
. The idea is similar to that in Lemma 1.2 in [3], however, some tech-

nical difficulties have to be overcome as the interiors of F (x) may be empty. If
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Int SF (x(t)) 6= ∅ then the same is true for s near to t. So for the proof we may

assume it to be nonempty.
Let w ∈ −IntTSF (x(t))

(v), w 6= 0. In view of Proposition 4.2.3 [2] there is h > 0
for which

v − hw ∈ Int SF (x(t)).

Due the continuity of F we have

∃% > 0, ∃γ > 0, ∀y ∈ B(x(t), %) : Sv−hw+γB1 ⊂ SF (y).

We fix % and γ as above and define

α = inf {dist(0, F (y) ∩ Sv−hw+γB1) ; y ∈ B(x(t), %)}

which is greater than 0 due to the continuity of F and compactness of B(x(t), %).
Take z ∈ M∩B(x(t), %/2) and u ∈ Sv−hw+γB1 . The intersection F (y)∩S{u} defines

on B(x(t), %) an upper semicontinuous map with nonempty values and dist(0, F (y)∩
S{u}) > α. Thus on some interval [0, τz,u] there exists an absolutely continuous, real
valued function ξ(·) satisfying the conditions

ξ̇(s) > α, ξ(0) = 0, ξ(τz,u) =
%

2

and such that the function
y(s) = z − ξ(s)u

is a solution of the differential inclusion ẏ ∈ −F (y). The condition (ii) from Defini-
tion 2.1 implies now that the segment [z, z + %u/2] is contained in M .

We have thus proved that w ∈ C◦M (x(t)) and so the first inclusion from the asser-
tion is true.

The second inclusion is an immediate consequence of the first due to the equality
C◦

M
(x(t)) = −C◦M (x(t)) ([2], Proposition 4.5.9.).
To see an example where the hypertangent cone is a proper subset of the

Dubovitsky-Miliutin cone at points belonging to a barrier, one can use F from

Example 3.1, M = {(x1, x2, x3) ; x3 6 |x2|} and a barrier solution defined by
x(t) = (t, 0, 0). Then we have

C◦M (x(t)) = {(y1, y2, y3) : y3 < −|y2|} , DM (x(t)) = {(y1, y2, y3) : y3 < |y2|} .

Theorem 3.1 in connection with the equality

TSF (x(t))
(v) = cl

(
SF (x(t)) +

� · v
)

(Lemma 4.2.5 [2]) implies
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Corollary 3.1. Under the assumptions of Theorem 3.1 the following inclusions
hold for t ∈ (0, T ]:

(7) −Int SF (x(t)) ⊂ C◦M (x(t)), Int SF (x(t)) ⊂ C◦M (x(t)).

It was mentioned before that for ∂F (x) smooth the inclusion ẋ(t) ∈ ∂ SF (x(t)) holds

(for those t for which the derivative ẋ(t) exists). Another corollary to Theorem 3.1
is the following generalization of this property—we do not use any smoothness as-

sumption.

Theorem 3.2. Let F : Ω  � d be a Lipschitz multifunction, 0 /∈ F (x) for x in

an open set U ⊂ Ω and letM have semipermeable boundary in U . If x(·) is a barrier
solution defined on [0, T ] then

(8) Dx(t) ⊂ ∂SF (x(t))

for all t ∈ (0, T ].
���������

. The solution x(·) does not exit M and so Dx(t)) ⊂ TM (x(t)) for all t.
Suppose that for some t > 0 we have

v ∈ Dx(t) \ ∂SF (x(t)).

As v ∈ F (x(t)) (due to the inclusion Dx(t) ⊂ F (x(t)) true for all t—see for exam-
ple [19] or [9]) so v must belong to Int SF (x(t)). Taking into account the inclusion

C◦
M

(x(t)) ⊂ D 
M

(x(t)), the equality D 
M

(x(t)) =
� d \ TM (x(t)) and (7) we get

v /∈ TM (x(t))—this contradicts the previous statement and completes the proof. �

Corollary 3.2. If v1, v2 ∈ Dx(t) then

(−IntTSF (x(t))
(v1)) ∩ IntTSF (x(t))

(v2) = ∅.

It is implied by the equality

DM (x(t)) ∩ D 
M

(x(t))) = ∅

and the inclusions

−IntTSF (x(t))
(v1) ⊂ DM (x(t)), IntTSF (x(t))

(v2) ⊂ D M (x(t))

provided by Theorem 3.1.

A consequence of this corollary is the following property:
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Corollary 3.3. If some v ∈ Dx(t) lies in the relative interior of an extremal face
of TSF (x(t))

(v) of dimension d − 1 then the whole contingent Dx(t) is contained in
that extremal face.

4. Families of sets with semipermeable boundary.

We start with the unions of sets with semipermeable boundaries.

Proposition 4.1. Let F : Ω  � d be a Lipschitz multifunction and {Mα : α ∈
I} a family of sets with semipermeable boundaries in an open set U ⊂ Ω. Then
∂ cl

( ⋃
Mα

)
is semipermeable in U .

���������
. Remark first that if for some ε > 0 the inclusion V + εB1 ⊂ U holds

then there is T > 0 such that for every ξ ∈ V and every solution x(·) of (1) with
x(0) = ξ this solution can be extended to [0, T ] (if it was not already defined on that
interval) and every such solution on [0, T ] stays in U .

Take ξ ∈ U ∩ ∂ cl
( ⋃

Mα

)
. There is a sequence ξn → ξ with ξn ∈ Mαn . Due

to the semipermeability of ∂Mα and the previous remark we get for some T > 0 a
family of solutions xn(·) ∈ SolF (ξn, T ) such that xn(t) ∈ Mαn . The sequence xn(·)
has a subsequence which is convergent to a solution x(·) ∈ SolF (ξ, T ) which satisfies
x(t) ∈ cl

( ⋃
Mα

)
—so (i) is justified.

Suppose now that (ii) is not true forM = cl
( ⋃

Mα

)
. For some ξ ∈ U ∩ cl

( ⋃
Mα

)

and T > 0 we would have then x(·) ∈ Sol−F (ξ, T ) satisfying x(t) ∈ U on [0, T ] and
x(s) /∈ cl

( ⋃
Mα

)
for some s ∈ (0, T ]. We take a sequence ξn ∈ ⋃

Mα converging
to ξ. In view of Filippov’s theorem ([2], Theorem 10.4.1) there is a sequence xn(·) ∈
Sol−F (ξn, T ) convergent uniformly to x(·). By semipermeability of ∂Mαn we have

xn(s) ∈ Mαn , which contradicts x(s) /∈ cl
( ⋃

Mα

)
and completes the proof. �

For an arbitraty family Mα of sets with boundary semipermeable in U the inter-

section U ∩ ∂ cl
( ⋃

Mα

)
may be empty. If we consider families for which this does

not happen it is possible to prove the existence of greatest set with semipermeable

boundary like in the following theorem.

Theorem 4.1. Suppose F : Ω  � d is a Lipschitz multifunction, U ⊂ Ω open,
ξ ∈ U and Mξ the family of sets M with semipermeable boundary in U ⊂ Ω for
which ξ ∈ M̂ . ThenMξ has the greatest element with respect to inclusion.

Using the proof of Lemma 1.1 in [3] one can show that for arbitrary nonempty

subfamily ofMξ, if M is its union then ξ ∈ M̂ . The remaining part of proof consists
in applying in a standard way the Kuratowski-Zorn lemma.
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We pass now to the discussion of semipermeability of the boundary of the inter-

section of sets with semipermeable boundaries. Remark first that the boundary of
the intersection of even only two such sets may not be semipermeable—for exam-
ple, the intersection M1 ∩ M2 of sets defined in Example 2.1. In order to get the

semipermeability of intersection we need the condition of monotonicity.

Proposition 4.2. Assume F : Ω � d is a Lipschitz multifunction. Let I be a lin-

early ordered set and {Mα : α ∈ I} a monotone family of sets with semipermeable
boundaries in an open set U ⊂ Ω. Then the intersection

⋂
α∈I

Mα has semipermeable

boundary in U .

���������
. Let ξ ∈ ⋂

α∈I

Mα. There is T > 0 such that for every α ∈ I there is a

solution xα(·) ∈ SolF (ξ, T ) such that xα(t) ∈ Mα for t ∈ [0, T ].
By Lindelöf’s theorem there is a sequence αn ∈ I such that

⋂

α∈I

Mα =
∞⋂

n=1

Mαn .

Consider the sequence xαn(·). It has a subsequence convergent to a solution x(·)
which of course satisfies x(t) ∈

∞⋂
n=1

Mαn on [0, T ]—the condition (i) is thus proved.

It is obvious that
⋂

α∈I

Mα satisfies (ii)′ which is equivalent to (ii)—this completes

the proof.

The intersection of a family of sets with semipermeable boundary in U may have
no common points with U . But even if we restrict ourselves to a subfamily where

this does not happen there may not exist the smallest with respect to inclusion set
with semipermeable boundary. Take Example 2.1 mentioned above and the family

of M such that the origin belongs to M̂ . Then both M1 and M2 are minimal sets
in this family and none of them is of course the smallest. The existence of minimal

elements can be proved—Proposition 4.2 permits to prove by a standard reasoning,
again using the Kuratowski-Zorn lemma, the following property.

Theorem 4.2. Assume that F : Ω � d is a Lipschitz multifunction and Nξ the

family of sets M with semipermeable boundary in U for which ξ ∈ M . Then Nξ has

at least one minimal element with respet to inclusion.
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5. Regularity of barrier solutions and barriers

The topic of this section is the C1-regularity of barrier solutions and barriers.
Obviously, these closely connected notions are not equivalent—the trajectory of a

C1 function need not be a C1 curve and also a C1 curve may be a trajectory of
a function which is not C1. The section consists of two parts. First, we show how

the domain of applicability of results in [3] and [4] can be enlarged using the notion
of equivalent differential inclusions. Next, using a different approach, we prove a
result which cannot be deduced from those papers.

5.1. Application of equivalent differential inclusions. Condition (4), equiv-
alent to semipermeability under Lipschitz condition, suggests that semipermeability

of surfaces should not be altered if we replace F (·) by another multifunction G(·)
such that the sets F (x) and G(x) generate the same cones. As we define semiperme-
ability through (i), (ii) in Definition 2.1 so we must have existence of solutions—some
additional assumptions on G will be thus required.

Conditions (i), (ii), although formulated in terms of solutions, depend in fact only

on their trajectories by which we mean images {x(t) : t ∈ [0, T ]} of solutions. We call
two differential inclusions equivalent if they have the same families of trajectories.

The following proposition is an obvious consequence

Proposition 5.1. If two differential inclusions are equivalent then a surface is
semipermeable with respect to one of them if and only if it is semipermeable with

respect to the other.

A condition on equivalence of differential inclusions given in [13] can be applied
here. It requires the function

w(K, p) = sup
({

λ > 0: λ · p

‖p‖ ∈ K
}
∪ {0}

)

defined for all closed sets K ⊂ � d and 0 6= p ∈ � d . The following theorem is proved

in [13].

Theorem 5.1. Suppose F, G : Ω → Cl( � d ) are Borel measurable and there are
positive constants c1, c2 such that if w(F (x), p) and w(G(x), p) < +∞ then

(9) w(F (x), p) 6 c1 · w(G(x), p), w(G(x), p) 6 c2 · w(F (x), p).
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Assume also existence of η > 0 such that

if w(F (x), p) = +∞ then w(G(x), p) > η,

if w(G(x), p) = +∞ then w(F (x), p) > η.

Differential inclusions ẋ ∈ F (x) and ẋ ∈ G(x) are then equivalent.

It can be applied to prove the following theorem which is of interest for us.

Theorem 5.2. Let a multifunction F : Ω  � d be Borel measurable and have

closed convex values. We assume that for some r > 0 and all x ∈ Ω the intersection
rB1 ∩F (x) is empty, ∂SF (x) \ {0} is a C1 manifold for all x and all faces of SF (x) are

half-lines (apart from SF (x) itself). If in addition the multifunction H(·) defined as
H(x) = SF (x) ∩B1 is Lipschitzian then every barrier on an arbitrary semipermeable

surface for (1) is a C1 curve in
� d .

We underline that barrier solutions themselves need not be C1—they are merely
absolutely continuous.

We sketch now the proof of Theorem 5.2. It is done by showing that there is
another differential inclusion ẋ ∈ G(x) equivalent to (1) to which we can apply
Corollary 2.2 in [3]. This corollary states that if F (·) is Lipschitzian, the sets F (x)
are strictly convex, compact and the boundaries ∂F (x) are C1 manifolds then any

barrier solution is C1. This and the fact that the derivative of barrier solutions here
cannot be zero implies the regularity of the trajectory itself, i.e. of the barrier.

We shall need the notion of a Steiner point of a convex compact set K ⊂ � d—one
of the possible definitions is by the integral formula [20]

s(K) =
1

vol(B1)

∫

Sd−1

pσ(p, K) dω(p)

where ω is the Lebesgue measure on the unit sphere Sd−1 in
� d and

σ(p, K) = max{〈p, u〉 : u ∈ K}

is the support function of the set K. The important feature of a Steiner point is

that its dependence on K is Lipschitzian with respect to the Hausdorff metric (see
for example [15]).

For 0 6= p ∈ � d put
Πp = {u ∈ � d : 〈p, u〉 = ‖p‖}.

We introduce an auxiliary Lipschitzean multifunction

Γ(x) = SF (x) ∩Πs(H(x)).
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Note that for every v ∈ ∂SF (x), v 6= 0, the intersection S{v} ∩ Γ(x) is a singleton.
Moreover, Γ(x) is strictly convex in Πs(H(x)).
Using exactly the same method as in Lemma 4.1 in [18] one can define for every

x a set G(x) with boundaries ∂G(x) being C1, Γ(x) ∩ ∂SF (x) = G(x) ∩ ∂SF (x) and

0 /∈ G(x). Moreover, G(·) is a Lipschitzian multifunction equivalent to F (·).

5.2. Regularity of barrier solutions for multifunctions whose values
have nonsmooth boundaries. We are now interested in the regularity of barrier
solutions themselves, not only of their trajectories. The result given in the first part

of this section made use of Corollary 2.2 in [3] by constructing equivalent differential
inclusions to which it could be applied. The second part will be devoted to the
case where the recourse to this theorem is not possible as no equivalent differential

inclusion may in general satisfy its assumptions.
We sketch very shortly the two steps which lead to the proof of Corollary 2.2 in

[3] and next discuss what and how can be done in a more general setting. So let x(·)
be a barrier solution for M with semipermeable boundary.
������������� �!�

. (We mentioned it already before.) It is shown that when F (·) is
a Lipschitz multifunction and ∂F (x) are C1 manifolds then to each barrier solution

there corresponds an absolutely continuous map p : [0, T ] → � d , called the adjoint
function, for which

(10) TM (x(t)) = p(t)−

holds for all t ∈ (0, T ) and p(0)− ⊂ TM (x(0)). Moreover,

(11) hF (x(t), p(t)) = 〈ẋ(t), p(t)〉 = 0 a.e. in (0, T ).

Equality (10) shows a kind of regularity of ∂M along barriers—the contingent cone
to M at every point which is crossed by a barrier solution is a half-space.

���#"$�&%(')��� �*�
. Under the additional assumption of strict convexity of F (x) the

equality (11) implies that

(12) ẋ(t) = Arg min
v∈F (x(t))

〈v, p(t)〉 a.e. in [0, T ].

Due to the continuity of F (·) and strict convexity of F (x) the single-valued map

(x, p) → Arg min
v∈F (x)

〈v, p〉

is continuous and thus
t → Arg min

v∈F (x(t))
〈v, p(t)〉
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is continuous and, as x(·) is obviously continuous, looking at (12) we see that ẋ(·) is
equal almost everywhere to a function continuous everywhere, so they must coincide.
Remark first that strict convexity of F (x) is essential for the regularity of barrier

solutions. To be exact, it is not the strict convexity of the whole F (x)—as ẋ(t) lies
always on the intersection F (x(t))∩∂SF (x(t)), only the strict convexity of the part of
F (x) which touches ∂SF (x) is important. This can be put precisely in two conditions:

(a) for every 0 6= v ∈ ∂SF (x) the intersection F (x) ∩ S{v} is a singleton.
(b) The only extremal faces of SF (x) (apart from SF (x) itself and {0}) are extremal
rays.

The last property is equivalent to the strict convexity of SF (x)∩Πs(H(x)) in Πs(H(x)).

To see why x(·) may be not C1 when (a) is not true it is enough to analyze
Example 2.1 with slighty modified F (x) composed of points (y1, y2) ∈ B((1, 1),
1
2 (1 +

√
2)) with y1, y2 > 0. There are plenty of barrier solutions which are not C1.

For example all solutions of the initial value problem

ẋ1 = 0, ẋ2 ∈ [1− α, 1 + α], x(0) = (0, 0)

where α = 1
2

√
2
√

2− 1, are barrier solutions for the semipermeable surface ∂M1.

To see the role of (b) one can construct a similar example in
� 3 where (a) will be

satisfied but (b) will not. F can be chosen to be constant, contained in the positive
orthant and such that the intersection ∂F (x) ∩ M will be a whole segment Z with

positive length, where M = {(y1, y2, y3) : y2 = y3 = 0} is semipermeable. Again, all
solutions to the initial value problem ẋ ∈ Z, x(0) = 0, will be barrier solutions and
many of them not of class C1.
The smoothness of ∂F (x) or even ∂SF (x) \ {0} is not crucial for the smoothness

of barrier solutions. In the remaining part of this section we show a possible way to
prove the theorem on smoothness of barrier solutions in this situation. We follow the

plan described in two steps above, i.e. we want to use continuous adjoint functions
for which (12) proves the desired continuity of ẋ(·).
The absence of smoothness of ∂F (x) does not permit to use the adjoint functions

on the basis of results from [3]—the method of obtaining adjoint functions there

is based in an essential way on that smoothness. To get them it was necessary to
know that TM (x(t)) is a half-space along barrier solutions and p(t) was chosen then
according to (10). This is no more possible without smoothness of ∂F (x) as shows
the following example:
� �������
	��

5.1. We use F (·) from Example 3.1. The setM = {(x1, x2, x3) : x3 6
−|x2|} has semipermeable boundary, x(t) = (t, 0, 0) is a barrier solution and the cone
TM (x(t)) does not contain any half-space. The setM = {(x1, x2, x3) : x3 6 |x2|} has
also semipermeable boundary, the same x(·) is a boundary solution and TM (x(t)) is
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not contained in any half-space. In the former case we have too many directions to

be chosen as p(t), in the latter case there is no one.

We show below how a theorem on existence of adjoint functions for time optimal
solutions can be applied to our problem.

Let ∂M be semipermeable in U and suppose x(·) is a barrier solution, x(0) = x0.
As x(t) ∈ A(x0, t) ⊂ M̂ and x(t) ∈ ∂M so x(t) ∈ ∂M̂ and thus x(t) ∈ ∂A(x0, t).
This implies that x(·) is a boundary solution for the initial value problem (1), (2)
and we can try to find the adjoint function using this fact.

If x(·) is a time optimal solution then it is also a boundary solution—the inverse
is not always true. However, each point ξ ∈ ∂A(t, x0) is reached by at least one time
optimal solution so among barrier solutions there are many that can also be treated

as time optimal. One can use then a theorem on existence of adjoint functions to
time optimal solutions (see for example [23], Theorem 7.4) to justify the following

proposition.

Proposition 5.2. Let F (·) be a Lipschitz multifunction with F (x) strictly convex
for all x. If a barrier solution is at the same time a time optimal solution then it is

of class C1.

More detailed discussion of this and other ways of proving regularity of barrier

solutions without regularity of ∂F (x) will be included in another paper which is
under preparation by the first author.
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