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Abstract. A short approach to the Kurzweil-Henstock integral is outlined, based on
approximating a real function on a compact interval by suitable step-functions, and using
filterbase convergence to define the integral. The properties of the integral are then easy to
establish.
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1. Introduction

The Kurzweil-Henstock integral is a generalization of the Riemann integral, which

includes Lebesgue and Denjoy-Perron integrals. The outline in this paper may make
this integral accessible to a wider audience. Most textbook treatments of the Rie-

mann integral are burdened with many summations (and associated notation), most
of which can be avoided (Craven 1982) by using integrals of step-functions as ap-

proximations to Riemann integrals. Since a Kurzweil-Henstock integral is the limit
of integrals of a suitably constructed sequence of step-functions, a simpler presenta-

tion (omitting proofs of intuitive properties of step-functions) can be used here also.
Details of δ-fine divisions are needed for certain critical theorems, but not all proofs.

The convergence of approximating sums to the Henstock integral is naturally de-
scribed by filterbase convergence (as likewise for the Riemann integral though not

often expressed so). While most proofs here are based on Lee (1989), the present
approach allows a simpler presentation of the basic theory, and also offers a sim-

pler approach to measure, and Lebesgue (and Lebesgue-Stieltjes) integral, than the
traditional constructions. (Some proof details are omitted in this short account.)

For other presentations, see Kurzweil (1980), Henstock (1991), Lee (1989), Lee and
Výborný (2000), and Schwabik (1999).
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The traditional distinctions between bounded and unbounded integrands, or do-

mains of integration, are unimportant here. Various integrals, e.g.
∫∞
0 x−1 sin x dx,

are definable directly as Kurzweil-Henstock integrals, rather than only as limits of
integrals. The critical distinction is between absolute, when

∫
f is defined and also∫

|f | is finite, and non-absolute, or conditional, when only
∫

f is defined. In this
presentation, KH(I) denotes the class of functions possessing a Kurzweil-Henstock
integral on I , and AKH(I) denotes the strictly smaller class for which the integral
is absolute. For comparison, the Lebesgue integral is absolute, and the class L(I) of
Lebesgue integrable functions on I corresponds to AKH(I).

2. Basic constructions

Consider first integrating a real function f on a compact interval I = [a, b]. A
gauge δ(·) is a positive function, δ(·) > 0 on I . A subdivision: a = x0 < x1 < x2 <

. . . < xn = b is called δ-fine if (∀i)ξi ∈ I i, with Ii := (xi−1, xi] ⊂ N(ξi), where
N(ξi) = (ξi − δ(ξi), ξi + δ(ξi)) denotes a δ-neighbourhood of ξi. From this, define a

δ-step-function approximation (δsfa) of f as f δ(·) :=
∑
i

f(ξi)χi(·), where χi is the

indicator function of Ii := (xi−1, xi]. Denote by Aδ the set of all
∫

I f δ, in which f δ

is a δsfa, and the integral of a step-function has its elementary meaning.

Cousin’s Lemma states that a δ-fine subdivision exists for each gauge δ(·) > 0
on a compact interval I . (If the subdivision does not exist, then successive binary

subdivision of I gives a nested sequence of intervals I j (the closure of Ij), with limit
point ξ, for which a δ-fine subdivision does not exist. But then some Ij ⊂ N(ξ), a
contradiction.)
Since then each Aδ is nonempty, the sets Aδ form a filterbase, whose defining

properties are:

(∀δ(·) > 0) Aδ 6= ∅; (∀α(·), β(·) > 0) (∃γ(·) > 0) Aγ ⊂ Aα ∩ Aβ .

For a sequence {x1, x2, . . . , xn, . . .}, the tails A1/n := {xn, xn+1, . . .} form a filter-
base, and the usual sequential convergence agrees with the convergence of {A1/n}
as defined below. For the filterbase of sets Aδ , γ(·) = min{α(·) · β(·)}; and γ-fine
implies α-fine. A finer subdivision keeps all subdivision points, and adds more.

The filterbase {Aδ : δ(·) > 0} converges to y if (denoting neighbourhoods of y by
U(y)):

(∀U(y)) (∃α(·) > 0) Aα ⊂ U(y).

The limit y, if it exists, is the Kurzweil-Henstock (briefly, KH) integral
∫ b

a f ; denote
by KH(I) the set of functions for which this integral exists. This convergence implies
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the Cauchy condition:

(∀ε > 0) (∃α(·) > 0) diam(Aα) := sup{d(u, v) : u, v ∈ Aα < ε},

where the metric d(u, v) := |u − v| on  is complete. By a theorem of Cantor (see
Dugundji 1966), the Cauchy condition implies that a limit exists. (For n = 1, 2, . . .,

find Aα(n) with diam(Aα(n)) < 1/n. Then {Aα} converges if the filterbase {Bn :=
n⋂
1

Aα(n) : n = 1, 2, . . .} converges, and choosing bn ∈ Bn, {bn} is a Cauchy sequence,
convergent since the metric space is complete.)� ������� � �������������! ��"�#��$%���'& � (#)+*,$+��-	.0/1$+���0�#�2�435���6�#$+7�(4�%-8��9

Each

constant function (with value c) is in KH(I), since each element of each Aδ equals
c(b − a). Each step-function is in KH(I) (any contribution from a jump points c is

O(δ(c)). Each continuous function is in KH(I) (as a uniform limit of step functions).
Each Riemann-integrable function is in KH(I) (take only constant functions δ(·)),
to reproduce the definition of Riemann integral).: ;<��$+���0�������=���?><����$+-	�A@�$%�

. So far, integration has related to the usual
length on  . However, there is an immediate generalization from ∫ b

a
f(x) dx to∫ b

a f(x) dg(x), where g(·) is an increasing right-continuous function, defining a pre-
measure g by g((α, β]) := g(β)−g(α), and

∫
I
c dg := cg(I) for constant c and interval

I . Thus a Kurzweil-Henstock-Stieltjes integral is defined immediately.B!�6C�� � ��D6$%DE$F;<��$+���0�����
. Define  ∗ :=  ∪ {−∞} ∪ {∞}, assigning neigh-

bourhoods [−∞,−c) to−∞ and (c,∞] to∞, to make  ∗compact. Then f :  ∗ →  ∗
may be considered, instead of f :  →  . Then the definition of convergence allows
“convergence” to +∞.
Denote then f ∈ KH(I) if the Kurzweil-Henstock integral exists with finite value.

Define also f ∈ AKH(I) (absolute Henstock) if both f ∈ KH(I) and |f | ∈ KH(I)
(Unlike the Lebesgue integral, KH(I) 6= AKH(I). So the term integrable needs qual-
ification.)

3. Some properties of Kurzweil-Henstock integrals

GH���I$%�%(#�	� J �K�LDM��DID2�	�#� N �	� J ���O���<��$+7�(��K-

∫

I

(αf + βg) = α

∫

I

f + β

∫

I

g;
∫

I

f +
∫

J

f =
∫

I∪J

f

if the KH integrals on each side exist finitely, and I, J are intervals. Similarly
∫

I f 6∫
I
g when f, g ∈ H(I) and f 6 g.
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PQ(#�<���
. These results hold trivially for step-functions. They extend to KH

integrals by taking limits of suitable step-functions.R0�<��$+7�(��%�������S� N $+(��T� � CI���<��$+( N �K-
. Let f ∈ KH(I) where I is an interval.

Then f ∈ KH(J) for each subinterval J ⊂ I. �
PQ(#�<���

. A filterbase of elements
∫

I
f δ, convergent to

∫
I
f , is Cauchy. Then

replacement of each
∫

I f δ by
∫

J f δ gives also a Cauchy filterbase./!$U���0���2��3�VW�1GX$+YZY5�
. Let f ∈ KH(I). For each ε > 0, there exists a δsfa f δ,

with typical subinterval J , for which
∑
J

|
∫

J f −
∫

J f δ| < ε. �

PQ(#�<���
. By definition of KH integral, there is a gauge β such that |

∫
I
(f−f δ′

)| <
ε/4 for each βsfa f δ′

, with δ′ 6 β, having typical interval J . Let E be the union of a
finite subset of the J ; let V := I \E. The combination δ of δ′ on E with some δ′′ 6 β

on V has δ 6 β. Since f ∈ KH(V ) by the previous result, |
∫

V f −
∫

V f δ| 6 ε/4.
Substituting δ′ = δ and subtracting gives

∫
E

f −
∫

E
f δ| 6 ε/4. Now choose E as the

union of those J for which
∫

J f δ −
∫

J f > 0. Then

∑

J⊂I

∣∣∣∣
∫

J

f δ −
∫

J

f

∣∣∣∣ =
∑

J⊂E

[ ∫

J

f δ −
∫

J

f

]
+

∑

J⊂V

∣∣∣∣
∫

J

f δ −
∫

J

f

∣∣∣∣ 6 ε/2 + ε/2.

[S���I�K�����\$E]^��� N $U(#7�$+�L�F$=_`�\$+��(#$UY
. Let I := [a, b]; fn ∈ KH(I) (n =

1, 2, . . .); (fn(·)} → f(·) pointwise; fn+1(·) > fn(·); {
∫

I fn} 6 k < ∞. Then
{
∫

I
fn} →

∫
I
f , for Kurzweil-Henstock integrals. �

PQ(#�<���
. Let L = sup

∫
I
fn; then L 6 k < ∞. Choose ε > 0; then (∃ν) (∀n > ν)

0 6 L−
∫

I fn < ε. Now

(∀ξ ∈ I) (∃m(ξ) > ν) |fm(ξ)(ξ) − f(ξ)| < ε.

For each n, a gauge δn > 0 exists by Henstock’s Lemma such that when δ is a δ-fine
gauge with typical subinterval J , then ΣJ |

∫
J
(f δn

n − fn)| < 2−nε for any δnsfa f δn
n

of fn. Choose the gauge δ(ξ) := δm(ξ)(ξ). For such a δ-fine subdivision, with ξ ∈ J ,
denote f̂(x) := fn(x) with n = m(ξ) when x ∈ J . Then:

0 6 L−
∫

I

f δ 6
∑

J

∣∣∣∣
∫

J

[f δ − f̂ δ]
∣∣∣∣ +

∑

J

∣∣∣∣
∫

I

[f̂ δ − f̂ ]
∣∣∣∣ +

∣∣∣∣
∫

I

f̂ − L

∣∣∣∣

6 ε|I |+
∑

n

2−nε + ε;

L− ε 6
∫

I

fν 6
∫

I

f̂ 6
∫

I

fp 6 L,

where p = maxm(ξ) over the finite set of ξ.
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[S��(#$a� � �����#�������,��� N $
KH

���<��$+7�(4�K-8�
. The limit f of a monotone increas-

ing sequence of functions fn ∈ KH(I), is also in KH(I).Gb�%�#���8��$= I(��� �$+(�� J
. If p 6 fi 6 q (i = 1, 2), where p, fi, q ∈ KH(I), then

f := max{f1, f2} ∈ KH(I). �
PQ(#�<���

. Choose ε > 0. By Henstock’s Lemma, a δ-fine subdivision of the interval

I exists, with typical subinterval J , and δsfa f δ
i , for which:

∑

J

∣∣∣∣
∫

J

(f δ
i − f)

∣∣∣∣ < ε (i = 1, 2),
∣∣∣∣
∑

J

max
{ ∫

J

f1 ,

∫

J

f2

}
− L

∣∣∣∣ < ε

where this
∑

max increases with further subdivision, and has a finite sup L over
subdivisions, because of the bounds p and q. Then

∑

J

max
{ ∫

J

f1,

∫

J

f2

}
− 2ε 6

∑

J

max
{ ∫

J

f δ
1 ,

∫

J

f δ
2

}
=

∑

J

∫

J

fδ

6
∑

J

max
{ ∫

J

f1,

∫

J

f2

}
+ 2ε.

As ε → 0 and δ(·) → 0, the terms at left and right → L, and the middle terms
→

∫
I
f. �

c`$+Y5�K(#32�
. Let f+ := max{f, 0} and f− := max{−f, 0}; then f = f+ − f−. In

order to deduce from f ∈ KH(I) that f+ ∈ KH(I), the least restrictive bounds for
the lattice property are −f− 6 f 6 f+ and −f− 6 0 6 f+ , which only apply if

f+ ∈ KH(I) and f− ∈ KH(I), hence when |f | = f− + f+ ∈ KH(I).

Thus f ∈ AKH(I) ⇒ |f | ∈ KH(I). Note that I is here restricted to intervals.de��YT���L�%��$�Df����� N $+(�7�$+�L�F$S���I$+��(#$+Y
. Let p 6 fn 6 q (n = 1, 2, . . .)

with p, q, fn ∈ KH(I), and fn(x) → f(x) for each x ∈ I. Then f ∈ KH(I), and∫
I
fn →

∫
I
f.

PQ(#�<���
. Since {hn(x)}, where hn(x) := inf

n>j
fj(x), is an increasing sequence,

with limit f(x), and bounded by p and q, the result follows from monotone conver-

gence, provided that hn ∈ KH(I). This follows from monotone convergence, since
{ inf

i6n6j
fn(x)}j increases to hn(x).

(There exist also convergence theorems for non-absolute integrals, see e.g. [8]).R0�<��$+7�(��%�������M� N $U('�S� � CL��$U�
. Let f ∈ AKH(I) and E ⊂ I , with indicator

χE ∈ KH(I). Then fχE ∈ KH(I). �
PQ(#�<���

. The indicator χE is the limit of a sequence {qn} of step-functions, with
each qn taking values 1 and 0. Since −|f | 6 fqn 6 |f |, and fqn ∈ KH(I), dominated
convergence shows that fχE ∈ KH(I). (This need not hold if |f | /∈ KH(I).)
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g!$U*1�����h���<��$+7�(4�K-
. If F has a derivative F ′ at all points of an interval I =

[a, b], then F ′ ∈ KH(I), and F (b)− F (a) =
∫

I F ′. �
PQ(#�<���

. Use a gauge δ given by |(t − s)−1(F (t) − F (s)) − F ′(s)| < ε when

0 < |t− s| < δ(ε). �

4. Measure and lebesgue integral

g � -�-Q��$U�4�
. For each ε > 0, suppose that the set N ⊂

∞⋃
n=1

Iε
n for open intervals

Iε
n satisfying

∑ |Iε
n| < ε. (Then N is called a null set.) Then (∀ε > 0)

∫
χN < ε, so∫

χN = 0. A choice of gauge δ(·) with (∀ξ ∈ N) (∃i)(ξ − δ(ξ), ξ + δ(ξ)) ⊂ Iε
i shows

again that
∫

I
χN = 0. A property holding for all points except those of a null set

is said to hold almost everywhere (a.e.). The value of the integral is unchanged by
altering the integrand at the points of a null set. However, the null sets are different

if the length |In| is replaced by g(In) for some g(x) 6= x.[S$%��� � (4�KC\-�$
. A function f may be defined as measurable if it is the limit

a.e. of a sequence of step-functions; f ∈ KH(I) can be shown to have this property
(this proof is omitted), hence is measurable. A set X is measurable if its indicator

function χX is measurable; its measure is mE :=
∫

χE .[S$%��� � (#$' I(#�� �$+(�����$%�
. Let {E1, E2, . . .} be a sequence of disjoint measurable

sets, with union E; let An := E1 ∪ E2 ∪ . . . ∪En|, and fn the indicator of An, f the
indicator of E. Now 0 6 fn 6 f , fn+1 > fn, and f ∈ KH(I) if E is contained in a
compact interval I . So from the monotone convergence theorem,

n∑

j=1

mEj =
∫

I

fn →
∫

I

f = mE.

Thus the measure m has the countably-additive property.
Let f ∈ H(I); let E ⊂ I and E ⊂ A be measurable sets. Since

∫

I

χE −
∫

I

χA =
∫

I

(χE − χA) =
∫

I

χB ,

holds, where B = E \ A, from χE ∈ KH(I) and χA ∈ KH(I), there follows that
χB ∈ KH(I). Thus the difference E \ A of measurable sets is also measurable. A
similar argument shows that

∫
E

f =
∫

A
f +

∫
B

f , provided that f ∈ AKH(E).� �I$+�i� � -�-O��$U���a�+�%�hC�$j�I$U7�-�$%���#$%D
. Suppose now that f(x) = g(x) for

all x ∈ I \ N , with g ∈ KH(I). Then N =
⋃
j

Nj with Nj := (x ∈ N : j − 1 6

|f(x)| 6 j}, and N is a null set. So Nj ⊂
⋃
k

Ijk , with open intervals satisfying
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∑
k

m(Ijk) < 2−j−ki−1ε.Define a gauge δ(·) with (∀ξ ∈ Nj) (ξ−δ(ξ), ξ+δ(ξ)) ⊂ ⋃
k

Ijk .

Then the contribution to
∫

I
f δ is less than ε. Hence f ∈ KH(I), and

∫
I
f =

∫
I
g.

Consequently, in dominated convergence, {fn(x)} may fail to converge to f(x) for x

in a set N of zero measure.

5. Functions of two (or more) variables

Intervals (α, β] ⊂  (or  ∗ ) are replaced by rectangles (α1, β1] × (α2, β2]; they
may still be called intervals. The length of an interval I becomes g(I) := g(α2, β2)−
g(α1, β2) − g(α2, β1) + g(α1, β1), where g is such that g(I) > 0 for each I. (The
construction of a premeasure g for n-dimensions is detailed in Craven (1982), where it
is applied to Riemann integration.) Define

∫
I 1 dg as g(I), and the integral of a step-

function f =
∑

ciχI (where χi is the indicator of interval Ii ) as
∫

f dg :=
∑
i

cig(Ii).

Then a Kurzweil-Henstock integral may be constructed from step-functions in the
same manner as in section 2; and the basic properties are the same. In particular,

if g(α, β) = αβ, then g(I) = (β2 − α2)(β1 − α1), and the integral may be written in
conventional notation as

∫ ∫
f(x, y) dx dy.

Fubini’s theorem. Let I = A ×B ⊂  ∗2 be an interval (bounded or unbounded);
let 0 6 f ∈ KH(I). Then the Kurzweil-Henstock integrals

∫∫

A×B

f(x, y) dx dy =
∫

A

( ∫

B

f(x, y) dy

)
dx.

PQ(#�<���
. The result is immediate for step-functions. Monotone convergence

extends it to limits of increasing sequences of step-functions. Suppose now that N is

a null set; then there are intervals Iij with
∞∑

j=1

|Iij | < 1/i and (∀i) N ⊂ Ei :=
∞⋃

j=1

Iij .

Thus N ⊂ E :=
∞⋃

i=1

Ei. From monotone convergence, Fubini holds for each fi := χEi ,

then for χE (considering the sequence {1 − fi} for I bounded), then also for I

unbounded. Hence {y : (x, y) ∈ S} is null a.e. in x. Thus a limit f of an increasing

sequence of step-functions may be altered on a null set without changing the integral.
Fubini follows for f . �
c`$+Y5�K(#32�

. This is the same proof as for Lebesgue integrals. The integrals may
have value +∞. There is an extension to f ∈ AKH(I), taking both signs. Thus, if
f ∈ AKH(I), then f+ := max{f, 0} ∈ AKH(I), and f− := max{−f, 0) ∈ AKH(I).
Hence Fubini holds for this f , by subtracting the finite integrals for f+ and f−.

There exist Fubini results also for non-absolute integrals (see e.g. [8]).
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