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superlinear parabolic problems and their applications.
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1. Introduction

In this paper we study mainly parabolic problems of the form

(1.1)





ut −∆u = f(x, u), x ∈ Ω, t > 0,

u = 0, x ∈ Γ, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a domain in �n with a smooth compact boundary Γ and f is a Cara-

théodory function which is superlinear in u. Some generalizations and modifications
of (1.1) are also considered.

It is well known that under suitable assumptions on f the problem (1.1) is well

posed in an appropriate Banach space X (X = L∞(Ω), for example). Denote by
u(t, u0) the solution of this problem and let Tmax(u0) be its maximal existence time.

Assume δ > 0. Our main aim is to show that for a large class of nonlinearities,
the norm of u(t, u0), t ∈ [0, Tmax(u0) − δ), can be bounded by a constant which

depends only on δ and on the norm of the initial condition u0. In other words, we
are interested in the estimate

(1.2) ‖u(t, u0)‖X � C(δ, c0)

{
for any u0 ∈ X with ‖u0‖X � c0,

and any t < Tmax(u0)− δ,
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where Tmax(u0)− δ =∞ and C(δ, c0) does not depend on δ if Tmax(u0) =∞. Note
that under some circumstances global solutions are bounded even if the estimate
(1.2) does not hold for these solutions, see V.Galaktionov and J. L.Vázquez [16] or
M.Fila and P.Poláčik [13]. For a survey on the boundedness of global solutions we

refer to [12].

We shall also mention some results on universal bounds of the form

(1.3) ‖u(t, u0)‖X � C(δ1, δ2) for any t ∈ (δ1, Tmax(u0)− δ2),

where the constant C(δ1, δ2) does not depend on u0 at all.

The bound (1.2) has several important consequences. It implies the continuity of
the maximal existence time Tmax : X → (0,∞] and plays a crucial role in establishing
the blow-up rate of blowing-up solutions, in the study of domains of attraction of
stable equilibria and connecting orbits between various equilibria. It can also be

used for the proof of existence of multiple stationary and periodic solutions.

Let us first discuss the model case f(x, u) = |u|p−1u, p > 1, Ω ⊂ �
n bounded. Set

pS := (n+ 2)/(n− 2) if n � 3, pS :=∞ otherwise.

The bounds (1.2) and (1.3) and their proofs are strongly related to the a priori
estimates for positive stationary solutions of (1.1) which were proved in the subcrit-

ical case p < pS by D.G. de Figueiredo, P.-L. Lions and R.D.Nussbaum [11] and
B.Gidas and J. Spruck [17] (partial results were obtained earlier by R.E.L.Turner

[36], R. D.Nussbaum [26], H. Brézis and R.E. L.Turner [5]). Due to the result of
S. I. Pohozaev [27], the condition p < pS is optimal in these estimates (at least if
Ω is starshaped). The bound (1.2) for the time-dependent solutions of this model

problem was derived for any p < pS by the author in [28] under the assumption
Tmax(u0) = ∞. Partial results requiring a stronger condition on p and/or nonnega-

tivity of u were previously obtained by W.-M.Ni, P.E. Sacks and J.Tavantzis [25],
T.Cazenave and P.-L. Lions [6] and Y.Giga [18]. The condition p < pS is optimal

again.

Considering a general superlinear function f , the results on a priori estimates for
positive stationary solutions mentioned above are far from satisfactory: they require

either Ω to be convex or various technical conditions on f (either monotonicity of u �→
f(x, u)u−pS in [11] or a precise asymptotic behavior of f(x, u) as u → +∞ in [17]).
From this point of view it is interesting to know to what extent one can generalize
the results of [28] concerning the estimate (1.2) for the time-dependent solutions.

The approach in [28] is based on a bootstrap argument, interpolation, energy and
maximal regularity estimates. It turns out that the assumption Tmax(u0) =∞ and
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the precise asymptotic behavior of the nonlinearity f as |u| → ∞ are not important
for this approach. Moreover, the results remain true for more general differential
operators, boundary conditions and nonlinearities.
In Section 2 we discuss the estimate (1.2) for (1.1) and some of its consequences

(including continuity of Tmax and existence of nontrivial equilibria) in the case of
a bounded spatial domain Ω. In Section 3 we study the unbounded domain case.

Section 4 is devoted to time-dependent nonlinearities and the existence of periodic
solutions. In Section 5 we briefly mention some results on the universal bound (1.3)

and initial and final blow-up rates. In Sections 6, 7 and 8 we deal with nonlinear
boundary conditions, nonlocal problems and problems involving measures, respec-

tively. For one-dimensional problems we refer to [31, Section 6] and [7, Section 5].

2. Bounded domains

Denote F (x, u) :=
∫ u

0 f(x, v) dv and assume that there exist positive constants

p1, p2, d1, d2, d3, d4, β, r and nonnegative functions

(2.1) a1 ∈ L(p1+1)/p1(Ω), a2 ∈ L(p2+1)/p2(Ω), a3 ∈ L1(Ω), a4 ∈ Lβ(Ω)

such that

1 < p1 � p2 < pS , d3 > 2, β > n/2, r < pS,(2.2)

|f(x, u)| � d2|u|p2 + a2(x),(2.3)

f(x, u)sign(u) � d1|u|p1 − a1(x),(2.4)

f(x, u)u � d3F (x, u)− a3(x),(2.5)

|f(x, u)− f(x, v)| � d4
(
a4(x) + |u|r−1 + |v|r−1

)
|u − v|.(2.6)

Assume also that either p2 < pCL or

(2.7) p2 − p1 < κ1(p2),

where κ1 : (1, pS)→ (0,∞) is defined in [31] (cf. Figures 1 and 2 below) and

pCL := (3n+ 8)/(3n− 4) if n � 2, pCL :=∞ if n = 1.

Set
E(u) :=

1
2

∫

Ω
|∇u|2 dx−

∫

Ω
F (x, u) dx.

Then we have the following theorem (see [31] and [32]).
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Theorem 2.1. Consider the problem (1.1). Let Ω be a smoothly bounded

domain in �n . Assume (2.1)–(2.6) and either p2 < pCL or (2.7). Set X := H10 (Ω).
Then the estimate (1.2) is true, Tmax : X → (0,∞] is continuous and

(2.8) E
(
u(t, u0)

)
→ −∞ as t → Tmax(u0)− if Tmax(u0) < ∞.

If, in addition, β > n, f(·, 0) ∈ Lβ(Ω), us is an asymptotically stable equilibrium

of (1.1) in X and DA denotes its domain of attraction,

DA = {u0 ∈ X : u(t, u0) exists globally, u(t, u0)→ us in X as t →∞},

then there exist stationary solutions u+, u−, ũ ∈ ∂DA of (1.1) such that u+ > us >

u− and ũ− us, ũ− u+, ũ− u− change sign.

������� 2.1. (i) The condition (2.7) in Theorem 2.1 seems to be of technical
nature. In fact, if

f(x, u)u � d5F (x, u) + a5(x), d5 > 0, a5 ∈ L1(Ω),

then this assumption can be replaced by

(2.9) p2 − p1 < κ2(p2),

where κ2 : (1, pS) → (0,∞) is defined in [31], κ2 > κ1 (see Figures 1 and 2). The

same is true for all assertions in the subsequent sections.

1 p(n) = 3 pCL = 7 p∗ .= 12.6 16 p2

1
2

2
√

2

p2 − p1

p1 = 1

κ1
κ2

�

�

Figure 1. Functions κ1, κ2 for n = 2
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In Figures 1 and 2 we set p(n) := 1 + 4/n,

p∗ :=





9n2 − 4n+ 16
√

n(n− 1)
(3n− 4)2 if n � 2,

+∞ if n = 1.

Note that the condition (2.7) or (2.9) is superfluous if p � p(n) or p < p∗, respectively.

1 p(n) pCL p∗ pS p2

4/3

0.4
κ∗

p2 − p1

p1 = 1

κ1

κ2

�

�

Figure 2. Functions κ1, κ2 for n = 3: p(n) = 2 + 1/3, pCL = 3.4, p∗ .
= 4.3, pS = 5,

κ∗ .
= 0.27

(ii) The property (2.8) plays an important role in the proof of complete blow-

up, see [2]. This property was proved earlier by H. Zaag [37] for the model case
f(x, u) = |u|p−1u under additional assumptions p(3n− 4) < 3n+ 8 or u � 0.
(iii) Continuity of Tmax for nonnegative solutions, bounded domains Ω and convex

functions f = f(u) with subcritical growth was previously proved by P.Baras and

L.Cohen [2]. Note that the function Tmax need not be continuous in the supercritical
case, due to a result of V.Galaktionov and J. L.Vázquez [16]. More precisely, the set

{u0 : Tmax(u0) =∞} need not be closed.
(iv) If us = 0 in Theorem 2.1 then this theorem guarantees the existence of a

sign-changing equilibrium ũ of (1.1) lying on ∂DA. Similar assertions (without the
information ũ ∈ ∂DA) were proved by variational and topological methods by many

authors: see the discussion in [32], for example.
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3. Unbounded domains

Let F and E be the same as in Section 2. Assume that there exist positive

constants p1, p2, d1, d2, d3, d4, β, r satisfying (2.2) and nonnegative constants e1, C1
such that

|f(x, u)| � d2(|u|p2 + |u|) + a2(x),(3.1)

f(x, u)sign(u) � d1|u|p1 − e1|u| − a1(x),(3.2)

f(x, u)u � d3F (x, u) + C1u
2 − a3(x),(3.3)

|f(x, u)− f(x, v)| �
(
a4(x) + d4

(
1 + |u|r−1 + |v|r−1

))
|u − v|,(3.4)

f(·, 0) ∈ Lβ(Ω),(3.5)

where a1, a2, a3, a4 satisfy (2.1). Notice that the assumptions (3.1)–(3.4) are equiv-
alent to (2.3)–(2.6) if Ω is bounded. The conditions above guarantee, in particular,

that the problem (1.1) is well posed in H10 (Ω). Denote by Tmax(u0) the maximal
existence time of the solution in H10 (Ω). Then we have the following theorem (see

[31]).

Theorem 3.1. Let Ω ⊂ �
n have a smooth compact boundary (or let Ω be a half-

space). Assume (2.1)–(2.2), (3.1)–(3.5) and (2.7). Set X := H10 (Ω)∩L(p2+1)/p2(Ω)∩
L∞(Ω), assume u0 ∈ X and let

T X
max(u0) := sup{t ∈ [0, Tmax(u0)) : u(τ) ∈ X for τ � t}.

Then the following holds:

(i) T X
max(u0) = Tmax(u0), Tmax : X → (0,∞] is continuous and (2.8) is true.

(ii) Let C1 > 0 in (3.3) and let there exist constants d6, λ > 0, α ∈ (1, p2), a
nonnegative function a6 ∈ L(p2+1)/p2(Ω) and a bounded measurable function V :

Ω→ [λ,∞) such that

|f(x, v) + V (x)v| � d6
(
|v|p2 + |v|α

)
+a6(x).

Let u0 ∈ X and Tmax(u0) = ∞. Then there exists a constant C = C(‖u0‖X) such
that

(3.6) ‖u(t)‖X � C for any t � 0.

������� 3.1. (i) We are not able to show the bound (1.2) if Tmax(u0) < ∞.
Consequently, the proof of continuity of Tmax requires some additional arguments
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(using a refinement of the concavity method due to H.A. Levine [23]). Note that all

previous results concerning the estimate (3.6) and the continuity of Tmax required a
stronger assumption on the growth of f or were restricted to nonnegative solutions
and nonlinearities with a precise asymptotic behavior (see C. Fermanian Kammerer,

F.Merle and H. Zaag [10], for example).
(ii) If λ > 0 and 1 < p < pS then f(x, u) := |u|p−1u− λu satisfies all assumptions

of Theorem 3.1 (ii).

4. Periodic solutions

In this section we study a priori estimates of solutions and existence of positive
periodic solutions of the problem

(4.1)





ut −∆u = m(t)f(u), x ∈ Ω, t > 0,

u = 0, x ∈ Γ, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a smoothly bounded domain in �n , m > 0 is T -periodic and f(u) =
|u|p−1u, 1 < p < pS. We refer to [32] for the case of a general superlinear function

f = f(u) and to [22] for the case f = f(x, u).

Theorem 4.1 (see [32]). Let Ω ⊂ �
n be smoothly bounded, let m ∈ W 1

∞(�) be
T -periodic, m(t) � m0 > 0 for any t, f(u) = |u|p−1u, 1 < p < pS . Set X := H10 (Ω).

(i) Let u be the solution of (4.1), Tmax(u0) � T + δ, δ > 0. Then there exists a
constant C = C(‖u0‖X , δ, T ) such that

‖u(t)‖X � C for any t ∈ [0, T ].

(ii) Assume

(4.2)

(
m′(t)

)−

m(t)
<
2n− (n− 2)(p+ 1)

r2(Ω)
for a.a. t ∈ (0, T ),

where r(Ω) is the radius of the smallest ball containing Ω and a− := max(0,−a).

Then there exists at least one positive T -periodic solution of (4.1) and there exists
C > 0 such that any positive T -periodic solution of (4.1) satisfies

‖u(t)‖X � C for any t ∈ [0, T ].

������� 4.1. (i) The technical assumption (4.2) is superfluous if p(n− 2) < n.
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(ii) Existence of positive periodic solutions of (4.1) with f(u) = |u|p−1u (and more
general nonlinearities) was obtained earlier by M. J.Esteban in [8] and [9] under the
additional assumptions (3n− 4)p < 3n+ 8 and p(n− 2) < n, respectively.
(iii) Assertion (i) in Theorem 4.1 is based on the fact that the functional

V
(
u(t)

)
=
1
2

∫

Ω
|∇u(t)|2 dx−m(t)

∫

Ω
F

(
u(t)

)
dx

is “almost” a Lyapunov functional for (4.1). A Pohozaev’s type identity plays a
significant role in the proof of (ii) (cf. [11] in the elliptic case).

(iv) A different approach to problems without variational structure can be found
in [33].

5. Universal bounds and blow-up rates

In this section we are interested in the universal bound (1.3) for positive solutions
of (1.1) (note that this bound cannot be true for all solutions, in general). The
following theorem follows from the results in [35].

Theorem 5.1. Consider the problem (1.1) with Ω ⊂ �
n being (smoothly)

bounded and convex, f(x, u) = |u|p−1u, 1 < p < pS , u0 � 0. Let p(n− 3) < n− 1 if
n � 5 and Tmax(u0) � T0 > 0. Set X := L∞(Ω). Then there exist C(p,Ω, T0) > 0

and α = α(n, p) > 0 such that

‖u(t)‖X � C(p,Ω, T0)
(
1 + t−α + (Tmax(u0)− t)−1/(p−1)

)

for any t ∈
(
0, Tmax(u0)

)
, where (Tmax(u0)− t)−1/(p−1) := 0 if Tmax(u0) =∞.

������� 5.1. (i) The convexity of Ω is needed only for the estimate of u(t)

close to Tmax(u0). The assumption p < (n − 1)/(n − 3) for n � 5 seems to be of
technical nature.

(ii) If p < 1 + 2/(n + 1) then one can choose α = (n + 1)/2 in Theorem 5.1 and
this choice is optimal. Note that this initial blow-up rate exponent is different from

the corresponding exponent for the homogeneous Neumann problem (see [35]).
(iii) Due to the result of M.-F. Bidaut-Véron in [4] concerning the Cauchy problem,

one can conjecture that the choice α = 1/(p− 1) should be possible (and optimal)
for p � 1 + 2/(n+ 1) but this seems to be an open problem.
(iv) The (final) blow-up rate estimate

(5.1) ‖u(t)‖X � C(p,Ω, u0)(Tmax(u0)− t)−1/(p−1)
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(where C depends on u0!) is true also for sign-changing solutions and any p ∈
(1, pS) if Ω = �

n . This follows from a very recent result of Y.Giga, S.Matsui and
S. Sasayama based on the approach in [28]. If p(3n − 4) < 3n + 8 or u0 � 0 and
p < pS then (5.1) was proved by Y.Giga and R.V.Kohn [19] for both unbounded

and bounded convex domains. On the other hand, it is known that such an esti-
mate fails, in general, for p � pS, see the results of S. Filippas, M.A.Herrero and

J. J. L.Velázquez in [15], [20] and [21]. Concerning universal blow-up rate estimates
for positive solutions in unbounded domains we refer to J.Matos and Ph. Souplet

[24].
(v) First results concerning universal bounds for global positive solutions of (1.1)

with f(x, u) = |u|p−1u and Ω bounded were obtained by M.Fila, Ph. Souplet,
F.Weissler in [14] and the author in [30].

6. Nonlinear boundary conditions

In this section we study a priori estimates for global solutions of the problem

(6.1)





ut = ∆u− au, x ∈ Ω, t ∈ (0,∞),
uν = |u|q−1u, x ∈ Γ, t ∈ (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

where a > 0, q > 1, Ω is a smoothly bounded domain in �n and ν denotes the outer

unit normal on the boundary Γ. Since we study only global solutions, the bounds
(1.2) and (1.3) have the form

‖u(t)‖X � C(‖u0‖X) for any t > 0,(6.2)

‖u(t)‖X � C(δ) for any t > δ.(6.3)

The following result is proved in [34].

Theorem 6.1. Consider the problem (6.1). Let X := H1(Ω) and q(n− 2) < n.

(i) Let Tmax(u0) =∞. If u0 � 0 or q < q∗, where

q∗ =

{
+∞ if n = 1,
(
9n2 − 22n+ 24 + 8

√
4n2 − 10n+ 8

)
/(3n− 4)2 if n > 1,

then the bound (6.2) is true.

(ii) Assume q(n − 4) < n− 3 if n � 7. Then the bound (6.3) is true for all global
nonnegative solutions of (6.1).

337



������� 6.1. (i) The value qS := n/(n− 2) is the limiting exponent for which
the trace operator maps H1(Ω) into Lq+1(Γ). Unlike the case of the homogeneous
Dirichlet boundary condition, it is not clear whether the subcriticality condition
q < qS is necessary for the a priori bounds mentioned above.

(ii) The assumptions q < q∗ and q < (n − 3)/(n − 4) for n � 7 seem to be of
technical nature.

(iii) The validity of (1.2) or (1.3) for non-global solutions is an open problem.

7. Nonlocal problems

As already mentioned in the introduction, the estimate (1.2) can be derived for

more general problems than (1.1). For example, in [31] we considered two nonlocal
problems, which were frequently studied from the point of view of blow-up and global

existence in the past decade (see the references in [31]). For both these problems we
derived the estimate (1.2) and the continuity of the blow-up time.

The first problem has the form

ut −∆u = f
(
x, u(x, t)

)
− 1|Ω|

∫

Ω
f
(
x, u(x, t)

)
dx, x ∈ Ω, t > 0,

uν = 0, x ∈ Γ, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a smoothly bounded domain in �n and f(x, ·) is a superlinear function
(in particular, one can choose f(x, u) = |u|p−1u, pS > p > 1).
The second nonlocal problem has the form

ut −∆u = ϕ

( ∫

Ω
F (u) dx

)
f(u), x ∈ Ω, t > 0,

u = 0, x ∈ Γ, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where f = F ′, Ω is a smoothly bounded domain in �n and either

F (u) =
1

p+ 1
|u|p+1, ϕ(s) = (s+ 1)−α, 1 < p < pS, 0 � α <

p− 1
p+ 1

,

or
F (u) = eu, ϕ(s) = s−q, 0 < q < 1, n = 1.
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8. Problems involving measures

Notice that the assumption (2.3) in Section 2 requires f(·, 0) ∈ L(p2+1)/p2(Ω) and
that even a stronger assumption on the integrability of f(·, 0) is required in the second
part of Theorem 2.1. If f(·, 0) is less regular then we can still expect similar results
as in Theorem 2.1 provided we restrict the range for the exponent p2. Consider, for

example, the model problem

(8.1)





ut −∆u = |u|p−1u+ aµ, x ∈ Ω, t > 0,

u = 0, x ∈ Γ, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain in �n , n � 2, µ is a positive bounded Radon measure
on Ω, a > 0 and 1 < p, p(n− 2) < n. The restriction on p is necessary for the local

solvability of (8.1).

It is known (see [3] or [1]) that

a∗ := sup{a > 0: (8.1) has a positive equilibrium} > 0.

Set X := {u ∈ W z
q (Ω): u = 0 on Γ}, where

−n

p
� z − n

q
< 2− n, q > 1, z � 0, z 
= 1/q.

The following result from [29] is restricted to global solutions of (8.1), but we believe
that a complete analogue to Theorem 2.1 can be proved.

Theorem 8.1. Let Ω, n, p, µ, a∗, X be as above and let 0 < a < a∗. Let u be

a global solution of (8.1). Then ‖u(t)‖X � C(‖u0‖X).

Let us be the minimal positive stationary solution of (8.1). Then there exist
stationary solutions u+, u−, ũ of (8.1) such that u+ > us > u− and the function

ũ− us changes sign.

���	
�������	�. The author was supported by VEGA Grant 1/7677/20.
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Jacques-Louis Lions, Gauthier-Villars, Paris. 1998, pp. 189–198.

[5] H.Brézis, R.E. L.Turner: On a class of superlinear elliptic problems. Commun. Partial
Differ. Equations 2 (1977), 601–614.

[6] T.Cazenave, P.-L. Lions: Solutions globales d’équations de la chaleur semi linéaires.
Commun. Partial Differ. Equations 9 (1984), 955–978.

[7] M.Chipot, M.Fila, P.Quittner: Stationary solutions, blow up and convergence to sta-
tionary solutions for semilinear parabolic equations with nonlinear boundary conditions.
Acta Math. Univ. Comen. 60 (1991), 35–103.

[8] M.J. Esteban: On periodic solutions of superlinear parabolic problems. Trans. Amer.
Math. Soc. 293 (1986), 171–189.

[9] M.J. Esteban: A remark on the existence of positive periodic solutions of superlinear
parabolic problems. Proc. Amer. Math. Soc. 102 (1988), 131–136.

[10] C.Fermanian Kammerer, F.Merle, H. Zaag: Stability of the blow-up profile of
non-linear heat equations from the dynamical system point of view. Math. Ann. 317
(2000), 347–387.

[11] D.G. de Figueiredo, P.-L. Lions, R.D.Nussbaum: A priori estimates and existence of
positive solutions of semilinear elliptic equations. J. Math. Pures Appl. 61 (1982), 41–63.

[12] M.Fila: Boundedness of global solutions of nonlinear parabolic problems. Proc. of the
4th European Conf. on Elliptic and Parabolic Problems, Rolduc 2001. To appear.

[13] M.Fila, P. Poláčik: Global solutions of a semilinear parabolic equation. Adv. Differ.
Equ. 4 (1999), 163–196.

[14] M.Fila, P. Souplet, F.Weissler: Linear and nonlinear heat equations in Lq
δ spaces and

universal bounds for global solutions. Math. Ann. 320 (2001), 87–113.
[15] S.Filippas, M.A.Herrero, J. J. L.Velázquez: Fast blow-up mechanism for sign-changing

solutions of a semilinear parabolic equation with critical nonlinearity. R. Soc. Lond.
Proc. Ser. A 456 (2000), 2957–2982.

[16] V.Galaktionov, J. L. Vázquez: Continuation of blow-up solutions of nonlinear heat equa-
tions in several space dimensions. Commun. Pure Applied Math. 50 (1997), 1–67.

[17] B.Gidas, J. Spruck: A priori bounds for positive solutions of nonlinear elliptic equations.
Commun. Partial Differ. Equations 6 (1981), 883–901.

[18] Y.Giga: A bound for global solutions of semilinear heat equations. Commun. Math.
Phys. 103 (1986), 415–421.

[19] Y.Giga, R.V.Kohn: Characterizing blowup using similarity variables. Indiana Univ.
Math. J. 36 (1987), 1–40.

[20] M.A.Herrero, J. J. L.Velázquez: Explosion de solutions d’équations paraboliques semi-
linéaires supercritiques. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 141–145.

[21] M.A.Herrero, J. J. L. Velázquez: A blow up result for semilinear heat equations in the
supercritical case. Preprint.

[22] J.Húska: Periodic solutions in superlinear parabolic problems. Acta Math. Univ. Comen.
To appear.

340



[23] H.A. Levine: Some nonexistence and instability theorems for solutions of formally par-
abolic equations of the form Put = −Au+F (u). Arch. Rational Mech. Anal. 51 (1973),
371–386.

[24] J.Matos, Ph. Souplet: Universal blow-up estimates and decay rates for a semilinear heat
equation. Preprint.

[25] W.-M.Ni, P. E. Sacks, J. Tavantzis: On the asymptotic behavior of solutions of certain
quasilinear parabolic equations. J. Differ. Equations 54 (1984), 97–120.

[26] R.D.Nussbaum: Positive solutions of nonlinear elliptic boundary value problems. J.
Math. Anal. Appl. 51 (1975), 461–482.

[27] S. I. Pohozaev: Eigenfunctions of the equation ∆u + λf(u) = 0. Soviet Math. Dokl. 5
(1965), 1408–1411.

[28] P.Quittner: A priori bounds for global solutions of a semilinear parabolic problem. Acta
Math. Univ. Comen. 68 (1999), 195–203.

[29] P.Quittner: A priori estimates of global solutions and multiple equilibria of a superlinear
parabolic problem involving measure. Electronic J. Differ. Equations 2001 (2001), no. 29,
1–17.

[30] P.Quittner: Universal bound for global positive solutions of a superlinear parabolic
problem. Math. Ann. 320 (2001), 299–305.

[31] P.Quittner: Continuity of the blow-up time and a priori bounds for solutions in super-
linear parabolic problems. Houston J. Math. To appear.

[32] P.Quittner: Multiple equilibria, periodic solutions and a priori bounds for solutions in
superlinear parabolic problems. NoDEA, Nonlinear Differ. Equations Appl. To appear.

[33] P.Quittner, Ph. Souplet: A priori estimates of global solutions of superlinear parabolic
problems without variational structure. Discrete Contin. Dyn. Systems. To appear.

[34] P.Quittner, Ph. Souplet: Bounds of solutions of parabolic problems with nonlinear
boundary conditions. In preparation.

[35] P.Quittner, Ph. Souplet, M.Winkler: Initial blow-up rates and universal bounds for
nonlinear heat equations. Preprint.

[36] R.E. L.Turner: A priori bounds for positive solutions of nonlinear elliptic equations in
two variables. Duke Math. J. 41 (1974), 759–774.

[37] H.Zaag: A remark on the energy blow-up behavior for nonlinear heat equations. Duke
Math. J. 103 (2000), 545–556.

Author’s address: Pavol Quittner, Institute of Applied Mathematics, Comenius Univer-
sity, Mlynská dolina, 842 48 Bratislava, Slovakia, e-mail: quittner@fmph.uniba.sk.

341


		webmaster@dml.cz
	2020-07-01T15:02:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




