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Abstract. We propose an extended version of the Kurzweil integral which contains both
the Young and the Kurzweil integral as special cases. The construction is based on a
reduction of the class of δ-fine partitions by excluding small sets.
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Introduction

This work is a continuation of [4] and has been motivated by problems arising
in connection with the integral formulation of evolution variational inequalities in

the space of regulated functions in [5] and [2]. In this context, the Young integral as
presented in [3] and [7] has an important advantage in comparison with the Kurzweil

integral, namely that an arbitrary regulated function is Young integrable with respect
to any function with essentially bounded variation, and this is precisely what is

needed for applications to variational inequalities. The counterexample in [4] shows
that this need not be the case for the Kurzweil integral.

The aim of this note is to propose a modification of the Kurzweil integral (the so-
called KN -integral, where “N” stands for “negligible sets”) the idea of which is to

exclude “small” singular sets from consideration. As the main result, we prove that
the KN -integral generalizes both the Kurzweil and the Young integral, and that it

still possesses all reasonable properties, like additivity with respect to the integrands
and with respect to the integration domain.
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1. The Young and Kurzweil integrals

We consider a nondegenerate closed interval [a, b] ⊂ � , and denote by Da,b the set
of all divisions of the form

(1.1) d = {t0, . . . , tm} , a = t0 < t1 < . . . < tm = b.

We say that a division d̂ is a refinement of d ∈ Da,b and write d̂ � d if d̂ ∈ Da,b and

d ⊂ d̂.
With a division d = {t0, . . . , tm} ∈ Da,b we associate partitions D defined as

(1.2) D = {(τj , [tj−1, tj ]) ; j = 1, . . . , m}; τj ∈ [tj−1, tj ] ∀j = 1, . . . , m.

By P(d) we denote the set of all partitions of the form (1.2) such that

(1.3) τj ∈ ]tj−1, tj [ ∀j = 1, . . . , m.

The following definition is taken from [1].

Definition 1.1. We say that a function g : [a, b] → � is regulated if for every
t ∈ [a, b] there exist both one-sided limits g(t+), g(t−) ∈ � with the convention
g(a−) = g(a), g(b+) = g(b).

The set of all regulated functions g : [a, b] → � is denoted by G(a, b) according to
[10].

For given functions f : [a, b] → � , g ∈ G(a, b), a division d ∈ Da,b and a partition
D ∈ P(d) of the form (1.2), (1.3), we define the Young integral sum YD(f, g) by the
formula

(1.4) YD(f, g) =
m∑

j=1

f(τj)(g(tj−)− g(tj−1+)) +
m∑

j=0

f(tj)(g(tj+)− g(tj−)).

Definition 1.2. Let f : [a, b] → � , g ∈ G(a, b) be given. We say that J ∈ � is
the Young integral over [a, b] of f with respect to g and denote

(1.5) J = (Y )
∫ b

a

f(t) dg(t),

if for every ε > 0 there exists dε ∈ Da,b such that for every d � dε and D ∈ P(d) we
have

(1.6) |J − YD(f, g)| 6 ε.
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It is an easy exercise to check that if the value J in Definition 1.2 exists, then it

is uniquely determined.
The basic concept in the Kurzweil integration theory, namely in its original version

introduced in [6] which we call below the K-integral, as well as in its generalization

(the K∗-integral proposed in [8]), is that of a δ-fine partition. We define the set

(1.7) Γ(a, b) := {δ : [a, b] → � ; δ(t) > 0 for every t ∈ [a, b]}.

An element δ ∈ Γ(a, b) is called a gauge. For t ∈ [a, b] and δ ∈ Γ(a, b) we denote

(1.8) Iδ(t) := ]t− δ(t), t + δ(t)[.

Definition 1.3. Let δ ∈ Γ(a, b) be a given gauge. A partition D of the form
(1.2) is said to be δ-fine if for every j = 1, . . . , m we have

(1.9) τj ∈ [tj−1, tj ] ⊂ Iδ(τj).

If, moreover, a δ-fine partition D satisfies the implications

(1.9)∗ τj = tj−1 ⇒ j = 1 , τj = tj ⇒ j = m,

then it is called a δ-fine∗ partition.

The set of all δ-fine (δ-fine∗) partitions is denoted by Fδ(a, b) (F∗
δ (a, b), respec-

tively).
We have indeed F∗

δ (a, b) ⊂ Fδ(a, b). The next lemma (which belongs to the family
of the so-called Cousin’s Lemmas) implies in particular that these sets are nonempty
for every δ ∈ Γ(a, b). In this form, it was proved in detail e.g. in [4, Lemma 1.2].

Lemma 1.4. Let δ ∈ Γ(a, b) and a dense subset Ω ⊂ ]a, b[ be given. Then there
exists D = {(τj , [tj−1, tj ]) ; j = 1, . . . , m} ∈ F∗

δ (a, b) such that tj ∈ Ω for every
j = 1, . . . , m− 1.

For given functions f, g : [a, b] → � and a partition D of the form (1.2) we define
the Kurzweil integral sum KD(f, g) by the formula

(1.10) KD(f, g) =
m∑

j=1

f(τj) (g(tj)− g(tj−1)).

Definition 1.5. Let f, g : [a, b] → � be given. We say that J ∈ � (J∗ ∈ � ) is
the K-integral (K∗-integral) over [a, b] of f with respect to g and denote

(1.11) J = (K)
∫ b

a

f(t) dg(t) ,

(
J∗ = (K∗)

∫ b

a

f(t) dg(t)
)

,
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if for every ε > 0 there exists δ ∈ Γ(a, b) such that for every D ∈ Fδ(a, b) (D∗ ∈
F∗

δ (a, b), respectively) we have

(1.12) |J −KD(f, g)| 6 ε , (|J∗ −KD∗(f, g)| 6 ε , respectively).

Using the fact that the implication

(1.13) δ 6 min{δ1, δ2} ⇒
{
F∗

δ (a, b) ⊂ F∗
δ1

(a, b) ∩ F∗
δ2

(a, b),

Fδ(a, b) ⊂ Fδ1(a, b) ∩ Fδ2(a, b)

holds for every δ, δ1, δ2 ∈ Γ(a, b), we easily check that the values J , J∗ in Defini-
tion 1.5 are uniquely determined. Since F∗

δ (a, b) ⊂ Fδ(a, b) for every gauge δ, we

also see that if (K)
∫ b

a f(t) dg(t) exists, then (K∗)
∫ b

a f(t) dg(t) exists and they are
equal.

If we compare Definitions 1.2 and 1.5, we see that the main conceptual difference

between the Young and the Kurzweil integral of f with respect to g consists in the
fact that while in the Young integral we require a “regular” behaviour of f(τ) with
respect to small shifts of τ , as all partitions with close values of τj come into play,
cf. also the proof of Lemma 1.6 below, in the K∗-integral we have to be able to

control small variations of g(t), since a partition remains δ-fine∗ independently of
small shifts of the tj ’s. The counterexample in [4] as well as our construction of the
KN -integral in the next section are based on this observation. We first establish the

following property of the Young integral as a variant of [7, Theorem 1.2].

Lemma 1.6. Let f : [a, b] → � , g ∈ G(a, b) be such that (Y )
∫ b

a f(t) dg(t) exists,
and let ε > 0, dε ∈ Da,b, dε = {s0, s1, . . . , s`} be such that for every d � dε and

D ∈ P(d) we have

(1.14)

∣∣∣∣YD(f, g)− (Y )
∫ b

a

f(t) dg(t)
∣∣∣∣ 6 ε.

For p = 1, . . . , ` set

(1.15) Φp = sup{|f(τ)| ; τ ∈ [sp−1, sp]}.

Then the implication

(1.16) Φp = +∞⇒ g(t+) = g(t−) = g(sp−1+) = g(sp−) ∀t ∈ ]sp−1, sp[

holds for all p = 1, . . . , `.
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���������
. Assume Φp = +∞ for some p. There exists σ ∈ [sp−1, sp] and a

sequence {σn ; n ∈ � } such that σn ∈ ]sp−1, sp[, σn → σ, |f(σn)| → +∞ as n →∞.
If σ > sp−1, then we fix t ∈ ]sp−1, σ[ and put d̂ = dε ∪ {t}. For arbitrarily fixed

τq ∈ ]sq−1, sq [, q ∈ {1, . . . , `} \ {p}, τp ∈ ]sp−1, t[ and for n > n0 sufficiently large we

have

Dn := {(τq , [sq−1, sq]), (τp, [sp−1, t]), (σn, [t, sp]) ; q ∈ {1, . . . , `} \ {p}} ∈ P(d̂),

hence, by (1.14),

(1.17) |YDn(f, g)| 6
∣∣∣∣(Y )

∫ b

a

f(t) dg(t)
∣∣∣∣ + ε ∀n > n0.

On the other hand, we have for n > n0 that

(1.18) YDn(f, g)− YDn0
(f, g) = (f(σn)− f(σn0))(g(sp−)− g(t+)),

hence

(1.19)

|f(σn)| |g(sp−)− g(t+)| 6 |f(σn0)| |g(sp−)− g(t+)|

+ 2
(∣∣∣∣(Y )

∫ b

a

f(t) dg(t)
∣∣∣∣ + ε

)
.

Letting n →∞ we obtain from (1.19) the implication

(1.20) σ > sp−1 ⇒ g(sp−) = g(t+) ∀t ∈ ]sp−1, σ[.

Analogously we have

(1.21) σ < sp ⇒ g(sp−1+) = g(t−) ∀t ∈ ]σ, sp[.

This yields in particular that g(sp−) = g(sp−1+), and the assertion follows. �

2. The KN-integral

We fix a system N of subsets of [a, b] with the following properties:

[a, b] \A = [a, b] ∀A ∈ N ,(2.1)

A, B ∈ N ⇒ A ∪ B ∈ N .(2.2)

Elements of N will be called negligible sets. Typically, N can be for instance the
system of all subsets of Lebesgue measure zero in [a, b], or the system of all countable
subsets of [a, b].
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Definition 2.1. Let N be a system of negligible sets in [a, b], let δ ∈ Γ(a, b) be
a given gauge, and let A ∈ N be a given set. A partition D of the form (1.2) is said
to be (δ, A)-fine if it is δ-fine∗ and

(2.3) tj ∈ [a, b] \A ∀j = 1, . . . , m− 1.

The set of all (δ, A)-fine partitions is denoted by Fδ,A(a, b).

Note that by Lemma 1.4, the set Fδ,A(a, b) is nonempty for every δ ∈ Γ(a, b) and
A ∈ N .
Definition 2.2. Let f, g : [a, b] → � be given. We say that J ∈ � is the

KN -integral over [a, b] of f with respect to g and denote

(2.4) J = (KN)
∫ b

a

f(t) dg(t),

if for every ε > 0 there exist δ ∈ Γ(a, b) and A ∈ N such that for everyD ∈ Fδ,A(a, b)
we have

(2.5) |J −KD(f, g)| 6 ε.

Similarly as in the situation of Definition 1.5, if J satisfying (2.5) exists, then it

is unique. Indeed, assume that there exist J1 6= J2 such that for every ε > 0 there
exist δ1, δ2 ∈ Γ(a, b) and A1, A2 ∈ N such that for each Di ∈ Fδi,Ai(a, b), i = 1, 2,
we have

(2.6) |Ji −KDi(f, g)| 6 ε.

Choosing ε < 1
2 |J1 − J2| and putting δ = min{δ1, δ2}, A = A1 ∪ A2 we may choose

any D ∈ Fδ,A(a, b). Then D ∈ Fδ1,A1(a, b) ∩ Fδ2,A2(a, b), hence |Ji −KD(f, g)| 6 ε

for i = 1, 2, which is a contradiction.
Obviously, if (K∗)

∫ b

a
f(t) dg(t) exists, then (KN)

∫ b

a
f(t) dg(t) exists and the two

integrals are equal. In the trivial case N = {∅}, the KN -integral and the K∗-
integral coincide. Moreover, all aforementioned Kurzweil-type integrals coincide if

the function g is continuous. The exact statement reads as follows.

Proposition 2.3. Let f, g : [a, b] → � be such that (KN)
∫ b

a f(t) dg(t) = J exists

for some choice of N , and let g be continuous in [a, b]. Then (K)
∫ b

a
f(t) dg(t) exists

and equals J .

The proof of Proposition 2.3 is based on the following two auxiliary results. For a

finite set S, we denote by #S the number of its elements.
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Lemma 2.4. Let δ ∈ Γ(a, b) be a gauge, and let D = {(τj , [tj−1, tj ]) ; j =
1, . . . , m} ∈ Fδ(a, b) be an arbitrary partition. Let R(D) denote the set of all
partitions

(2.7) D′ = {(τ ′i , [t′i−1, t
′
i]) ; i = 1, . . . , m′} ∈ Fδ(a, b)

such that

m′⋃

i=1

{τ ′i} =
m⋃

j=1

{τj},(2.8)

m′⋃

i=0

{t′i} ⊂
m⋃

j=1

{tj}.(2.9)

For D′ ∈ R(D) of the form (2.7) set

(2.10) µ(D′) = #{i = 1, . . . , m′ − 1; τ ′i = τ ′i+1},

and assume that µ(D′) > 0. Then there exists D′′ ∈ R(D) such that µ(D′′) =
µ(D′)− 1, and for every f, g : [a, b] → � we have KD′′(f, g) = KD′(f, g).
������������������� �"!

2.4. Assume that τ ′i = τ ′i+1 for some i = 1, . . . , m′ − 1. It
suffices to put

τ ′′k =

{
τ ′k for k = 1, . . . , i,

τ ′k+1 for k = i + 1, . . . , m′ − 1,
(2.11)

t′′k =

{
t′k for k = 1, . . . , i− 1,

t′k+1 for k = i, . . . , m′ − 1.
(2.12)

We have by hypothesis τ ′i = τ ′i+1 = t′i and [t′i−1, t
′
i+1] = [t′i−1, t

′
i] ∪ [t′i, t

′
i−1] ⊂ Iδ(τ ′i ),

hence D′′ = {(τ ′′k , [t′′k−1, t
′′
k ]) ; k = 1, . . . , m′ − 1} belongs to Fδ(a, b), and therefore

also to R(D). For every f, g : [a, b] → � we have
m′∑

k=1

f(τ ′k)(g(t′k)− g(t′k−1)) =
i−1∑

k=1

f(τ ′k)(g(t′k)− g(t′k−1)) + f(τ ′i )(g(t′i+1)− g(t′i−1))

+
m′−1∑

k=i+1

f(τ ′k+1)(g(t′k+1)− g(t′k))

=
m′−1∑

k=1

f(τ ′′k )(g(t′′k)− g(t′′k−1)),

and Lemma 2.4 is proved. �
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Lemma 2.5. Let N be any system of negligible sets, and let δ ∈ Γ(a, b), A ∈ N ,
and D = {(τj , [tj−1, tj ]) ; j = 1, . . . , m} ∈ Fδ(a, b) be given. Assume that

(2.13) τj < τj+1 ∀ j = 1, . . . , m− 1.

Then for every η > 0 there exists Dη = {(τj , [t∗j−1, t
∗
j ]) ; j = 1, . . . , m} ∈ Fδ,A(a, b)

such that

(2.14) |tj − t∗j | < η ∀ j = 0, . . . , m.

���������#�$�%����� �"!
2.5. Put t∗0 = t0 = a, t∗m = tm = b. For every j =

1, . . . , m− 1 we have

tj ∈ [τj , τj+1]∩ ]τj+1 − δ(τj+1), τj + δ(τj)[

by virtue of (1.9), hence for every η > 0 and every j = 1, . . . , m− 1, the set

(2.15) Kη
j =]τj , τj+1[ ∩ ]τj+1 − δ(τj+1), τj + δ(τj)[ ∩ ]tj − η, tj + η[

is a nondegenerate open interval. We obtain the assertion by choosing arbitrarily
t∗j ∈ Kη

j \A for j = 1, . . . , m− 1. �

We are now ready to prove Proposition 2.3.
���������&�$�'�(����)*��+-,�./,0��1

2.3. Let ε > 0 be given. We find δ ∈ Γ(a, b) and
A ∈ N such that for every D̃ ∈ Fδ,A(a, b) we have

(2.16) |K 2D(f, g)− J | 6 ε

2
.

Let D = {(τj , [tj−1, tj ]) ; j = 1, . . . , m} ∈ Fδ(a, b) be arbitrary. We claim that

(2.17) |KD(f, g)− J | 6 ε.

To check that (2.17) holds, we use Lemma 2.4 and find D′ ∈ R(D) of the form (2.7)
such that µ(D′) = 0 and

(2.18) KD′(f, g) = KD(f, g).

Let now η > 0 be such that the implication

(2.19) |t− s| < η ⇒ |g(t)− g(s)|
m′∑

i=1

|f(τ ′i )| 6
ε

4
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holds for every t, s ∈ [a, b]. By Lemma 2.5 we find Dη = {(τ ′i , [t∗i−1, t
∗
i ]) ; i =

1, . . . , m′} ∈ Fδ,A(a, b) such that |t′i − t∗i | < η for all i = 1, . . . , m′. Then (2.19)
yields
(2.20)

|KDη (f, g)−KD′(f, g)| =
∣∣∣∣

m′∑

i=1

f(τ ′i )
(
g(t′i)− g(t′i−1)− g(t∗i ) + g(t∗i−1)

) ∣∣∣∣ 6 ε

2
.

On the other hand, by (2.16) we have that

(2.21) |KDη (f, g)− J | 6 ε

2
.

Combining (2.20) with (2.21) and (2.18) we obtain (2.17), and Proposition 2.3 follows.
�

We now prove as the main result of this paper that it suffices to exclude all

countable subsets of [a, b] as negligible sets, and the Young integral becomes a special
case of the KN -integral.

Theorem 2.6. Let N be the system of all countable subsets of [a, b], and
let f : [a, b] → � , g ∈ G(a, b) be such that J = (Y )

∫ b

a
f(t) dg(t) exists. Then

(KN)
∫ b

a f(t) dg(t) exists and equals J .

���������
. Let ε > 0 be given, and let dε ∈ Da,b, dε = {s0, s1, . . . , s`} be such that

for every d � dε and D ∈ P(d) we have

(2.22)

∣∣∣∣YD(f, g)− (Y )
∫ b

a

f(t) dg(t)
∣∣∣∣ 6 ε.

Let Φ1, . . . , Φ` be as in Lemma 1.6. Set

E = {p ∈ {1, . . . , `} ; Φp < ∞},(2.23)

Φ∗ = max{Φp ; p ∈ E},(2.24)

∆ = min{sp − sp−1 ; p = 1, . . . , `}.(2.25)

We fix δ0 ∈ ]0, 1
2∆[ such that for all p = 1, . . . , ` we have

|g(t)− g(sp−1+)| < ε

4`Φ∗ ∀t ∈ ]sp−1, sp−1 + δ0[,(2.26)

|g(t)− g(sp−)| < ε

4`Φ∗ ∀t ∈ ]sp − δ0, sp[,(2.27)
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and put

(2.28) δ(t) =

{
min

{
1
8∆, δ0

}
for t ∈ dε,

min
{

1
8∆, dist (t, dε)

}
for t /∈ dε.

Let A ∈ N be the set of all discontinuity points of g. We now complete the proof by
checking that for every D ∈ Fδ,A(a, b) we have

(2.29) |J −KD(f, g)| 6 2ε.

In order to establish (2.29), we choose an arbitrary partition D ∈ Fδ,A(a, b) of the
form

(2.30) D = {(τj , [tj−1, tj ]) ; j = 1, . . . , m}.

For every p = 0, . . . , ` we find jp ∈ 1, . . . , m such that sp ∈ [tjp−1, tjp ]. We claim that

(2.31) sp = τjp ∀p = 0, . . . , `.

Indeed, we have for all p that |sp − τjp | < δ(τjp) by the definition of Fδ,A(a, b).
Assuming τjp /∈ dε would imply according to (2.28) that δ(τjp) 6 dist (τjp , dε) 6
|sp − τjp |, which is a contradiction, hence τjp ∈ dε, |sp − τjp | < 1

8∆, and (2.31)
follows. This implies in particular that

(2.32) τ1 = s0 = t0 = a, τm = s` = tm = b.

We moreover have tjp − tjp−1−1 > sp − sp−1 > ∆ for p = 1, . . . `, and tj − tj−1 <

2δ(τj) 6 1
4∆ for j = 1, . . . , m, hence

(2.33) jp−1 6 jp − 4 for p = 1, . . . , `.

Let now M be the set

(2.34) M = {j ∈ {1, . . . , m} ; {j − 1, j, j + 1} ∩ {jp ; p = 0, . . . , `} = ∅},

and put

d = {tj ; j ∈ M} ∪ {tjp+1 ; p = 0, . . . , `− 1} ∪ {sp ; p = 0, . . . , `},(2.35)

D̂ = {(τj , [tj−1, tj ]); j ∈ M} ∪ {(τjp+1, [sp, tjp+1]) ; p = 0, . . . , `− 1}(2.36)

∪ {(τjp−1, [tjp−2, sp]) ; p = 1, . . . , `}.
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Then d � dε and D̂ ∈ P(d) (note that jp − 2 ∈ M for all p = 1, . . . , ` by (2.33)!),

hence by hypothesis we have

(2.37)
∣∣J − Y 3D(f, g)

∣∣ 6 ε.

On the other hand, we have g(tj−) = g(tj+) = g(tj) for all j = 1, . . . , m− 1 due to
the choice of the set A, hence

Y 3D(f, g) =
∑

j∈M

f(τj)(g(tj)− g(tj−1)) +
`−1∑

p=0

f(τjp+1)(g(tjp+1)− g(sp+))(2.38)

+
∑̀

p=1

f(τjp−1)(g(sp−)− g(tjp−2)) +
∑̀

p=0

f(sp)(g(sp+)− g(sp−)),

while

KD(f, g) =
∑

j∈M

f(τj)(g(tj)− g(tj−1)) +
`−1∑

p=0

f(τjp+1)(g(tjp+1)− g(tjp))(2.39)

+
∑̀

p=1

f(τjp−1)(g(tjp−1)− g(tjp−2))

+
∑̀

p=0

f(sp)(g(tjp)− g(tjp−1)).

Subtracting the above identities we obtain

KD(f, g)− Y 3D(f, g) =
∑̀

p=1

((f(sp−1)− f(τjp−1+1))(g(tjp−1 )− g(sp−1+))(2.40)

+ (f(sp)− f(τjp−1))(g(sp−)− g(tjp−1))).

We have 0 < tjp−1 − sp−1 < δ(sp−1) 6 min{ 1
8∆, δ0} and 0 < sp − tjp−1 < δ(sp) 6

min{ 1
8∆, δ0}, and (2.26), (2.27) yield

(2.41) |g(tjp−1)− g(sp−1+)| 6 ε

4`Φ∗ , |g(sp−)− g(tjp−1)| 6
ε

4`Φ∗

for all p = 1, . . . , `. Moreover, it follows from Lemma 1.6 that

(2.42) g(tjp−1) = g(sp−1+) = g(sp−) = g(tjp−1) ∀p /∈ E,

hence
∣∣KD(f, g)− Y 3D(f, g)

∣∣ 6
∑

p∈E

(|f(sp−1)− f(τjp−1+1)||g(tjp−1)− g(sp−1+)|(2.43)

+ |f(sp)− f(τjp−1)||g(sp−)− g(tjp−1)|) 6 ε.

Combining (2.43) with (2.37) we obtain (2.29), and the proof is complete. �
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The KN -integral is linear with respect to both functions f and g. For the sake of

completeness, we state this easy result explicitly.

Proposition 2.7. Let N be any system of negligible sets.
(i) Let f1, f2, g : [a, b] → � be such that (KN)

∫ b

a f1(t) dg(t), (KN)
∫ b

a f2(t) dg(t)
exist. Then (KN)

∫ b

a
(f1 + f2)(t) dg(t) exists and

(2.44) (KN)
∫ b

a

(f1 + f2)(t) dg(t) = (KN)
∫ b

a

f1(t) dg(t) + (KN)
∫ b

a

f2(t) dg(t).

(ii) Let f, g1, g2 : [a, b] → � be such that (KN)
∫ b

a
f(t) dg1(t), (KN)

∫ b

a
f(t) dg2(t)

exist. Then (KN)
∫ b

a
f(t) d(g1 + g2)(t) exists and

(2.45) (KN)
∫ b

a

f(t) d(g1 + g2)(t) = (KN)
∫ b

a

f(t) dg1(t) + (KN)
∫ b

a

f(t) dg2(t).

(iii) Let (KN)
∫ b

a
f(t) dg(t) exist. Then (KN)

∫ b

a
λf(t) dg(t), (KN)

∫ b

a
f(t) d(λg)(t)

exist for every constant λ ∈ � , and

(2.46) (KN)
∫ b

a

λf(t) dg(t) = (KN)
∫ b

a

f(t) d(λg)(t) = λ(KN)
∫ b

a

f(t) dg(t).

���������
. Let ε > 0 be given. We find δ1, δ2 ∈ Γ(a, b) and A1, A2 ∈ N such that

for all Di ∈ Fδi,Ai(a, b), i = 1, 2 we have

∣∣∣∣(KN)
∫ b

a

fi(t) dg(t)−KDi(fi, g)
∣∣∣∣ <

ε

2
.

Put δ := min{δ1, δ2}, A = A1 ∪ A2. Then Fδ,A(a, b) ⊂ Fδ1,A1(a, b) ∩ Fδ2,A2(a, b),
hence for every D ∈ Fδ,A(a, b) we have

∣∣∣∣(KN)
∫ b

a

f1(t) dg(t) + (KN)
∫ b

a

f2(t) dg(t)−KD((f1 + f2), g)
∣∣∣∣ < ε,

and (2.44) follows. The same argument applies to the case (ii), while (iii) is trivial.

�

In order to analyze the behaviour of the KN -integral with respect to the variation

of the integration domain, we derive the following Bolzano-Cauchy-type characteri-
zation analogous to [9, Proposition 7].
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Lemma 2.8. Let N be a system of negligible sets in [a, b], and let f, g : [a, b] → �
be given functions. Then (KN)

∫ b

a f(t) dg(t) exists if and only if

(2.47)
∀ε > 0 ∃δ ∈ Γ(a, b) ∃A ∈ N ∀D, D′ ∈ Fδ,A(a, b) :

|KD(f, g)−KD′(f, g)| 6 ε.

���������
. If (KN)

∫ b

a f(t) dg(t) exists, then (2.47) trivially holds. Conversely,
assume that (2.47) is satisfied. We find δ0 ∈ Γ(a, b) and A0 ∈ N such that (2.47)
holds with ε = 1. For each n ∈ � we construct by induction δn ∈ Γ(a, b), δn 6 δn−1,
and An ∈ N , An ⊃ An−1 such that for all D, D′ ∈ Fδn,An(a, b) we have

(2.48) |KD(f, g)−KD′(f, g)| 6 2−n.

We fix some Dn ∈ Fδn,An(a, b) for each n ∈ � , and set Jn = KDn(f, g). For all
m > n we have by (2.48) that |Jn − Jm| 6 2−n, hence {Jn} is a Cauchy sequence,
Jn → J as n →∞.
Let now ε > 0 be given. We fix n ∈ � such that 2−n 6 ε and put δ = δn, A = An.

It follows from (2.48) that |KD(f, g)− Jm| 6 ε for all D ∈ Fδ,A(a, b) and all m > n,
and letting m →∞ we obtain J = (KN)

∫ b

a
f(t) dg(t), which we wanted to prove.

�

We conclude the paper by proving the following result.

Proposition 2.9. Let N be a system of negligible sets in [a, b], and let f, g :
[a, b] → � be given functions. Let s ∈ ]a, b[ be given.
(i) Assume that the integral (KN)

∫ b

a
f(t) dg(t) exists. Then (KN)

∫ s

a
f(t) dg(t),

(KN)
∫ b

s f(t) dg(t) exist.
(ii) Assume that the integrals (KN)

∫ s

a
f(t) dg(t), (KN)

∫ b

s
f(t) dg(t) exist. Then

(KN)
∫ b

a f(t) dg(t) exists and

(2.49) (KN)
∫ b

a

f(t) dg(t) = (KN)
∫ s

a

f(t) dg(t) + (KN)
∫ b

s

f(t) dg(t).

���������
.

(i) Assuming that (KN)
∫ b

a
f(t) dg(t) exists, we prove that

(2.50)
∀ε > 0 ∃δ ∈ Γ(a, s) ∃A ∈ N ∀D, D′ ∈ Fδ,A(a, s) :

|KD(f, g)−KD′(f, g)| 6 ε,

and then use Lemma 2.8 to conclude that (KN)
∫ s

a
f(t) dg(t) exists.
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Let ε > 0 be given. We find δ0 ∈ Γ(a, b) and A ∈ N such that for every D0, D
′
0 ∈

Fδ0,A(a, b) we have

(2.51) |KD0(f, g)−KD′
0
(f, g)| 6 ε,

and for t ∈ [a, b] set

(2.52) δ(t) =

{
min{δ0(t), |t− s|} for t ∈ [a, b] \ {s},
δ0(s) for t = s.

Let D, D′ ∈ Fδ,A(a, s) be arbitrary, and let D∗ ∈ Fδ,A(s, b) be fixed. Then

D = {(τj , [tj−1, tj ]) ; j = 1, . . . , m},
D′ = {(τ ′k, [t′k−1, t

′
k]) ; k = 1, . . . , m′},

D∗ = {(τ∗i , [t∗i−1, t
∗
i ]) ; i = 1, . . . , m∗},

and we have τm = tm = τ ′m′ = t′m′ = τ∗1 = t∗0 = s by virtue of (2.52). Set

D0 = {(τj , [tj−1, tj ]) ; j = 1, . . . , m− 1} ∪ {(s, [tm−1, t
∗
1])}(2.53)

∪ {(τ∗i , [t∗i−1, t
∗
i ]) ; i = 2, . . . , m∗},

D′
0 = {(τ ′k, [t′k−1, t

′
k]) ; k = 1, . . . , m′ − 1} ∪ {(s, [t′m′−1, t

∗
1])}(2.54)

∪ {(τ∗i , [t∗i−1, t
∗
i ]) ; i = 2, . . . , m∗}.

Then D0, D
′
0 ∈ Fδ,A(a, b) ⊂ Fδ0,A(a, b), hence (2.51) holds. Together with the

identity

KD0(f, g)−KD′
0
(f, g) =

m−1∑

j=1

f(τj)(g(tj)− g(tj−1)) + f(s)(g(t∗1)− g(tm−1))

−
m′−1∑

k=1

f(τ ′k)(g(t′k)− g(t′k−1))− f(s)(g(t∗1)− g(t′m′−1))

=
m∑

j=1

f(τj)(g(tj)− g(tj−1)) −
m′∑

k=1

f(τ ′k)(g(t′k)− g(t′k−1))

= KD(f, g)−KD′(f, g)

this implies (2.50). We analogously check that (KN)
∫ b

s f(t) dg(t) exists, and (i) is
proved.
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(ii) Put J1 = (KN)
∫ s

a f(t) dg(t), J2 = (KN)
∫ b

s f(t) dg(t). For ε > 0 we find
δ1 ∈ Γ(a, s), δ2 ∈ Γ(s, b) and A1, A2 ∈ N such that for every D1 ∈ Fδ1,A1(a, s),
D2 ∈ Fδ2,A2(s, b) we have

(2.55) |J1 −KD1(f, g)| 6 ε/2, |J2 −KD2(f, g)| 6 ε/2.

Set A = A1 ∪ A2, and

(2.56) δ(t) =





min{δ1(t), s− t} for t ∈ [a, s[,

min{δ2(t), t− s} for t ∈ ]s, b],

min{δ1(s), δ2(s)} for t = s.

Let D ∈ Fδ,A(a, b) be arbitrary, D = {(τj , [tj−1, tj ]) ; j = 1, . . . , m}. We find k ∈
{1, . . . , m} such that s ∈ [tk−1, tk]. Then s = τk by (2.56), hence tk−1 < s < tk, and

we may put

D1 = {(τj , [tj−1, tj ]) ; j = 1, . . . , k − 1} ∪ {(s, [tk−1, s])},
D2 = {(s, [s, tk])} ∪ {(τj , [tj−1, tj ]) ; j = k + 1, . . . , m}.

We have D1 ∈ Fδ1,A1(a, s), D2 ∈ Fδ2,A2(s, b) and KD(f, g) = KD1(f, g)+KD2(f, g),
hence

|J1 + J2 −KD(f, g)| 6 ε

as a consequence of (2.55), and the proof is complete. �
465/7 18�:9<;0�:=?>���� ��1�.
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