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Abstract. In this paper, necessary and sufficient conditions for the existence of nonoscil-
latory solutions of the forced nonlinear difference equation

∆(xn − pnxτ(n)) + f(n, xσ(n)) = qn

are obtained. Examples are included to illustrate the results.
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1. Introduction

In this paper, we consider the nonlinear difference equation with a forced term

(1) ∆(xn − pnxτ(n)) + f(n, xσ(n)) = qn, n = 1, 2, 3, . . . ,

where ∆ is the forward difference operator defined by ∆xn = xn+1−xn, f : �×� →
� is a continuous function, and τ, σ : � → � with lim

n→∞
σ(n) = +∞, lim

n→∞
τ(n) =

+∞; {pn}, {qn} are real sequences. A solution of (1) is a real sequence xn defined for
all n � min{N0, min

n�N0
σ(n), min

n�N0
τ(n)} and satisfying (1) for all n � N0. A nontrivial

solution {xn} of (1) is said to be oscillatory if for any N � N0 there exists n > N

such that xn+1xn � 0. Otherwise, the solution is said to be nonoscillatory.
Difference equations of neutral type have been studied by a number of authors in

recent years, for example, see [2–11,13] and the references contained therein. Various
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authors have obtained results guaranteeing the oscillation of equation (1), and we

cite the papers [2, 6–8]. In this paper we are interested in obtaining necessary and
sufficient conditions for the existence of nonoscillatory solutions of (1).

2. Main results

Let X denote the Banach space lN∞ of all bounded real sequences x = {xn}, n � N ,

with the norm ‖x‖ = sup
n�N

|xn|. We will use the following assumptions:

(i) |f(n, x)| � |f(n, y)|, provided |x| � |y|;
(ii) for each closed interval L = [d1, d2] (0 < d1 < d2), there exists L(n) such that

|f(n, x)− f(n, y)| � L(n)|x− y|, x, y ∈ L,

and
∞∑

i=N

L(i) < ∞;
(iii) xf(n, x) � 0 (x �= 0);
(iv)

∞∑
i=N

|qi| < ∞;
(v) there exists r ∈ (0, 1) such that

0 � pn � 1− r, n � N ;

(vi) there exists r ∈ (0, 1) such that

r − 1 � pn � 0, n � N ;

(vii) |pn| � 1− r, n � N , r ∈ (12 , 1);
(viii) pn ≡ 1.

Theorem 1. Suppose that (i), (ii) and (iv) hold. Further suppose that either (v)
or (vi) holds. If

(2)
∞∑

n=N

|f(n, d)| < ∞ for some d �= 0,

then Eq. (1) has a bounded nonoscillatory solution {xn} such that lim inf
n→∞

|xn| > 0.

�����. Define a subset Ω of X as follows:

Ω = {{xn} ⊂ X : d1 � xn � |d|, n � N}
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and an operator T on Ω:

Txn =





c1 + pnxτ(n) +
∞∑

i=n

f(i, xσ(i))−
∞∑

i=n

qi, n � N1,

TxN1 , N � n < N1,

where 0 < d1 < r|d|, c1 and N1 satisfy the following conditions: If (v) holds, d1 <

c1 < r|d| and N1 is sufficiently large such that τ(n) � N , σ(n) � N as n � N1 � N

and ∞∑

n=N1

f(n, d) +
∞∑

n=N1

|qn| � min{c1 − d1, r|d| − c1}

and ∞∑

i=N1

L(i) � r

2
.

If (vi) holds, d1 + (1 − r)|d| < c1 < 1
2 (d1 + (2 − r)|d|), N1 is sufficiently large such

that τ(n) � N , σ(n) � N as n � N1 and

∞∑

n=N1

|f(n, d)|+
∞∑

n=N1

|qn| � c1 − d1 − (1− r)|d|.

First, we claim that TΩ ⊂ Ω.

If (v) holds, then for any x ∈ Ω, n � N1 we have

Txn = c1 + pnxτ(n) +
∞∑

i=n

f(i, xσ(i))−
∞∑

i=n

qi

� c1 −
∞∑

i=N1

|f(i, xσ(i))| −
∞∑

i=N1

|qi|

� c1 − (c1 − d1) = d1

and

Txn � c1 + pn|d|+
∞∑

i=N1

|f(i, xσ(i))|+
∞∑

i=N1

|qi| � c1 + (1− r)|d| + (r|d| − c1) = |d|.

If (vi) holds, then for n � N1 we have

Txn � c1 + |d|pn −
∞∑

i=N1

|f(i, d)| −
∞∑

i=N1

|qi|

� c1 − (1− r)|d| − (c1 − d1 − (1− r)|d|) = d1
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and

Txn � c1 +
∞∑

i=N1

|f(i, d)|+
∞∑

i=N1

|qi|

� c1 + c1 − d1 − (1− r)|d|
< d1 + (2 − r)|d| − d1 − (1 − r)|d|
= |d|.

Therefore TΩ ⊂ Ω.

Next, we claim that T is a compression mapping on Ω. In fact, for x, y ∈ Ω,
n � N1, we have

|Txn − Tyn| = |pn(xτ(n) − yτ(n)) +
∞∑

i=N1

(f(i, xσ(i))− f(i, yσ(i))|

� |pn| sup
n�N

|xn − yn|+
∞∑

i=N1

L(i)|xσ(i) − yσ(i)|

�
(
|pn|+

∞∑

i=N1

L(i)

)
sup
n�N

|xn − yn|

�
(
1− r +

r

2

)
‖x− y‖

=
(
1− r

2

)
‖x− y‖,

which implies that

‖Tx− Ty‖ �
(
1− r

2

)
‖x− y‖.

By the Banach fixed point theorem, T has a fixed point x = {xn} ∈ Ω. Obviously,

x is a bounded nonoscillatory solution of (1) with lim inf
n→∞

|xn| � d1 > 0. The proof is

complete. �

The following lemmas show the necessity of condition (2) for the existence of a
nonoscillatory solution {xn} with lim inf

n→∞
|xn| > 0.

Lemma 1. Assume that (i), (iii), (iv) and (vi) hold. If (1) has a nonoscillatory
solution {xn} with lim inf

n→∞
|xn| > 0, then (2) holds.

�����. Without loss of generality, assume that xn > d > 0, n � N. Let

yn = xn − pnxτ(n) > 0. Then

∆yn = qn − f(n, xσ(n)).
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If (2) does not hold, summing the last equation we obtain

yn − yN1 �
n−1∑

i=N1

qi −
n−1∑

i=N1

f(i, xσ(i)) �
n−1∑

i=N1

|qi| −
n−1∑

i=N1

f(i, d)→ −∞, n →∞.

Then lim
n→∞

yn = −∞, a contradiction. The proof is complete. �

Lemma 2. Assume that (i), (iii), (iv), (v) and τ(n) � n, n � N hold. Then the

conclusion of Lemma 1 is true.

�����. Assume that xn � d > 0, n � N is a positive solution of (1). If (2)
does not hold, as in the proof of Lemma 1, we have lim

n→∞
yn = −∞. Then xn is

unbounded. Therefore there exists a sequence {nk} with lim
k→∞

nk = ∞ such that

xnk
= max

n�nk

xn. Then

ynk
= xnk

− pnk
xτ(nk) � (1 − pnk

)xnk
> 0,

a contradiction. The proof is complete. �
Combining the above results we obtain

Theorem 2. Assume that (i), (ii), (iii), (iv) and (vi) hold. Then (2) is a nec-
essary and sufficient condition for (1) to have a nonoscillatory solution {xn} with
lim inf
n→∞

|xn| > 0.

Theorem 3. Assume that (i), (ii), (iii), (iv), (v) and τ(n) � n, n � N hold. Then

(2) is a necessary and sufficient condition for (1) to have a nonoscillatory solution

{xn} with lim inf
n→∞

|xn| > 0.

Now we consider the case that pn is oscillatory in (1).

Theorem 4. Assume that (i), (ii), (iv), (vii) and (2) hold. Then (1) has a
bounded nonoscillatory solution {xn} with lim inf

n→∞
|xn| > 0.

�����. Let Ω = {{xn} ∈ X : d1 � xn � |d|, n � N}, where 0 < d1 < (2r−1)|d|.
Define an operator T by (3), where c1 satisfies d1 + (1 − r)|d| < c1 < r|d| and N1 is
sufficiently large such that when n � N1 � N, τ(n) � N, σ(n) � N and

∞∑

i=N1

|f(i, d)|+
∞∑

i=N1

|qi| � min{c1 − d1 − (1− r)|d|, r|d| − c1}

and ∞∑

i=N1

L(i) � r

2
.

The rest of the proof is similar to that of Theorem 1. �
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Similarly to Lemma 2 we can prove the following assertion.

Lemma 3. Assume that (i), (iii), (iv), (vii) and τ(n) � n, n � N hold. Then the

conclusion of Lemma 1 is true.

Combining Theorem 4 and Lemma 3 we obtain

Theorem 5. Assume that (i), (ii), (iii), (iv), (vii) and τ(n) � n, n � N hold.

Then (2) is a necessary and sufficient condition for (1) to have a nonoscillatory
solution {xn} with lim inf

n→∞
|xn| > 0.

������ 1. Theorems 1–5 are discrete analogues of the corresponding results

for the neutral differential equation [12].

Finally, we consider the case (viii).

Theorem 6. Assume that (i) and (viii) hold. Further assume that τ(n) is in-
creasing, τ(n) < n for all large n, and

∞∑

n=N

n|f(n, d)| < ∞ for some d �= 0

and

(3)
∞∑

n=N

n|qn| < ∞.

Then (1) has a bounded nonoscillatory solution.

Let
τ0(n0) = n0, τn+1(n0) = τ(τn(n0)), n = 0, 1, 2, . . . ,

τn−1(n0) = τ−1(τn(n0)), n = 0,−1,−2, . . . .

By a known result [13, Lemma 2.3], (3) is equivalent to

∞∑

j=0

∞∑

n=τ−j(n0)

|f(n, d)| < ∞

and

(4)
∞∑

j=0

∞∑

n=τ−j(n0)

|qn| < ∞.
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����� �� 	
����� 6. In view of (4), we can choose a sufficiently large n0

such that
∞∑

j=0

∞∑

n=τ−j(n0)

|f(n, d)| � 1
2

and

(5)
∞∑

j=0

∞∑

n=τ−j(n0)

|qn| �
1
2
.

Define

Hn =





∞∑

i=n

|f(i, d)|+
∞∑

i=n

|qi|, t � n0,

n− τ(n0)
n0 − τ(n0)

H(n0), τ(n0) � n � n0,

0, n � τ(n0).

Clearly, Hn : N → R. Define

(6) yn =
∞∑

m=0

Hτm(n), n � n0.

It is easy to see that yn − yτ(n) = Hn, n � τ−1(n0) and

(7) 0 < yn � 1, n � n0.

Define a set Ω ⊂ X by

Ω = {{xn} ⊂ X : 0 � xn � yn, n � n0}

and an operator S on Ω by

Sxn =





xτ(n) +
∞∑

i=n

f(i, xσ(i))−
∞∑

i=n

qi, n � n0,

Sxn0nyn

n0yn0

+ yn

(
1− n

n0

)
, τ(n0) � n � n0.

By (5)–(7), SΩ ⊂ Ω.

Define a sequence of sequences {xk
n}∞k=0 as follows:

x0n = yn, xk
n = Sxk−1

n , n � n0, k = 1, 2, . . . .
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By induction, we can prove that

yn = x0n � x1n � . . . , n � n0.

Then there exists a sequence {un} ∈ Ω such that lim
k→∞

xk
n = un and un > 0 for

n � n0, un = Sun, i.e.,

un = uτ(n) +
∞∑

i=n

f(i, uσ(n))−
∞∑

i=n

qi.

Hence

∆(un − uτ(n)) + f(n, uσ(n)) = qn.

The proof is complete.

������ 2. We can establish a result similar to Theorem 6 for the neutral
differential equation

(x(t) − x(τ(t)))′ + f(t, x(σ(t))) = q(t).

����
�� 1. Consider the equation

(8) ∆(xn − 3
5xτ(n)) + n−2x3σ(n) = e

−n, n � N

where lim
n→∞

τ(n) =∞, lim
n→∞

σ(n) =∞, qn = e−n and f(n, x) = n−2x3.

For x, y ∈ L = [d1, d2] (0 < d1 < d2) and d > d2 we have

|f(n, x)− f(n, y)| = n−2|x2 + xy + y2||x− y| � 3d2n−2|x− y|.

Let L(n) = 3d2n−2. Then
∞∑

i=N

L(i) < ∞ and
∞∑

i=N

|f(i, d)| =
∞∑

i=N

|d|3i−2 < ∞. By

Theorem 1, (8) has a nonoscillatory solution {xn} with lim inf
n→∞

|xn| > 0.

����
�� 2. Consider the equation

(9) ∆(xn − (− 13 )nxn−1) + (− 13 )n−1 4n2−2n+1
3(n−1)2(n2+1)xn = 4

3 (− 13 )n − 2n+1
n2(n+1)2 ,

where pn = (− 13 )n is oscillatory and satisfies (vii), f(n, x) = (− 13 )n−1 4n2−2n+1
3(n−1)2(n2+1)x

and satisfies (i) and (ii), qn = 4
3 (− 13 )n− 2n+1

n2(n+1)2 satisfies (iv), τ(n) = n− 1 < n and

∞∑

n=N

|f(n, d)| =
∞∑

n=N

(13 )
n−1 4n2 − 2n+ 1
3(n− 1)2(n2 + 1) |d| < ∞.

By Theorem 4, (9) has a bounded nonoscillatory solution {xn} with lim inf
n→∞

|xn| > 0.
In fact, {xn} = {1 + n−2} is such a solution of (9).

646



����
�� 3. Consider the difference equation

(10) ∆(xn − xn−3) +
1

n(n+ 1)(n− 3)xn−2 =
6n− 5

(n+ 1)n(n− 2)(n− 3) .

It is easy to see that Eq. (10) satisfies all assumptions of Theorem 6. Therefore (10)
has a bounded nonoscillatory solution. In fact, {xn} = { 1n} is such a solution of
(10).
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