
Mathematica Bohemica

Tuo-Yeong Lee
Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on
a portion

Mathematica Bohemica, Vol. 130 (2005), No. 4, 349–354

Persistent URL: http://dml.cz/dmlcz/134207

Terms of use:
© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134207
http://dml.cz


130 (2005) MATHEMATICA BOHEMICA No. 4, 349–354

BANACH-VALUED HENSTOCK-KURZWEIL INTEGRABLE
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, Singapore
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Abstract. It is shown that a Banach-valued Henstock-Kurzweil integrable function on an
m-dimensional compact interval is McShane integrable on a portion of the interval. As a
consequence, there exist a non-Perron integrable function f : [0, 1]2 −→ 
 and a continuous
function F : [0, 1]2 −→ 
 such that

(P)
∫ x

0

{
(P)

∫ y

0
f(u, v) dv

}
du = (P)

∫ y

0

{
(P)

∫ x

0
f(u, v) du

}
dv = F (x, y)

for all (x, y) ∈ [0, 1]2.
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MSC 2000 : 28B05, 26A39

1. Introduction

It is well known that if f is Denjoy-Perron integrable on an interval [a, b] ⊂ � , then
f must be Lebesgue integrable on a portion of [a, b]. K.Karták [6] asked whether an
analogous result holds for the multiple Perron integral. In a fairly recent paper [1]
Buczolich gave an affirmative answer to this problem using the Henstock-Kurzweil
integral. Nevertheless, his proof depends on the measurability of the integrand.
Since a Banach-valued Henstock-Kurzweil integrable function need not be strongly
measurable, see for instance [4, p. 567], it is natural to ask whether Buczolich’s result
holds for Banach-valued Henstock-Kurzweil integrable functions. In this paper we
give an affirmative answer to this problem. As an application, we answer another
question of K.Karták [6, Problem 9.3] concerning the Perron integral; namely, there
exist a non-Perron integrable function f : [0, 1]2 −→ � and a continuous function
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F : [0, 1]2 −→ � such that

(P)
∫ x

0

{
(P)

∫ y

0

f(u, v) dv

}
du = (P)

∫ y

0

{
(P)

∫ x

0

f(u, v) du

}
dv = F (x, y)

for all (x, y) ∈ [0, 1]2.

2. Preliminaries

Unless stated otherwise, the following conventions and notation will be used. The
set of all real numbers is denoted by � , and the ambient space of this paper is � m ,
where m is a fixed positive integer. The norm in � m is the maximum norm ||| · |||,
where |||(x1, x2, . . . , xm)||| = max

i=1,...,m
|xi|. For x ∈ � m and r > 0, set B(x, r) := {y ∈

� m : |||y−x||| < r}. Let E :=
m∏

i=1

[ai, bi] be a fixed non-degenerate interval in � m . Let

X be a Banach space equipped with a norm ‖ · ‖. A function is always X-valued.
When no confusion is possible, we do not distinguish between a function defined on
a set Z and its restriction to a set W ⊂ Z.
An interval in � m is the cartesian product of m non-degenerate compact intervals

in � , I denotes the family of all non-degenerate subintervals of E. For each I ∈ I,
|I | denotes the volume of I .
A partition P is a collection {(Ii, ξi)}p

i=1, where I1, I2, . . . , Ip are non-overlapping
non-degenerate subintervals of E. Given Z ⊆ E, a positive function δ on Z is called
a gauge on Z. We say that a partition {(Ii, ξi)}p

i=1 is

(i) a partition in Z if
p⋃

i=1

Ii ⊆ Z,

(ii) a partition of Z if
p⋃

i=1

Ii = Z,

(iii) anchored in Z if {ξ1, ξ2, . . . , ξp} ⊂ Z,
(iv) δ-fine if Ii ⊂ B(ξi, δ(ξi)) for each i = 1, 2, . . . , p,
(v) Perron if ξi ∈ Ii for each i = 1, 2, . . . , p,
(vi) McShane if ξi need not belong to Ii for all i = 1, 2, . . . , p.

According to Cousin’s Lemma [8, Lemma 6.2.6], for any given gauge δ on E, δ-fine
Perron partitions of E exist. Hence the following definition is meaningful.

Definition 2.1. A function f : E −→ X is said to be Henstock-Kurzweil
integrable (McShane integrable, respectively) on E if there exists A ∈ X with the
following property: given ε > 0 there exists a gauge δ on E such that

∥∥∥∥
p∑

i=1

f(ξi)|Ii| −A

∥∥∥∥ < ε
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for each δ-fine Perron partition (δ-fine McShane partition, respectively) {(Ii, ξi)}p
i=1

of E. We write A as (HK)
∫

E
f

(
(M)

∫
E

f , respectively
)
.

It is well known that if f is Henstock-Kurzweil integrable on E, then f is Henstock-
Kurzweil integrable on each subinterval J of E. Moreover, the interval function
J 7→ (HK)

∫
J

f is additive on I. This interval function is known as the indefinite
Henstock-Kurzweil integral, or in short the indefinite HK-integral, of f .

Theorem 2.2 (Saks-Henstock Lemma). Let f : E −→ X be Henstock-Kurzweil
integrable on E and let F be the indefinite HK-integral of f . Then given ε > 0 there
exists a gauge δ on E such that

∥∥∥∥
∑

(I,x)∈P

{f(x)|I | − F (I)}
∥∥∥∥ < ε

for each δ-fine Perron partition P in E.

3. Banach-valued Henstock-Kurzweil integrable functions are
McShane integrable on a portion

Theorem 3.1. Let f : E −→ X be Henstock-Kurzweil integrable on E and let F

denote the indefinite Henstock-Kurzweil integral of f . Then the following conditions
are equivalent:

(i) f is McShane integrable on E;

(ii) sup ‖
q∑

i=1

F (Ji)‖ is finite, where the supremum is taken over all finite partitions
{J1, . . . , Jq} of pairwise non-overlapping subintervals of E.

���������
. Since E is compact, the implication (i) =⇒ (ii) follows from [11,

Lemma 28].

(ii) =⇒ (i). Assume (ii). If x ∈ X∗, then x(f) is Henstock-Kurzweil integrable
on E and the indefinite Henstock-Kurzweil integral of x(f) is of bounded variation
on E. The rest of the proof is similar to that of the implication (iii) =⇒ (i) of [2,
Corollary 9]. The proof is complete. �

In view of [3, Proposition 2B], the next theorem is a mild improvement of [2,
Theorem 8].
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Theorem 3.2. Let f : E −→ X be Henstock-Kurzweil integrable on E and let F

denote the indefinite Henstock-Kurzweil integral of f . Then the following conditions
are equivalent:
(i) f is McShane integrable on E;
(ii) F is absolutely continuous on I, that is, given any ε > 0 there exists δ > 0

such that the inequality ‖
p∑

i=1

F (Ii)‖ < ε holds whenever {I1, . . . , Ip} is a finite

collection of pairwise non-overlapping subintervals of E with
p∑

i=1

|Ii| < δ.

���������
. (i) =⇒ (ii). This follows from [11, Lemma 28].

(ii) =⇒ (i). Since E is compact, this follows from Theorem 3.1. �

It is well known that the real-valuedMcShane integral is equivalent to the Lebesgue
integral. For a proof of this result, see, for example, [10]. Hence the following theorem
is a generalization of [1, Theorem]. Recall that a portion of E is a set of the form
E ∩ I , where I is an open interval in � m .

Theorem 3.3. If f : E −→ X is Henstock-Kurzweil integrable on E, then f is
McShane integrable on a portion of E.
���������

. Since f is assumed to be Henstock-Kurzweil integrable on E, the Saks-
Henstock Lemma (Theorem 2.2) holds. Therefore there exists a gauge δ on E such
that ∥∥∥∥

∑

(I,x)∈P

{f(x)|I | − F (I)}
∥∥∥∥ < 1

for each δ-fine Perron partition P in E. For each n ∈ � , we set

Xn =
{
x ∈ E : ‖f(x)‖ < n and δ(x) >

1
n

}
.

Clearly
⋃

n∈ �
Xn = E and hence by Baire’s Category Theorem [5, Theorem 5.2]

there exists N ∈ � such that XN is dense on some J belonging to I. Without loss of
generality we may assume that diam(J) < 1/N , where diam(J) denotes the diameter
of J .
Consider any finite collection {J1, . . . , Jq} of pairwise non-overlapping subintervals

of J . For each i ∈ {1, . . . , q} we invoke the density of XN∩J in J to pick xi ∈ XN∩J .
Since diam(J) < 1/N , we see that {(J1, x1), . . . , (Jq , xq)} is a (1/N)-fine, and hence
δ-fine, Perron partition anchored in XN ∩ J . Hence, by our choice of δ,

∥∥∥∥
q∑

i=1

{f(xi)|Ji| − F (Ji)}
∥∥∥∥ < 1
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and so ∥∥∥∥
q∑

i=1

F (Ji)
∥∥∥∥ < 1 +

q∑

i=1

‖f(xi)‖|Ji| < 1 + N |J |.

As {J1, . . . , Jq} is an arbitrary finite collection of pairwise non-overlapping subinter-
vals of J , an appeal to Theorem 3.1 completes the proof of the theorem. �

In [7], Kurzweil and Jarník proved that if f is a real-valued Henstock-Kurzweil
integrable function on E, then there exists an increasing sequence {Xn}∞n=1 of closed
sets whose union is E, and for each n ∈ � , f is Lebesgue integrable on Xn. Hence
it is natural to pose the following problem.
�������������

3.4. Let f : E −→ X be Henstock-Kurzweil integrable on E. Can we
find an increasing sequence {Xn}∞n=1 of closed sets whose union is E, and for each
n ∈ � , f is McShane integrable on Xn?

4. On a question of K.Karták concerning the Perron integral

K.Karták posed the following problem for the Perron integral:
�������������

4.1 [6, Problem 9.3]. Is there a function f : [0, 1]2 −→ � such that

(P)
∫ x

0

{
(P)

∫ y

0

f(u, v) dv

}
du = (P)

∫ y

0

{
(P)

∫ x

0

f(u, v) du

}
dv = F (x, y)

for all (x, y) ∈ [0, 1]2 and that the function F is continuous on [0, 1]2 while f is not
Perron integrable on [0, 1]2?

Recall that the real-valued Henstock-Kurzweil integral is equivalent to the Perron
integral. Hence we may use the Henstock-Kurzweil integral to answer the above
question of K.Karták.

Theorem 4.2. There exist f : [0, 1]2 −→ � and a continuous function F :
[0, 1]2 −→ � such that

(HK)
∫ x

0

{
(HK)

∫ y

0

f(u, v) dv

}
du = (HK)

∫ y

0

{
(HK)

∫ x

0

f(u, v) du

}
dv(1)

= F (x, y)

for all (x, y) ∈ [0, 1]2 but f is not Henstock-Kurzweil integrable on [0, 1]2.
���������

. Let f be given as in [12, Chapter VI]. Then there exist a continuous
function F : [0, 1]2 −→ � and f : [0, 1]2 −→ � such that

∂2F (x, y)
∂x∂y

=
∂2F (x, y)

∂y∂x
= f(x, y)
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for all (x, y) ∈ (0, 1)2. Moreover, f is not Lebesgue integrable, and hence not Mc-
Shane integrable, on any non-degenerate subinterval of [0, 1]2. It is clear that (1)
holds for all (x, y) ∈ [0, 1]2. Using Theorem 3.3 with E = [0, 1]2 and X = � , we
conclude that f cannot be Henstock-Kurzweil integrable on [0, 1]2. The proof is
complete.
In view of [9, Theorem 4.3] and [9, Theorem 4.1], we see that every real-valued

indefinite Henstock-Kurzweil integral generates a σ-finite Henstock variational mea-
sure. Thus it is natural to pose the following problem.
�������������

4.3. Let F be given as in Theorem 4.2, and let F̃ be the additive
interval function induced by F . Must the Henstock variational measure VHKF̃ be
σ-finite on [0, 1]2?
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