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Abstract. The Henstock-Kurzweil approach, also known as the generalized Riemann
approach, has been successful in giving an alternative definition to the classical Itô integral.
The Riemann approach is well-known for its directness in defining integrals. In this note
we will prove the Fundamental Theorem for the Henstock-Kurzweil-Itô integral, thereby
providing a characterization of Henstock-Kurzweil-Itô integrable stochastic processes in
terms of their primitive processes.
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1. Introduction

The generalized Riemann approach, more commonly known as the Henstock-

Kurzweil approach, has been successful in giving an alternative definition to the
classical Itô integral, see [1], [5], [7], [8], [9], [10]. The advantage of using the
Henstock-Kurzweil approach has been its explicitness and intuitiveness in giving

a direct definition of the integral rather than the classical non-explicit L2-procedure.

It is also well-known from the classical non-stochastic integration theory that all
integrable functions can be characterized in terms of their primitives, that is, a

function f is Lebesgue (Henstock-Kurzweil) integrable on a compact interval [a, b]
if and only if there exists a function F which is absolutely continuous (respectively,

generalized absolutely continuous) there such that F ′ = f a.e. on [a, b], where F ′ is
the usual derivative of F , see for example [4].

In this paper, we will define the “belated derivative” of a stochastic process and

thereby characterize the class of all Henstock-Kurzweil-Itô integrable processes on
[a, b] by its primitive process.
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2. Setting

Let Ω denote the set of all real-valued continuous functions on [a, b] and � the set
of all real numbers.

The class of all Borel cylindrical sets B in Ω, denoted by C , is a collection of all

sets B in Ω of the form

B = {w : (w(t1), w(t2), . . . , w(tn)) ∈ E}

where 0 6 t1 < t2 < . . . < tn 6 1 and E is any Borel set in � n (n is not fixed). The
Borel σ-field of C is denoted by F , i.e., it is the smallest σ-field which contains C .

Let P be the Wiener measure defined on (Ω, F ). Then (Ω, F , P ) is a probability
space, that is, a measure space with P (Ω) = 1.
A stochastic process {ϕ(t, ω) : t ∈ [a, b]} on (Ω, F , P ) is a family of F -measurable

functions (which are called random variables) on (Ω, F , P ). Very often, ϕ(t, ω) is
denoted by ϕt(ω). Now we shall consider a very special and important process,
namely, the Brownian motion denoted by W .

Let W = {Wt(ω)}a6t6b be a canonical Brownian motion, that is, it possesses the

following properties:

1. Wa(ω) = 0 for all ω ∈ Ω;
2. it has Normal Increments, that is,Wt−Ws has a normal distribution with mean

0 and variance t− s for all t > s (which naturally implies that Wt has a normal
distribution with mean 0 and variance t);

3. it has Independent Increments, that is, Wt −Ws is independent of its past, that
is, of Wu, 0 6 u < s < t; and

4. its sample paths are continuous, i.e., for each ω ∈ Ω, Wt(ω) as a function of t is
continuous on [a, b].

A stochastic process {ϕt(ω) : t ∈ [a, b]} is said to be adapted to the standard
filtering space (Ω, F , {Ft}, P ) if ϕt is Ft-measurable for each t ∈ [a, b]. We always
assume that W = {Wt(ω)} is adapted to {Ft}. For example, if {Ft} is the smallest
σ-field generated by {Ws(ω) : s 6 t}, then W = {Wt(ω)} is adapted to {Ft}.
A stochastic process X = {Xt(ω) : t ∈ [a, b]} on the standard filtering space

(Ω, F , {Ft}, P ) is called a martingale if

1. X is adapted to {Ft}, that is, Xt is Ft-measurable for each t ∈ [a, b];
2.

∫
Ω
|Xt| dP is finite for almost all t ∈ [a, b]; and

3. E(Xt|Fs) = Xs for all t > s, where E(Xt|Fs) is the conditional expectation of
Xt given Fs.
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If in addition

sup
t∈[a,b]

∫

Ω

|Xt|2 dP

is finite, we say that X is an L2-martingale.

In the following we define E(f) to be
∫
Ω f dP for any random variable f .

It is well-known, see for example [6, P239], that the following assertions hold. The
details are given for the convenience of readers who are not familiar with stochastic

analysis.

(i)

E[Xs] = E [E[Xt|Fs]] = E[Xt]

for any t > s, that is, E[Xs] is a constant for all s ∈ [a, b].
(ii) For any a 6 u < v 6 s < t 6 b, we have

E[(Xt −Xs)(Xv −Xu)] = 0,

that is, a martingale has orthogonal increments.

(iii) From (ii) we get

E
∣∣∣(D)

∑
(Xv −Xu)

∣∣∣
2

= (D)
∑

E(Xv −Xu)2

for any partial partition D = {[u, v]} of [a, b].
(iv) For any u < v we have

E[XvXu] = E[E[XvXu|Fu]] = E[XuE[Xv|Fu]] = E[X2
u]

and hence

E(Xv −Xu)2 = E(X2
v −X2

u).

It is also well-known, see for example [6, P28], that a canonical Brownian motion

is a martingale. In fact, it is an L2-martingale with E(W 2
t ) = t, see property 2 of a

Brownian motion.
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3. Differentiation

In this section we define our belated derivative and state its basic properties.

Definition 1. Let F = {Ft : t ∈ [a, b]} be an L2-martingale. A stochastic
process F is said to be belated differentiable at t ∈ [a, b) if there exists a random
variable ft such that for any ε > 0, there exists a positive number δ(t) on [a, b] such
that whenever [t, v] ⊂ [t, t + δ(t)), we have

E(|ft(Wv −Wt)− (Fv − Ft)|2) 6 εE(Wv −Wt)2 = ε|v − t|.

The random variable ft is called the belated derivative of F at the point t. We will
denote ft by DβFt in our subsequent presentation. It is also easily checked that the

belated derivative of F is defined uniquely up to a set of probability measure zero.
The proof is omitted.

The L2-martingale F is said to be belated differentiable at t ∈ [a, b) if ft in the
above definition exists.
�����������

. The word belated is used in the above definition because the point of

differentiation t is always the left end point of the interval [t, v]. This is motivated
by the use of belated division in the definition of Henstock-Kurzweil-Itô integrals,

see [1].

Next we shall state the standard properties of belated differentiation.

Theorem 2. Let X and Y be two L2-martingales which are belated differentiable

at t ∈ [a, b) and let α ∈ � . Then
(a) X + Y is belated differentiable at t and

Dβ(X + Y )t = (DβX)t + (DβY )t,

(b) αX is belated differentiable at t and

(Dβ(αX))t = α(DβX)t.

���� ! #"
. The proof of Theorem 2 is straightforward and hence omitted. �

$ %&���('*)+�
3. Let X = {Xt : t ∈ [0, 1]} be the stochastic process Xt = 1

2W 2
t − 1

2 t,

where W is the Brownian motion, over the standard filtering space (Ω, F , {Ft}, P ).
Then it is easy to verify that X is in fact an L2-martingale with respect to the

standard filtering space. Furthermore, it can be proved that

DβXt = Wt

for all t ∈ [a, b].
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���� ! #"
. That X is a martingale follows from the fact that

E(W 2
b −W 2

a |Fa) = b− a

where 0 6 a 6 b. Furthermore,

E(|Xt|)2 =
1
2
t2 6 1

2
b2

for all t ∈ [a, b], thereby showing that X is in fact an L2-martingale. We next show

that DβXt = Wt for all t ∈ [a, b).
Given ε > 0, let δ(t) 6 2ε for all t ∈ [a, b). Consider a δ-fine interval-point pair

([t, v], t) such that [t, v] ⊂ [t, t + δ(t)] so that |v − t| 6 2ε. Then

E(Wt(Wv −Wt) − (Xv −Xt))2 = E
(
Wt(Wv −Wt)−

1
2
(W 2

v −W 2
t ) − 1

2
(t − v)

)2

= E
(1

2
(Wv −Wt)2 +

1
2
(t − v)

)2

=
1
4
E((Wv −Wt)2 − (v − t))2

=
1
4
E[(Wv −Wt)4 − 2(Wv −Wt)2(v − t) + (v − t)2]

=
1
2
(v − t)2 6 1

2
· 2ε(v − t) = ε(v − t),

which completes our proof. �

By Definition 1, belated differentiation is defined for L2-martingales in our context.
If we were to allow the belated differentiation to be defined for more general stochastic

processes, we could even have Dβ( 1
2W 2

t ) = Wt. However, in this sense, the anti-
derivative of Wt would not be uniquely defined. Hence we restrict ourselves to the
belated differentiation of L2-martingales.

Definition 4. A stochastic process X = {Xt : t ∈ [a, b]} on (Ω, F , P ) is said to
be AC2 on [a, b] if given any ε > 0, there exists η > 0 such that

E

( n∑

i=1

(Xvi −Xui)
2

)
6 ε

for any finite collection D = {[ui, vi]}n
i=1 of non-overlapping intervals for which

n∑
i=1

|vi − ui| 6 η.
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5. The stochastic process X = {Xt : t ∈ [a, b]}, where

Xt =
1
2
W 2

t − 1
2
t

in Example 3, is AC2 on [a, b]. The proof is easy and hence omitted.

4. Antiderivative and Henstock-Ito integral

In this section we will characterize the class of all Henstock-Itô adapted processes
in terms of their derivatives.

Let δ be a positive function on [a, b]. A finite collection D of interval-point pairs

{([ξi, vi], ξi), i = 1, 2, . . . , n} is called a δ-fine belated partial division of [a, b] if

1. {[ξi, vi], i = 1, 2, . . . , n} is a collection of non-overlapping subintervals of [a, b];
and

2. [ξi, vi] ⊂ [ξi, ξi + δ(ξi)] for each i = 1, 2, 3, . . . , n.

In the sequel we will denote {([ξi, vi], ξi), i = 1, 2, 3, . . . , n} by {([ξ, v], ξ)}.

Definition 6 (See [1, Definition 2]). Let f = {ft : t ∈ [a, b]} be an adapted pro-
cess on the standard filtering space (Ω, F , {F}t, P ). Then f is said to be Henstock-

Kurzweil-Itô integrable on [a, b] if there exists a process F = {Ft : t ∈ [a, b]} which
is an L2-martingale and AC2 on [a, b] such that for any ε > 0 there exists a positive
function δ on [a, b] such that

E
(
(D)

∑
{fξ(Wv −Wu) − (Fv − Fu)}2

)
6 ε

whenever D = {([ξ, v], ξ)} is a δ-fine belated partial division of [a, b].

It follows from Vitali’s Covering Lemma that given any positive function δ there
exists a belated partial division of [a, b] covering this interval up to a set of arbitrarily
small positive measure, hence the uniqueness of the integral process F follows.

It was also proved in [1] that the standard properties of integrals (such as unique-
ness of the integral, additivity of the integral, integrability over subintervals) hold

true for the Henstock-Kurzweil-Itô integral. The proofs are similar to the classical
integration theory, see [2], [3], [4]. In fact, it has been proved in Theorem 9 of [1] that

the integral defined by this new approach is equivalent to the classical Itô integral.

We have a class of stochastic processes which are Henstock-Kurzweil-Itô integrable
on [a, b].
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7. Let L2 denote the class of all adapted stochastic processes ϕ =

{ϕt : t ∈ [a, b]} on the standard filtering space (Ω, F , {Ft}, P ) such that
∫ b

a

E|ϕ(t, ω)|2 dt

is finite. Then any adapted process from L2 is Henstock-Kurzweil-Itô integrable on
[a, b].

In fact, L2 is the class of all classical Itô integrable functions. We have proved in
[1] that if f is classical Itô integrable, then f is also Henstock-Kurzweil-Itô integrable

and the two integrals coincide.

Theorem 8. Let an adapted process f be Henstock-Kurzweil-Itô integrable on

[a, b] and let Ft =
∫ t

a fs dWs. Then DβFt = ft a.e. on [a, b).
���� ! #"

. The idea of this proof is motivated by that of the Henstock integration

theory. We need to show that the set of points B of [a, b) for which DβFt does not
exist or is unequal to f is of Lebesgue measure zero. Let t ∈ B. By definition, there

exists γ(t) > 0 such that for any positive number δ(t), there exists [t, v] ⊂ [t, t+δ(t))
such that

(1) E(|ft(Wv −Wt) − (Fv − Ft)|2) > γ(t)(v − t).

From the definition of the Henstock-Kurzweil-Itô integral (see Definition 6),
given ε > 0, there exists a positive function β on [a, b] such that whenever
D = {((ξi, vi], ξi)}n

i=1 is a β-fine belated partial division of [a, b], we have

(2) E
(
(D)

∑
|fξ[Wv −Wξ] − (Fv − Fξ)|2

)
6 ε.

Now we consider a special D such that each [ξi, vi] satisfies (1) and (2). Let us
denote Bm = {t ∈ [a, b] : γ(t) > 1

m}, m = 1, 2, 3, . . ., and fix Bm. Suppose each
ξi ∈ Bm. Then by (1) and (2), we have

n∑

i=1

(vi − ξi) 6 mε.

Let G be the family of collections of intervals [ξ, v] induced from all β-fine belated
partial divisions with ξ ∈ Bm satisfying (1). Then G covers Bm in Vitali’s sense.
Applying the Vitali Covering Theorem, there exists a finite collection of intervals

{[ξi, vi], i = 1, 2, 3, . . . , q} such that

µ(Bm) 6
q∑

i=1

|vi − ξi|+ ε 6 (m + 1)ε.

Hence µ(Bm) = 0 and so µ(B) = 0. Thus our proof is completed. �
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Theorem 9. Let f be an adapted process on [a, b] such that
(i) F is an L2-martingale with Fa = 0 a.e.;
(ii) F has the AC2 property;

(iii) DβFt = ft a.e. on [a, b); then f is Henstock-Kurzweil-Itô integrable on [a, b]
with Ft =

∫ t

a
fs dWs.

The reader is reminded that (iii) means that DβFt(ω) = ft(ω) for almost all ω ∈ Ω
for a.e. t ∈ [a, b).
���� ! #"

. Let DβFt = ft for all t ∈ [a, b) except possibly for a set B which has

Lebesgue measure zero. Let ξ ∈ [a, b) \ B. Given ε > 0, there exists a positive
function δ on [a, b] such that whenever (ξ, v] is δ-fine, we have

E(|fξ(Wv − Wξ) − (Fv − Fξ)|2) 6 ε|v − ξ|.

Let D = {((ξi, vi], ξi), i = 1, 2, 3, . . . , n} be a δ-fine belated partial division of [a, b]
with all ξi ∈ [a, b] \B. Then

E

(∣∣∣∣
n∑

i=1

fξi(Wvi −Wξi) − (Fvi − Fξi)
∣∣∣∣
2)

= E

( n∑

i=1

|fξi(Wvi −Wξi)− (Fvi − Fξi)|2
)

by (i)

6 ε

n∑

i=1

|vi − ξi| 6 ε(b− a).

Thus if B = ϕ, it is clear from the above that f is Itô integrable with Ft =
∫ t

a
ft dWt.

In general, B is nonempty with µ(B) = 0.
Now let

Bm = {t ∈ [a, b) : m− 1 < E[f2
t ] 6 m},

where µ(Bm) = 0 and B =
∞⋃

m=1
Bm.

Since F has the AC2 property, given any positive integer m, there exists ηm > 0
with ηm 6 (ε/2m)2 ·m−2 such that whenever {(ui, vi]} is a finite collection of disjoint
left-open subintervals of [a, b] with

∑ |vi − ui| 6 ηm, we have

E

(∣∣∣∣
∑

[Fvi − Fui ]
∣∣∣∣
2)

6
( ε

2m

)2

.

Take an open set Gm ⊃ Bm such that µ(Gm) 6 ηm.
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Fix a positive integerm. Let D = {((ξi, vi], ξi)} be a β-fine belated partial division

of [a, b) such that ξi ∈ Bm for all i. Then we have

E

(∣∣∣∣
∑

i

fξi [Wvi −Wξi ]− (Fvi − Fξi)
∣∣∣∣
2)

6 2E

(∣∣∣∣
∑

i

fξi(Wvi −Wui)
∣∣∣∣
2)

+ 2E

(∣∣∣∣
∑

i

(Fvi − Fξi)
∣∣∣∣
2)

6 2
∑

i

E[f2
ξi

](vi − ui) + 2
( ε

2m

)2

6 4
( ε

2m

)2

.

So, considering any β-fine belated partial division over [a, b], denoted by D1 =
{((ξi, vi], ξi)}, we have

E

(∣∣∣∣
∑

i

fξi(Wvi −Wξi) − (Fvi − Fξi)
∣∣∣∣
2)

6 2E

(∣∣∣∣
∑

ξ∈[a,b]\B
fξi(Wvi −Wξi) − (Fvi − Fξi)

∣∣∣∣
2)

+ 2E

(∣∣∣∣
∞∑

m=1

∑

ξi∈Bm

fξi(Wvi −Wξi) − (Fvi − Fξi)
∣∣∣∣
2)

6 2ε(b− a) + 2ε,

thereby showing that f is Itô integrable with Ft =
∫ t

a ft dWt. �

Combining Theorems 8 and 9, we have the following characterization of all
Henstock-Kurzweil-Itô integrable stochastic processes:

Theorem 10. Let f be an adapted process on [a, b]. Then f is Henstock-Kurzweil-

Itô integrable on [a, b] if and only if there exists an L2-martingle F on [a, b] with
Fa = 0 a.s. and AC2 on [a, b] such that DβFt = ft almost everywhere on [a, b).
$ %&���('*)+�

11. From Example 3, Xt = 1
2W 2

t − 1
2 t is an L2-martingale on [a, b].

Hence the process

Ft =
1
2
W 2

t − 1
2
W 2

a − 1
2
(t − a),

where Fa = 0, is an L2-martingale on [a, b]. It can be also easily verified that F is

AC2 on [a, b]. Furthermore, it was shown that

DβXt = Wt
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on [a, b], hence
DβFt = Wt

on [a, b]. By Theorem 10, we have

∫ b

a

Wt dWt = Fb =
1
2

(
W 2

b −W 2
a

)
− 1

2
(b− a).

$ %&���('*)+�
12. Let f ∈ L2, the class of all classical Itô integrable adapted

processes on the standard filtering space. Then there exists an L2-martingale F on
[a, b] which is also AC2 on [a, b], such that DβFt = ft a.e. on [a, b).
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Real Anal. Exch. 27 (2001/2002), 495–514.

[2] Henstock, R.: The efficiency of convergence factors for functions of a continuous real
variable. J. London Math. Soc. 30 (1955), 273–286.

[3] Henstock, R.: Lectures on the Theory of Integration. World Scientific, Singapore, 1988.
[4] Lee, P.Y.: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989.
[5] McShane, E. J.: Stochastic Calculus and Stochastic Models. Academic Press, New York,
1974.

[6] Oksendal, B.: Stochastic Differential Equation: An Introduction with Applications. 4th
edition. Springer, 1996.

[7] Pop-Stojanovic, Z.R.: On McShane’s belated stochastic integral. SIAM J. Appl. Math.
22 (1972), 89–92.

[8] Toh, T. L., Chew, T. S.: A variational approach to Itô’s integral. Proceedings of SAP’s
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