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E F F I C I E N T NUMERICAL SOLUTION O F MIXED FINITE E L E M E N T 

DISCRETIZATIONS BY ADAPTIVE MULTILEVEL METHODS 

RONALD H.W. H O P P E , BARBARA WOHLMUTH, Miinchen 

Summary. We consider mixed finite element discretizations of second order elliptic 
boundary value problems. Emphasis is on the efficient iterative solution by multilevel 
techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. 
In particular, we present two multilevel solvers, the first one relying on ideas from domain 
decomposition and the second one resulting from mixed hybridization. Local refinement of 
the underlying triangulations is done by efficient and reliable a posteriori error estimators 
which can be derived by a defect correction in higher order ansatz spaces or by taking 
advantage of superconvergence results. The performance of the algorithms is illustrated by 
several numerical examples. 

Keywords: elliptic boundary value problems, mixed finite element methods, adaptive 
multilevel techniques 

AMS classification: 65N15, 65N30, 65N55 

1. INTRODUCTION 

In this paper, we are concerned with adaptive multilevel techniques for mixed finite 

element discretizations of second order elliptic boundary value problems. Mixed finite 

element methods which are based on the mixed or dual formulation are frequently 

used in such cases where the dual formulation does provide a more appropriate 

solution concept than that obtained by the standard primal formulation. We refer 

to the monograph of Brezzi and Fortin [11] and the survey article of Roberts and 

Thomas [23] for a detailed discussion and an extensive bibliography. For the efficient 

numerical solution we focus on multilevel iterative methods and adaptive techniques 

involving local refinement of the triangulations based on appropriate a posteriori 

error estimators. We remark that such techniques are well developed for the standard 
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conforming finite element methods. In particular, we refer to the recent survey 

articles of Xu [27], Yserentant [29] and Zhang [30] concerning multilevel methods 

and to the pioneering work of Babuska and Rheinboldt [2], [3] and the recent papers 

of Bornemann et al. [7] and Verfurth [25] for the issue of error estimation. However, 

less work has been done in the framework of mixed methods. We mention a multigrid 

approach proposed by Brenner [10] and additive as well as multiplicative Schwarz 

iterations developed by Cai, Goldstein and Pasciak [12], Ewing and Wang [15], [16], 

[17] and Vassilevski and Wang [24]. As far as efficient and reliable a posteriori error 

estimators are concerned, we are only aware of a recent paper by Braess and Verfurth 

[9] on residual based techniques. 

The paper is organized as follows: In Section 2, we briefly recall the mixed for

mulation and mixed discretization of second order elliptic boundary value problems. 

Then, in Section 3 we present a multilevel preconditioned cg-iteration acting on an 

appropriate subspace with a hierarchical type preconditioner that can be derived 

by subspace decompositions similar to those that have been used by Cai et al. in 

[12]. Local refinement of the triangulations relies on an error estimator obtained by 

the principle of defect correction in higher order mixed ansatz spaces and a local

ization by suitable hierarchical two-level splittings of these ansatz spaces. Section 

4 is devoted to an alternative adaptive multilevel method based on the technique 

of mixed hybridization. In view of its equivalence with an extended nonconform

ing approximation, we use a preconditioned cg-iteration with a BPX-type multilevel 

preconditioner designed for nonconforming P I approximations. In this case, an L2 

error estimator is used for local grid refinement that can be motivated by a super-

convergence result for mixed hybridization. Finally, in Section 5 we present some 

illustrative numerical results. 

2. MIXED FORMULATION AND MIXED DISCRETIZATION 

We consider the following boundary value problem for a linear second order elliptic 

differential operator 

— div(aVu) + cu = f in П, 
(2.1) 

u = 0 o n Г : = ð П 

wherein is a bounded, polygonal domain in IR2 with boundary F = dQ and / 6 L2(ft). 

We further assume the coefficients to be a piece wise continuous, symmetric matrix-

valued function a = (a,ij)\j=i and a piecewise continuous function c satisfying for 
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x eft 

2 

<*o|£|2 ^ Y, M*)&& < ^il^l2, £eU2, 0<a0^ ai, 
(2.2) {%x 

Co ^ c(x) -̂  Ci, 0 ^ Co ^ C\. 

We remark that only for simplicity we have chosen homogeneous Dirichlet boundary 
conditions in (2.1). Other types of boundary conditions can be treated as well. 

For D C ft we denote by (•, -)k,D, k ^ 0, the standard inner products on the 
Sobolev spaces Hk(ft) and (Hk(ft))2 and by | • \k,D and || • \\k,D the associated 
Sobolev seminorms and norms, respectively. The subindex D will be omitted in case 
D = ft. Moreover, we refer to H(div; ft) as the Hilbert space 

H(div;ft) := { q € (L2(ft))2; divqG L2(ft)} 

equipped with the inner product 

(P,q)//(div;ft) := (p,q)o + (divp,divq)0 

i 

and the associated graph norm || • ||jj(div;n) = (•, Oj^divjn)-
Introducing the flux j = — aVu as an additional unknown, the second order equa

tion (2.1) can be formally written as a first order system whose variational formula
tion is commonly referred to as the mixed formulation of (2.1): 

Find (j,u) e H(div;ft) x L2(ft) such that 

a(j, q) + 6(q, u) = 0, q € H(div; ft), 

b(i,v)-c(u,v) = l(v), veL2(ft) 

where the bilinear forms a, b, c and the functional / are given by 

a(qi.q2) := / a _ 1 q i q 2 d x , q„ e H(div;ft), 1 ^ v ^ 2, 

n 

b(c\,v) := - / divqvdx, q G H(div;ft), v e L2(ft), 

Q 

c(vi,v2) := / cviv2dx, vv e L2(ft), 1 < v -̂  2, 

Q 

l(v) := - f fvdx, veL2(ft). 
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Denoting by A: .ff(div;fi) -> ff(div;ft)*, B: H(d\v;Sl) -> L2(ft) and C: Z,2(ft) -> 
L2(fi) the operators associated with the bilinear forms a, b and c, respectively, in 
operator form the system (2.3) can be stated as follows 

A BT 

(A %) 0-(:",) 
It is easy to see that a, b and c are continuous bilinear forms with a being symmetric 
and coercive on KerB, c being symmetric, positive semidefinite and b satisfying 
the standard inf-sup condition (Brezzi condition). Since Im B = L2(H), we have 
K e r £ T = {0} and consequently, it follows from [11; § II, Thm. 1.2] that (2.3) 
admits a unique solution. 

The mixed fixed finite element discretization of (2A) is based on its mixed formu
lation (2.3). We consider a simplicial triangulation Th of ft and denote by J\fh and £h 

the sets of vertices and edges. In particular, we refer to e^, 1 ^ v ^ 3, as the edges 
of K G Th- Further, for D C K we denote by Pk(D), k ^ 0, the set of polynomials 
of degree ^ k on D. 

The flux space H(div; ft) will be approximated by 

RT0(n-,Th) := {q* G H(drv;ft); qh\K e RT0(K), K G %} 

where RTo(K) stands for the lowest order Raviart-Thomas element 

RTo(K) := (P0(K))2 +xP0(K), x := (xux2f. 

Note that any <\h\K G RTQ(K) is uniquely determined by the following three degrees 
of freedom 

/ nqh\Kpda, p G Ro(dK) 

dK 

where n is the outer normal on dK and Ro(dK) := {p G L2(dK); p\eK G Po(e„), 

l ^ i / < 3 } . 

The conformity of the approximation is guaranteed by specifying the basis fields 
in such a way that continuity of the normal components 

(2.4) (n - qfc) |e0K = - (n' • q*) \enK> K H K' = e € ^ n a 

is satisfied across interelement boundaries where n and n' stand for the outer normal 
on e n <9Itf and e n dK', respectively. 

Observing divq/c G PQ(K), K ETh, a natural choice for the approximation of the 
primal variable u is to use piecewise constants leading to the ansatz space 

W0(n;Th) := {vh G L2(ft); ^ | K G P0{K), K e %} . 
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Then, the mixed discretization of (2.1) requires the computation of a pair ()h,Uh) € 

RTo(ft;Th) x W0(n;Th) such that 

a(}h,<lh) + b(cih,Uh) = 0 , qh e RTo(tt;Th), 
(2.5) 

b(ih,Vh) -c(uh,vh) = l(vh), vh e Wo($l;Th). 

It can be easily verified that the bilinear form a\RT0(Q-fTh)xRT0(Q;Th)
 ls uniformly co

ercive on Ker B\RTo(n;Th)
 ar-d that the bilinear form b\RT0(Q;Th)xW0(QtTh) satisfies the 

inf-sup condition (Babuska-Brezzi condition). Moreover, we have KeiBT\w0(n,Th)
 = 

{0} and hence, the mixed discretization (2.5) is uniquely solvable (cf. e.g. [11; §11, 
Prop. 2.11]). 

3 . ADAPTIVE MULTILEVEL ITERATIVE TECHNIQUES: ALGORITHM I 

In this section, we will construct an adaptive multilevel iterative solver for the 
efficient numerical solution of the mixed discretization. The iterative solution will 
be based on a preconditioned cg-iteration acting on an appropriate subspace. We 
will use a hierarchical preconditioner constructed by means of suitable multilevel 
splittings of the mixed ansatz spaces RTo(Q,;Th) and Wo(Q;Th)> We note that such 
splittings have been used by Cai, Goldstein and Pasciak [12], Ewing and Wang 
[15], [16], [17] and Vassilevski and Wang [24]. Moreover, an efficient and reliable a 
posteriori error estimator will be developed by the concept of defect correction in 
higher order ansatz spaces and an appropriate localization by hierarchical two-level 
splittings of these ansatz spaces. We remark that this concept is widely used in case 
of conforming or nonconforming finite element approximations (cf. e.g. [6], [7], [14], 
[19], [25]). 

We assume that (Tk)k=.0
 1S a hierarchy of possibly highly nonuniform triangulations 

generated by the meanwhile standard refinement process due to Bank et al. [5] 
(cf. also [4], [8], [14], [19], [28]). In particular, a triangle K G Tk, 0 ^ k ^ /, 
either remains unrefined or is subdivided into four congruent subtriangles (regular 
or red refinement) or is bisected into two subtriangles (irregular or green refinement). 
The subtriangles are referred to as regular or irregular triangles, respectively. The 
following refinement rules have to be observed: 

(R 1) Each vertex of Tk+i that does not belong to Tk is a vertex of a regular triangle. 
(R 2) Irregular triangles must not be further refined. 
(R 3) Only triangles K £ Tk of level k, i.e., triangles that do not belong to Tk-\, may 

be refined for the construction of Tk+\. 
As a consequence of the refinement rules, each triangle K € Tk, 1 ^ k ^ I, is 

geometrically similar either to an element of 7o or to an irregularly refined triangle 
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of To- Moreover, the sequence (Tk)k=0 is locally quasiuniform and can be uniquely 
reconstructed from the initial triangulation To and the final triangulation Ti. (For 
details we refer to the literature cited above). 

In this section, for simplicity we assume C\K = CK > 0, K € %. The case 
CK — 0 for some K £ To can be treated under some slight modifications. The mixed 
discretization with respect to the finest triangulation 7/ leads to the linear system 

<ЗД) A*:=(£ % «J {-/•)' 
Note that Ai considered as an operator on (L2(U)) x L2(ft) with D (At) = 

RTo(ft;Ti) x Wo(£l\Ti) is symmetric, but indefinite. 

For the solution of (3.1) we set Z{ := zj1 -f- zf where zf := (jf,uf) is a particular 

solution of the inhomogeneous equation 

(3.2) £ d f - C j u f = - / , . 

Then, zj1 := ( j j 1 , ^ ) satisfies 

(3.3) M=(M ^ ^ - ^ 
Bt -CiJ \ufj \Q 

where gi = — (AJf + Bfuv
t). We refer to Zi as the subspace 

Zi := {(qi,Vi) € RT0(Q;Ti) x W0(fl;Tt); S,q, - dvt = 0} 

and introduce another operator-valued 2 x 2 matrix 

MS -£) 
which will serve as a preconditioner for the iterative solution of (3.3) by a precondi
tioned cg-iteration. 

We further note that elimination of u^ from the first equation in (3.3) yields 

(3.4) D/jf = gh Di := AL + BfC^Bi. 

Likewise, if we consider (3.3) with Ai instead of Ai, the same holds true with Di 

replaced by 

(3.5) Dr.= Ai+BjC-lBi. 
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The iterative solution of (3.3) will be based on the following results: 

L e m m a 3.1 . Let A[, A[, D[, D[ and Z[ be given as above. Then there holds: 

(i) The operator A[ is symmetric, positive definite on the subspace Z[. 

(ii) If Zi := (tf,uf), v ^ 1, are the iterates obtained by a preconditioned cg-

iteration applied to (3.3) with preconditioner A[ and startiterate z® = ( j ? , ^ ) , then 

z? G Z[ implies z\ G Z{, v ^ 1. 
(hi) If there exist constants 0 < 7 ^ F such that 

7 ( A q / , q / ) o ^ (Aq/ ,q / ) 0 ^ T (Aqz,qz)Q , qz G RT0(Sl;T[), 

then we also have 

7 \A[Z[,Z[j ^ (A[Z[,Z[)0 ^ T [A[Z[,Z[j , Z[ G Z[. 

P r o o f . For Z[ = (q/, V[) G Z[ we have 

(3.6) (A[Z[,zi)0 = (Aw + Bfvi,cn)0 = (F>/qz,qz)0 ^ 0. 

If (Aqz, qz)0 = 0, then q/ = 0 and hence V[ = 0 because of C/V/ = 0 which proves (i). 
Since (3.6) also holds true with A[, A[ and D[ replaced by A[, A[ and _)/, respectively, 
(iii) is readily established. Finally, (ii) can be easily verified by induction. • 

The preconditioner A[ will be constructed by means of appropriate multilevel 
decompositions of RT0(Q;Ti) and W0(ft,;T[) similar to those used in [12]. These 
decompositions will also provide an efficient tool for the computation of zf satisfying 
(3.2). In particular, we denote by gk: RT0(Q;T[) 1—> RT0(Q;Tk), 0 ^ k ^ /, the 
interpolation operators defined locally by 

/ n • (gk<\i - qz)p0dc/ = 0, p0 G RQ(0K), K G 7fc, 

dK 

and we further denote by 11* the L2(Q) projections onto W0(ft; Tk), 0 ^ k ^ Z. Note 
that the operators gk and 11^ are related by 

(3.7) div (gkqi) = Uk (divq/), q/ G RT0(tt; T[) 

(cf. e.g. [11; §111, Prop. 3.7]). Observing that gi and 11/ correspond to the identities 
on RT0(Ct;T[) and W0(Q,;T[) and setting D_i := 0, _I_i := 0 we consider the direct 
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subspace decompositions 

/ 
(3.8) RT0(Sl; Ti) = 0 RT0(U; %), 

k=0 

i 

(3.9) W0(V;Ti)= 0KVo(!7;Tfc), 
k=0 

where RT0(Sl;%) := (gk - Qk-i) RT0(Q;Ti) and W0(Sl;%) := ( n f c - I I f c _ i ) x 
Wo(n;Ti),0^k^l. _ 

In view of (3.7) we have divitTo^Tfc) = W0(ft;%), 0 ^ fc ^ / . Moreover, for 
1 ^ fc ^ / and K G %-\ it is easy to see that JK wk dx = 0, wk G JVo(ft; %) and, as 
a consequence of Gauss' theorem, JdK n • qk da = 0, qk G RT0(fl; %). In the light 
of this last observation, for 1 ^ fc ^ / we will further decompose the level fc sub-
space RT0(fl; %). For that purpose we denote by 7 .̂ref and £r

k
ef the set of all refined 

triangles K e % and refined edges e G £k. We further refer to Si (ft; %) as the stan
dard conforming finite element space of continuous, piece wise linear finite elements 
with respect to %, 0 ^ fc ^ /. We recall Yserentant's hierarchical decomposition of 

Si(ft;T) according to 
/ 

Si(n;7I) = 0Si(n;Tfc) 
k=0 

where Si(Q;%) := (h — h-\) Si(ft;T), 0 ^ fc ^ /, and I^ stands for the interpola
tion operator (Ikui)(p) := ui(p), p G Mk, 0 ^ fc ^ /, and I_i := 0. We define 

MQ
l(Sl;%) := {q* G RT0(Q; %); n • qk\dK = 0, KG %t\} , l ^ k ^ l , 

M0
2(ft;T*):= curlSi(ft;T*), 1 O < ' • 

The subspaces M0 (ft; %), 1 ^ v ^ 2, do provide a direct subspace decomposition of 

£To(ft;T*) 

(3.10) RT0(U;%) = M0
l(n;%) 0 Ml(Vt;%), 1 ^ fc ^ /. 

We note that M0(ft;7A;) admits the splitting 

(3.11) M0
1(ft;Tfc)= 0 MQ

l(K;%) 
KeT^x 

where M ^ i ^ T c ) , K = |J Kv, Ku G 7i, !//<- = 2 or i//c = 4, is the (/vK - 1)-
v=\ 

dimensional subspace spanned by the level fc basis fields associated with the interior 
level fc edges e C dKu n intK, 1 ^ v ^ vK. 
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Moreover, for M^fyTk) we have the decomposition 

(3.12) M0
2(Jl;Tfc)= 0 M0

2(e;Tfc) 

where M0(e;Tfc) is the one-dimensional subspace spanned by the curl of the level k 

basis function <p™° £ 5i(i7;Tfc) associated with the midpoint me of a refined edge 

It is well known that subspace decompositions give rise to multilevel Schwarz it
erations of both additive and multiplicative type and to associated preconditioners 
(cf. e.g. [27], [29], [30]). Here, we consider a preconditioner of hybrid type simi
lar to that in [12] which is additive with respect to the "vertical" decomposition 
(3.8) and multiplicative with respect to the "horizontal" decomposition (3.10). The 
preconditioner for Di from (3.4) is given by 

(3.13) 

Ď^Чi := [Po + ^ f t W Ч , q, Є ЯГ0(П;7Í), 
^ fc=i ' 

Pk := PMг + (l~ PMг) ( £ Pe) (l - PMг) , l^к^ l, 
«e£ííi 

where P0 , PM i and Pe are the projections onto PT0(fi; 78), -MQ (fi; Tk) and M^(e; 7*), 

1 -̂  k ^ /, with respect to the weighted inner product 

(^P)//(div;fi) : = / a _ 1 q - p d x + / c _ 1 d i v q - d i v p d x . 

The preconditioner can be cheaply implemented. In particular, the evaluation of 
P0 requires the solution of a saddle point problem on the initial triangulation 78-
Moreover, in view of (3.11) and (3.12), on levels 1 < k ^ I for the evaluation of 
PMi we have to solve local, low-dimensional saddle point problems associated with 
K € 7k-\ whereas the evaluation of Pe only requires the solution of a scalar equation. 

For the determination of a particular solution zf of (3,2) we compute (j0,ii0) as 
the solution of the Raviart-Thomas approximation of (2.1) on level k = 0. Further, 
denoting by BK the restriction of B to the subspaces M^K'.Tk), K G T^-n 1 ^ 
k ^ /, we compute j f e M^(K\Tk) as the solution of the local problems BK}k = 
- [(11* - IIfc-i) / ] \K and set }k := £* - !£ • Obviously, the pair (jf ,u0) with jf = 

Jo + I ] h satisfies the inhomogeneous equation (3.2). 
k=i 
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R e m a r k 3.1. For a vanishing Helmholtz term c = 0 in (2.1) the subspace Z\ cor

responds to the subspace RT^(Ct; 71) := {q/ £ RT0(tt', Ti); div q/ = 0} of divergence-

free vector fields. Observing that RT0(D,;Ti) can be identified with curl Si (ft; 77), 

we may compute jf as the projection of —jf onto curl Si (ft; 71) with respect to the 

weighted L2(ft) inner product (-jOoja-1 := ( a _ 1 - , ) 0 . Note that this particular case 

has been treated by Ewing and Wang in [15]. 

As far as the convergence of the preconditioned cg-iteration is concerned, it can 

be shown that in the asymptotic range the condition number of D^XD\ and hence, 

also that of A^xAi\zx grows quadratically with the refinement level and thus behaves 

in the same way as Yserentant's hierarchical preconditioner in case of the standard 

conforming P I approximation of (2.1) (cf. e.g. [28]). 

Theorem 3.2. There exist constants 0 < 7 ^ T depending only on the shape 

regularity of T0 and on the bounds for the coefficients of the elliptic operator such 

that for all q/ e RT0(Q;Ti) 

(3.14) 7(1 + I ) " 2 | q i f c ( d i v ; n ) ^ ( A ' ^ i q i , ^ ) ^ . ^ ^ ^ 1 ^ ^ 

1 /1 

where ||| • |j/(div;ft) := (•, ') H(&iv,Q.y 

P r o o f . In view of (3.13) the lower bound in (3.14) can be established by the 

P.L. Lions' type estimate 

/ 

(3.15) 70 (. + l ) " 2 £ l|qfc||
2tf(div;n) < HIH^U) 

k=0 

I 

where q/ = £ q/e, cb := (Qk - Qk-i) qz> 0 -$ k ^ /, and by means of the estimate 
A:=0 

(3.16) 7líllIЧ iq*iя(div;П)+ E | | P e ( J - P W . , ) fc|L. o ч ì ^ l *-" " llЯ(div;Q) 

'ЄЧ-i 

which holds true for all q^ 6 RT0(Q\Tk), 1 ^ k ^ /. 

On the other hand, taking advantage of (3.13) the upper bound in (3.14) follows 

from the strengthened Cauchy-Schwarz inequality 

(3-17) <pj,qfc>„(div;o.) < r o 2 - ( f c - ^ 2 | q , i i / ( d i v ; n ) f f l p i l / / ( d i v : f i ) 
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where pj € RT0(Q;Tj), qfc e RT0(n;Tk), 0 ^ j < k ^ /, and from the estimate 

(3-18) ffiq,|2H(div;n)^ri(™IJM(;qfc»
2//(div;n)+ £ jPe ( I - PMi) ^ | L d i v . n ) ) 

where qfc eRTo(^\Tk)> 
We note that the P.L. Lions' type result (3.15) can be deduced from the stability 

estimate 

I0.q.l2,<divin) < c(i - k +1) |q.|2,(diVi0)>m e RT0(n;71). 

F\irther, the strengthened Cauchy-Schwarz inequality (3.17) can be established by 
means of the decomposition q^ = qj. + curl$A;, q^ G Mo(ft;7fc). $k G Si(Q,;Tk), 1 ^ 
k ^ Z. Finally the estimates (3.16) and (3.18) can be verified by similar arguments 
as used in [12]. For details we refer to [21]. • 

R e m a r k 3.2. The lower and upper bounds in (3.14) improve on those in [12] 
where a lower bound of order O (2~(/+1I) and an upper bound of order O (I + 1) 
could be established. 

Local refinement of the triangulations will be performed based on a reliable and 
efficient a posteriori error estimator for the total error in the flux which can be 
derived by the principle of defect correction in higher order ansatz spaces and an ap
propriate localization by hierarchical two-level decompositions of these ansatz spaces 
(cf. e.g. [6], [7], [14] in case of conforming P I approximations and [19], [26] for non
conforming P I approximations). 

We denote by (i,u) E H(div; ft) x L2(Q) the unique solution of the mixed formu
lation (2.3) and by (jo,^o) an iterative approximation of the lowest order Raviart-
Thomas approximation (Jo,^o) G PTo(-^;7I) x Wo((l;Ti). It can be easily seen that 
the total error (j - jo,w - Uo) satisfies the saddle point problem 

a ( j - j o , q ) + 6 (q ,u - i io ) = r ( q ) , qGH(div;f t ) , 

&(J-Jo,v) -c(u-u0,v) = ( / - / ° , v ) o . v G L2(Q) 

where r stands for the residuum r(q) = - fa(j0,q) + b(q,&0)), Q € H(div;!T2), and 

/ ° is the L2 projection of / onto Wo(ft;Ti). 

The defect problem (3.19) will be approximated with respect to the higher order 
mixed ansatz spaces 

HTi(n;7I) := {q, G H(div;fl); qi\K € RTX(K), K G 71} , 

Wi(n;7I):= {vieL2(Q);vl\KeP1(K), KeTi} 
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where RTi (K) stands for the Raviart-Thomas element 

RTi(K) := (Pi(K))2 + xPi(K), x := (xux2)
T. 

We note that any vector field q G RTi(K) is uniquely determined by the following 

eight degrees of freedom 

/ 
(3.20) дK 

nqpda, p e Ri(dK), 

yq-Pdx, pe(P0(K))2 

where Rx(dK) := [p e L2(dK); p\e« G Pi (e*) , 1 < 1/ < 3}. 

In particular, the approximation of (3.19) requires the computation of a pair 

(ej,eu) G RT^fyTi) x Wi(fi;77) such that 

a(e j ,q z ) + 6(q /,en) = r(q /), q. G itTi(ft; 71), 

b(ej,^/)-c(eK,i;/) = ( / - / 0 , t ; / ) o , t;< G lVi(fi; 77). 

Under the saturation assumption 

(3-22) l|j - jil|//(div ;n) ^ P\U - Jo!//(div;n), /? > 0 

and the additional assumption 

(3.23) |flj - JoI//(div;n) ^ * | j - Jo»//(div;n), * > 0 , (S/J < 1, 

which are supported by [11; §11, Prop. 2.6 and §111, Prop. 3.9], it is easily seen that 

(3.24) (1 + J/?)"1 | e j | i f ( c l i v ; n ) ^ «j - Jo|||/L(div;n) < (1 - 6/3)'1 «ej«//(div;n). 

The practical computation of an error estimator for the total error in the flux relies on 

a hierarchical two-level splitting of the mixed ansatz spaces RT\ (ft; Ti) and W\ (ft;Ti). 

For that purpose, for 0 ^ v ^ 1 we denote by I F the L2 projections onto VV̂ (lT2; Ti) 

and by Q" the interpolation operators QV: RT\($l\Ti) 1—> RTU(U\ Ti) given locally by 

/ n • Quq.ipu da = / n • qipu da, pu G Ru(dK)} 0 ^ v -̂  1, 

dK dK 

/ ^ q / - p d x = / q z - p d x , p G (HotIO)2 • 

K K 
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Then, we have the following two-level decompositions 

(3.25) RTx(U;Ti) = -Rib (ft; 71) 0 AT\(Sl;Ti), -RTi(ft;7z) := (Q1 - Q°) .Mi (ft; 7?), 

(3.26) VVi(ft;7I) = Wb(ft;7I)0Wi(ft;7I), tVi(ft;7I) := (n 1 - n ° ) Wi(ft;7I). 

Recalling the hierarchical two-level splitting S2(ft; 71) = Si (ft; 71) 0 S2(ft; 7/) of the 
conforming finite element space of continuous, piece wise quadratic elements where 
S2(ft; 71) stands for the hierarchical surplus spanned by the basis functions associated 
with the midpoints of the edges (cf. e.g. [14]), the hierarchical surplus RTi(ft;Ti) 

can be further decomposed according to 

(3.27) STi(n ;7I)=SfJ(n;7I)0STi(n ;7I) 

where 

(3.28) 5rJ(n;7I) := curlS2(ft;77), 

(3.29) STl(n;7I):={q/GI?Ti(fi;77); / n • qlPda = 0, p G Ri(dK), K G 7,}. 
dK 

0 

Note that RTX(Q; Ti) represents the divergence-free subspace of the hierarchical sur
plus. 

On the other hand, denoting by RTi(K;Kint) the two-dimensional subspace 
spanned by the basis fields associated with the "interior" degrees of freedom (3.20), 
it follows that 

(3.30) RTi(n;Ti) = 0 RTi(K;Kint). 
KeTi 

Based on the splittings (3.25), (3.26) and (3.27) an error estimator ej = e? + e* with 
I n -—o 

ej G RTx(il\Ti) and e? G RT^fyTt) will be determined in two steps: 
Firstly, in view of (3.30) we compute a pair (ej\en) G RTx(Vt;Ti) x JVi(ft;7I) by 

the solutions of the local saddle point problems 

a(ejk,qjb) + 6(qjb,euk) = r(qA.), q* G RTX(K;Kint), 

b(el\KMK)-c(eu\KMK)= ( ( n 1 - ^ ) / , ^ ^ , v/ G Wi(fi;7I). 

Secondly, observing (3.28) we compute the divergence-free part e? G IlT^ftjT/) of 
the error estimator by the solution of the local 3 x 3 problems 

Ja~le]\K • c u r l ^ " dx = - / a~le*s • curlcD^ dx + r\K(cm\^), 1 ^ v <k 3 

/r K 
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where e?\K G span {curl<p^e,/ ; 1 ̂  v ^ 3} and <D^e,y G 52(-l;7/), 1 ^ t/ ^ 3, stand 

for the basis functions associated with the midpoints mC|/ of the three edges ev of 

#£77 . 
Then there holds: 

Theorem 3.3. Under the assumptions (3.22), (3.23) there exist positive constants 
0 < Ko ̂  «i depending on ft and S such that 

(3.31) Ko|||ej|||//(div;n) ^ ||j - Jo||//(div;n) ^ «i|ej|H(div ;n)-

P r o o f . We will only sketch the proof and refer to [21] for details. Denoting by 

P the projection of PTi(ft; 77) onto PT0(n; 77) and by P„, 0 < v ^ 1, the projections 

of PTi(f.»; 71) onto RTX (fi; 7/) with respect to (•, -)/L(div;n)' w e n a v e ^j = A ^ j , e° = 

Po ( I — A ) ij where ej :=-- Pej . The assertion follows from the norm equivalences 

1 /2 
(! - *7o) INIItf(div;n) ^ ll|ejl//(div;n) ^ Ilh||tf(div;n), 

(1 ~ *7l) !|ej|b(div;n) ^ ||ej||//(div;n) ^ Pj|||//(div;Q) 

which can be deduced by means of the Cauchy-Schwarz inequalities 

I (qi.q2)tf(div;n) I < ^olllqi|ll/I(div;n)l|q2|||/f(div;n), 

qi e.RTi(fi;7I), q2 G PT0(ft; 77), 

I (qi>q2)tf(div;n) I ̂  ^llIqii/I(div;n)||q2|Lf(div;n), 

q „ G P T i ( n ; 7 I ) , 0 < I / < 1 

where rjj < 1, 0 ^ v ^ 1. D 

R e m a r k 3.3. Based on the estimates (3.31), as a refinement criterion we use a 
meanvalue strategy as described e.g. in [14]. 

4 . ADAPTIVE MULTILEVEL ITERATIVE TECHNIQUES: ALGORITHM I I 

In this section, we will present another multilevel method which is based on the 
technique of mixed hybridization. This technique has been originally developed by 
Fraeijs de Veubeke [18] and further investigated by Arnold and Brezzi [1] (cf. also 
[11] and [23]). The idea is to eliminate the continuity constraints (2.4) for the normal 
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components on the interelement boundaries from the ansatz space RTo(£l;Th)- This 
leads to the nonconforming Raviart-Thomas approximation 

RT0-\n;Th) := ( q h € {L2(U))2 ; qh\K e RT0(K), KeTh}. 

Note that the dimension of RT0~
x(Q;Th) exceeds that of its conforming counterpart 

RT0(Q; %) by the number of interelement boundaries, since now two basis fields are 
associated with each interior edge. Instead, the continuity constraints are taken care 
of by Lagrangian multipliers from the multiplier space 

M0(£h) := {/** e {L2(£h))
2 ; fih\e e Po(e), ee£hnQ, ^ | e = 0, e G £h n r} . 

Then, the nonconforming mixed discretization of (2.3) requires the computation of 

Cifc.Ufc, \h) e RT0-
l(Sl;Th) x W0(n;Th) x M0(£h) such that 

a(j/i,q/i) + K*Lh>v>h) + d(\h,€\h) = 0, qhe RT0~
1(Q;Th), 

(4.1) b(ih,vh) -c(uh,vh) = -(f,vh)0, vheW0(Q,;Th), 

d(Vh,h) = 0, tih € M 0 ( ^ ) 

where the bilinear forms a, b, c and d are given by 

a:= ^2 aIK> *>:= ]>~ 6|K, c := c and 
KeTh KeTh 

d(Vh,<lh) := 5 1 / M/in.' qfc d<7, ^ - M0(£/i), q^ G i?T0
-1(«;7;). 

K€7,./K 

The distinctive feature of mixed hybridization is to eliminate the discrete flux j ^ from 
(4.1) and to take advantage of the equivalence of the resulting variational equations 
in (uh,\h) e W0(Q;Th) x M0(£h) with an extended nonconforming approximation. 
In particular, we refer to CRi(ft;Th) as the lowest order nonconforming Crouzeix-
Raviart ansatz space 

C.Ri(fi;Tfc):= {vheL2(ft);vh\KeP1(K), K eTh, vh\K(me) = vh\K,(me), 

e = K n K1 e £h n n, vh(me) = o, e G £h n r} 

where me stands for the midpoint of an edge e G £h • 
We further denote by B3(Q; 71) the space of cubic bubble functions 

B3(ft;Th):= {vheL2(Q);Vh\KeP3(K), vh\dK = 0, ^ E ^ } , 
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and we set 

Then, if Ph and Uh are the L2 projections onto JVo(ft; Th) and M0(£h), respectively, 
it can be shown that there exists a unique iph £ N(ft; Th) such that Uh = Ph*Ph and 
Xh = Uhiph (cf. e.g. [1; Lemmas 2.3, 2.4]). Moreover, i/^ is the unique solution of 
the variational equation 

(4.2) aNh(i/;h,r)h) = (P*/,ffo)o, Vh € -V(fl; 7"0 

where the bilinear form aNh : N(Q;Th) x N(ft]Th) '—>• K is given by 

aNh(Zh,r]h) := 5Z / (A- - ( aV&) • Vffo + Ph(c^h)r]h) dx 
K€Th •'*' 

and P a- i denotes the L2 projection onto RT^^Th) with respect to the weighted 
L2 inner product (•, -Jo.o-1-

The extended nonconforming approximation (4.2) will be solved by a multilevel 
preconditioned cg-iteration. For that purpose we assume (7fc)fc=0 to be a hierarchy 
of triangulations generated according to the refinement rules (Rl), (R2) and (R3) as 
in Section 2. In particular, we suppose the coarsest triangulation 7o to be such that 
there exists a constant 7 > 0 with 

(4.3) a0 - 7 ^ 1 £ 0 

where a0 and c\ are from (2.2) and ho := maxdiam(K). The construction of 
K€7o 

the preconditioner for (4.2) with respect to the finest triangulation 77 is based on 
the natural splitting of N(fi,;Ti) into the standard nonconforming part CR\(ft;Ti) 

involving the bilinear form 

(4.4) acRl(ufR,vfR) := £ / {aVufR • VvfR + cufRvfR) dx 
KerrK 

where ufR, vfR e CRi(ft;7I), and the "bubble" part B3(Q,;Ti) giving rise to the 
bilinear form 

(4.5) aBl(wf,zf) := E / (aP(Vw?) • P(Vzf) + cPh,(wf)Ph,(zf)) dx 
K€TiK 

where wf, zf £ £3(ft; 77) and P is the L2 projection onto i?T0
_1(ft; Th). We define 

aN,: N(il; 77) x N(Sl; 77) •—• R by 

OiV,te,»?.) := acfl,(up i i ,t;p i i) +OB,(wf,«.fl) 
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where & := ufR + w*, rji := vfR + z?, up *, vfR G C.Ri(ft;77) and wf, z* € 

-5s(n;77). 
Denoting by .AcR, and AB, the operators associated with the bilinear forms acRt 

and ci£., respectively, we note that A#. can be represented by a diagonal matrix and 

thus is easily invertible. On the other hand, the operator AcRi will be precondi

tioned by a multilevel preconditioner of BPX-type which has been developed by the 

authors in [20], [26] (note that a related BPX preconditioner for nonconforming P I 

approximations has been proposed by Oswald [22]). If 77+I is the triangulation ob

tained from 77 by regular refinement of all K G 77, the idea is to identify CRi(ft; 77) 

with a closed subspace of 5i(ft; 77+I) by means of the pseudo-interpolant 

í ufҢp), 

( Í > , » . ) ( P ) = l £ „ f 

(p), ifp = me 

if p ф me 

where m\v, 1 < v -̂  i/p, are the midpoints of those edges e G £/flft having p G A//+iflft 

as a common vertex (cf. [13] for a related domain decomposition approach). We 

denote by CBPX the standard BPX preconditioner with respect to the hierarchy 

5i(ft,7o) C ••-Si(ft;77) C 5i(ft;77+i) D PfR (C.Ri(ft;77)) of conforming ansatz 

spaces. Further, we refer to lf+1: 5i(ft;77+i) '—> CRi(ft;77) as the mapping de

fined by (if+iUi+i) (me) := u/+i(me), ui+i G 5i(ft;77+i). Then, a suitable BPX 

preconditioner for ACRX is given by CNC '= I^+ICBPX (if+iY• 

The condition number of the preconditioned operator asymptotically behaves like 

O(l) as follows from the following results (cf. [20; Thms. 3.3, 3.7]): 

Theorem 4.1. There exist positive constants 0 < /en ^ ACI and 0 < 770 ^ 771 

depending only on the shape regularity of 7o and on the bounds for the coefficients 

of the elliptic operator such that for all ipi G 7V(ft; 77) and ui G CRi(ft; 77) 

Koa/V/W'.></>/) < CLNityi^i) ^ «ifiiV,(^/»^/)» 
VoacRt(ui,u>i) ^ acR^CxcAcRiU^ui) < m^CRt^hUi). 

Adaptivity by local refinement of the triangulations will be realized using an ef

ficient and reliable a posteriori error estimator for the L2-norm of the total error 

in the primal variable u which can be derived from a saturation assumption moti

vated by a superconvergence result for mixed hybridization. In particular, we denote 

by in G CRi(ft;77) the nonconforming interpolation of the Lagrangian multiplier 

\i G M0(Sh) in the sense that Utui = A/. Then, if u G H2(ft) and / G i f 1 ^ ) , in 

the L2-norm the nonconforming interpolation in does provide an approximation of 

u of order O(tif) compared to the approximation of order O(hi) of u by ui (cf. [1; 
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Thm. 1.1], [11; § V, Thm. 3.1]). This superconvergence result supports the following 
saturation assumption 

(4.6) | | u - u / | | o ^ / % - i x / | | o , 0 < / ? < ! . 

Theo rem 4.2. Let fy E N(Q;Tt) be an iterative approximation of the unique 

solution xj)i e N(il]Ti) of (4.2) and let ui := Pi^i, A/ := Uiipi. Further, suppose that 

U[ e CRi(fi; 7/) is the nonconforming interpolation of A/. Then, under the saturation 

assumption (4.6) there holds 

lit- " fiillo < (1 - /3)"1!!*-! - fi/||o + 2 ^ | | | ^ - 0i||o, 

||u - fi/Ho ^ (1 + Z?)"1!^/ - fi/Ho - 2 | | ^ - ^ | | o . 

P r o o f , cf. (4.7) in [20] . • 

We remark that | | ^ — VJ/||O in (4.7) represents the iteration error which can be 
controlled by the iterative solution process. Therefore, we may use the cheaply 
computable local contributions ||tt/ — u/||o, K G 71, as indicators for local refinement 
of 71- We further refer to [20] for a characterization of the error estimator in terms of 
a weighted sum of the jumps of the approximation in on the interelement boundaries. 

5 . NUMERICAL RESULTS 

We present numerical results for two specific examples illustrating the refinement 

processes and the performance of the a posteriori error estimators. As test examples 

we have chosen: 

E x a m p l e 1. Equation (2.1) with a = l , & = 0 o n f i = (0, l ) 2 , homoge
neous Dirichlet boundary conditions and right-hand side / according to the solution 
u(x,y) = x(x - 1)2/(2/ - l)exp (-100(x - 0.5)2 + (y - 0.117)2). The solution has a 
peak in (0.5,0.0117). 

E x a m p l e 2. Equation (2.1) with a = 1, 6 = 100 on Q = (0, l ) 2 and Dirich
let boundary data and right-hand side / according to the solution u(x,y) = 
(2coshl0)_1 (cosh(10rr)+ cosh(10u)). The solution has the boundary layer along the 
lines x = 1 and y = 1. 
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Level 0 Level 8 

Fig. 5.L Initial triangulation 7o and final triangulation 7s (Example 1) 

Level 0 Level 6 

Fig. 5.2. Initial triangulation 78 and final triangulation % (Example 2) 

Both examples have been solved by the algorithms described in the previous sec
tions. For presentation we restrict ourselves to the results obtained by the application 
of Algorithm I to Example 1 and of Algorithm II to Example 2. 

The initial coarse triangulation 7o has been selected as shown in Figures 5.1 and 
5.2. The refinement process has been stopped when the square of the ratio of the es
timated error and the norm of the iterative approximation was less than the required 
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accuracy TOL times a safety factor a. In particular, we have chosen TOL = 2.E — 3 

and a = 0.95. 

Figures 5.1 and 5.2 represent the initial and final triangulation for Example 1 and 

2. In both cases we observe a significant refinement in the neighborhood of the peak 

of the solution (Example 1) and the boundary layer (Example 2). 
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The performance of both the flux-based a posteriori error estimator (Example 1) 
and of the a posteriori L2-error estimator (Example 2) is shown in Figure 5.3 and 5.4 
representing the efficiency index E = eest/strue — l as a function of the total number of 
nodes where £est and £ t rue stand for the estimated and true error, respectively As can 
be seen, at the beginning of the refinement process we have a slight underestimation 
for Example 1 and an overestimation for Example 2, but in both cases the estimated 
error rapidly approaches the true error with increasing refinement. 
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